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Modelling and Simulation of IntraCellular
Dynamics: Choosing an Appropriate Framework
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Abstract— Systems biology is a re-emerging paradigm which,
amongst other things, focusses on mathematical modelling and
simulation of biochemical reaction networks in intracellular
processes. For most simulation tools and publications they are
usually characterized by either preferring stochastic simulation
or rate equation models. The use of stochastic simulation is
occasionally accompanied with arguments against rate equations.
Motivated by these arguments, in this paper we discuss the
relationship between these two forms of representation. Towards
this end we provide a novel compact derivation for the stochastic
rate constant that forms the basis of the popular Gillespie
algorithm. Comparing the mathematical basis of the two popular
conceptual frameworks of generalized mass action models and the
chemical master equation, we argue that some of the arguments
that have been put forward are ignoring subtle differences and
similarities that are important for answering the question in
which conceptual framework one should investigate intracellular
dynamics.

Index Terms— intracellular dynamics, generalized mass action
models, chemical master equation, Gillespie algorithm, systems
biology.

I. INTRODUCTION

M athematical modelling and simulation of intracellular
dynamics has gained renewed interest in the area of

systems biology [1]. For most simulation tools and publica-
tions they are usually characterized by either using stochastic
simulation (e.g. [2]) or rate equations (e.g. [3], [4]. See also
[5] for a recent hybrid implementation). While there are
good reasons for hypothesizing stochastic mechanisms [6],
[7], some authors argued their use of stochastic simulation
by suggesting differential equations were not suitable. In the
present paper we are going to provide a critical discussion of
some of these arguments and highlight subtle differences and
relationships which have been ignored in some discussions.
Towards this end we are going to investigate the mathematical
basis and close relationship between generalized mass action
models and stochastic simulation.

The paper is organized as follows. In the following section
we introduce the two most commonly employed conceptual
frameworks for modelling intracellular dynamics: the gen-
eralized mass action approach, using rate equations and the
chemical master equation. This is followed by a derivation of
the key elements of the Gillespie algorithms in Sections III and
IV. In Section V we draw conclusions from the mathematical
derivation and discuss the arguments that have been used in
other publications. This is supported by an example.
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II. RATE VERSUS MASTER EQUATIONS

We are considering a reaction network or pathway involving
N molecular species Si. A network, which may include
reversible reactions, is decomposed into M unidirectional
basic reaction channels Rµ

Rµ : lµ1Sp(µ,1) + lµ2Sp(µ,2) + · · · + lµLµ
Sp(µ,Lµ)

kµ

−→ · · ·

where Lµ is the number of reactant species in channel Rµ,
lµj is the stoichiometric coefficient of reactant species Sp(µ,j),
Kµ =

∑Lµ

j=1 lµj denotes the molecularity of reaction channel
Rµ, and the index p(µ, j) selects those Si participating in Rµ.

Assuming a constant temperature and that diffusion in
the cell is fast, such that we can assume a homogenously
distributed mixture in a fixed volume V , we consider gener-
alized mass action (GMA) models, consisting of N ordinary
differential rate equations

d

dt
[Si] =

M
∑

µ=1

νµikµ

Lµ
∏

j=1

[Sp(µ,j)]
lµj i = 1, 2, . . . , N (1)

where the kµ’s are rate constants and νµ denotes the change in
molecules of Si resulting from a single Rµ reaction. We write
for concentrations and a count of molecules respectively:

[S] = 〈S〉/V and #S = S · NA ,

where NA is the Avogadro number. The units of [S] are mol
per liter, M=mol/L. In this context then, S denotes the number
of moles and #S gives a count of molecules. GMA models
have been widely used in modelling biochemical reactions
and metabolic engineering [8], [9]. The mathematical repre-
sentation (1) of a biochemical network does not account for
noise on the states, which would lead to stochastic differential
equations. Neither does it consider measurement noise, and
we may call the model ‘deterministic’. It is however not
deterministic in the sense that it models molecules in a phase-
momentum space for it is rooted in the stochastic setting of
Boltzmann’s kinetic theory of gases. The [Si] are thus most
probable values. In modelling intracellular dynamics, it has
been argued that such “deterministic” models are not suitable
for processes with relatively low numbers of molecules [10]–
[13]. We are going to investigate this argument in detail.

In a stochastic framework, we are looking at populations of
molecules and wish to determine for each molecular species
Si the probability Prob{#Si(t)=ni} that at time t there are
ni molecules. For N molecular species, let n denote the N -
dimensional state-vector, whose values are positive integers,
n ∈ Z

N
+ . νµ ∈ Z

N are the step-changes occurring for
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elementary reactions indexed by µ. If S is an N -dimensional
variable, we write Prob{#S = n} = Pn(t). Describing the
changes in random variable S, we consider the following two
state-transitions: a) from other states to state n, denoted

n − νµ

aµ(n−νµ)
−−−−−−→ n ,

where aµ(n − νµ) is referred to as the propensity of reaction
channel Rµ, that is the probability per unit time, of a change
νµ occurring, given that we are in state n − νµ. Secondly, b)
moving away from state n is given as

n
aµ(n)
−−−→ n + νµ .

From these definitions we arrive at the chemical master
equation (CME)

∂Pn(t)

∂t
=

M
∑

µ=1

[

aµ(n − νµ)P(n−νµ)(t) − aµ(n)Pn(t)
]

. (2)

The first term on the right-hand side describes the change
to state n, while the second term describes the changes
away from state n. The product of the propensity with the
probability should be read as an “and”. The multiplication
of a propensity and probability makes sense in light of
the derivative against time on the left, in that a propensity,
multiplied with dt gives a probability. Note that the CME
(and the therefore the Gillespie algorithm) does account for
individual reaction channels but not for individual molecules.
This issue was taken up, for example, in [12].

A major difficulty with the CME is that the dimension of
these sets of equations depends not only on the number of
chemical species N but for any possible number of molecules
of any species we have n differential-difference equations.
While a formal analysis of (2) is difficult, it is possible
to approximate the CME by a truncated Taylor expansion,
leading to the Fokker-Planck equation, for which there exist
some results [10], [19], [20]. Gillespie [14]–[17] subsequently
developed an algorithm to simulate1 a CME model efficiently.
The Gillespie approach has in recent years become popular in
simulating intracellular dynamic processes [2], [7], [11], [18].
As we are going to show, its implementation is in most cases
based on the knowledge of the rate equation model. Comparing
(1) and (2), we note that while rate equations are deterministic
in the sense that they employ differential equations, they are
based on a probabilistic description of molecular kinetics. On
the other hand, the CME is a stochastic formulation, but based
on differential equations, with probabilities as variables.

In the next section we discuss the key elements of the
Gillespie algorithm with respect to the number of molecules
and possible approximations. This is followed, in Section IV,
by a derivation of the stochastic rate constant. The derivation
is going to highlight the relationship between generalized mass
action models and a stochastic simulation of the CME.

1The distinction between a stochastic model and stochastic simulation is
important but unfortunately occasionally ignored in the literature.

III. STOCHASTIC SIMULATION

The Gillespie algorithm determines for each iteration first
the propensity aµ for all of the elementary reactions Rµ

aµ = hµ · cµ , µ = 1, . . . ,M (3)

where hµ defines the number of distinct combinations of Rµ

reactant molecules, which varies over time

hµ(n) =











Lµ
∏

j=1

(

np(µ,j)

lµj

)

for np(µ,j) > 0 ,

0 otherwise .

(4)

For example, let Rµ be defined as

2S1 + S2 + 3S3 → . . . ,

then Lµ = 3, lµ1 = 2, lµ2 = 1, and lµ3 = 3, such that

hµ =

Lµ
∏

j=1

(

np(µ,j)

lµj

)

=

(

n1

2

)

·

(

n2

1

)

·

(

n3

3

)

.

If np(µ,j) in (4) is large and lµj > 1, terms like (np(µ,j)−1) ,
. . . , (np(µ,j)−lµj +1) will not be much different from np(µ,j)

and we may write

hµ
∼=

Lµ
∏

j=1

(np(µ,j))
lµj

lµj !
=

Lµ
∏

j=1

(np(µ,j))
lµj

Lµ
∏

j=1

lµj !

. (5)

Akin to a rate constant kµ, Gillespie introduced the stochas-
tic rate constant, cµ, which only depends on physical proper-
ties of the molecules and the temperature of the system. cµdt
is the probability that a particular selected combination of Rµ

reactant molecules at time t will react in the next infinitesimal
time interval (t, t + dt). A reaction requires two separate
phenomena: a collision to occur and for the collision to be
reactive. In [21], [22], for bimolecular reactions, Gillespie
derived an expression for cµ that contains a probability that
a colliding pair of Rµ reactant molecules will chemically
react. This probability is however generally unknown. For
trimolecular reactions the only relationship that can be derived
from physical principles is the proportionality cµ ∝ V −Kµ+1,
where Kµ = 1, 2, or 3, and even this requires further unreal-
istic assumptions as Gillespie writes in [22]. Since a physical
derivation for cµ is in general not possible, implementations
of cµ in algorithms are relying on other arguments. Such a
derivation will be the subject of Section IV. It turns out that
such derivations rely on the rate constants k in GMA models.
In [22] Gillespie also showed how the linear relationship
cµdt is justified on a mathematical basis. A consequence of
this derivation is that cµ must be analytical. This can, for
example, be achieved by keeping cµ constant. If we multiply
the probability cµdt, which applies to a particular selected
combination of reactant molecules, by the total number of
distinct combinations of Rµ reactant molecules in V at time
t, we obtain the probability that an Rµ will occur somewhere
inside V in the next infinitesimal time interval (t, t+dt). This
leads us to cµ · hµ dt ≡ aµ dt as the probability that an Rµ

reaction will occur in V in (t, t + dt), given that the system
is in state S at time t.
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IV. DERIVING THE STOCHASTIC RATE CONSTANT

In the present section we are going to present a novel
compact derivation for cµ, which is also going to provide a
means to discuss the relationship between rate equations and
stochastic simulation.

Using the following example for a chemical reaction

S1 + αS2
k1−→ βS3

k2−→ αS2 + γS4 ,

which for the purpose of a stochastic simulation is split into
two reaction channels

R1 : S1 + αS2
k1−→ βS3 ,

R2 : βS3
k2−→ αS2 + γS4 .

(6)

When a reaction occurs, the changes to molecule populations
are

ν1 = (−1,−α, β, 0) , ν2 = (0, α,−β, γ) .

From (6) and from the definition of reaction velocity we have
the following relationships

[

[Ṡ1]

−1
=

[Ṡ2]

−α
=

[Ṡ3]

β

]

=k1[S1][S2]
α

,

[

[Ṡ3]

−β
=

[Ṡ2]

α
=

[Ṡ4]

γ

]

=k2[S3]
β

.

(7)

The rate equations are then easily derived as

d[S1]/dt = −k1[S1][S2]
α

d[S2]/dt = −αk1[S1][S2]
α + αk2[S3]

β

d[S3]/dt = βk1[S1][S2]
α − βk2[S3]

β

d[S4]/dt = γk2[S3]
β .



















(8)

Looking at the structure of (8), we recognize in this set of
equations the GMA representation (1). Substituting [S] =
〈S〉/V = 〈#S〉/(NAV ) in (1), gives

d

dt

(

〈#Si〉

NAV

)

=

M
∑

µ=1

νµikµ

Lµ
∏

j=1

(

〈#Sp(µ,j)〉

NAV

)lµj

,

which can be rewritten as

d

dt
〈#Si〉 =

M
∑

µ=1

νµikµ

(NAV )
Kµ−1

Lµ
∏

j=1

〈#Sp(µ,j)〉
lµj , (9)

where we made use of the fact that

Lµ
∏

j=1

(NAV )
lµj = (NAV )

Lµ
∑

j=1

lµj

= (NAV )
Kµ .

The differential operator is justified only with the assumption
of large numbers of molecules involved, such that near contin-
uous changes are observed. Let us now assert for the temporal
evolution of 〈#Si〉 a “particle-ODE”, :

d

dt
〈#Si〉 =

M
∑

µ=1

νµik
′

µ

Lµ
∏

j=1

〈#Sp(µ,j)〉
lµj . (10)

Comparing (10) with (9), we find

k′

µ =
kµ

(NAV )
Kµ−1

, (11)

This equation then describes the interpretation of the rate
constant, dependent on whether we consider concentrations
or counts of molecules.

To arrive at a general expression for the propensity aµ from
(10) it follows that

〈#Rµ〉 = k′

µ ·

Lµ
∏

j=1

〈#Sp(µ,j)〉
lµj dt (12)

gives the average number of Rµ reactions occurring in (t, t +
dt). Note that νµ has been excluded above since we would
otherwise have an expression for the number of molecules not
the number of reactions. Considering #Rµ, the number of
Rµ reactions, as a discrete random variable with probability
mass function prµ

= Prob{#Rµ =rµ}, where rµ is the value
assumed by the random variable #Rµ. The expectation value
〈#Rµ〉 is given by

〈#Rµ〉 =
∑

rµ

rµ〈prµ
〉 rµ = 0, 1, 2, . . . (13)

where

prµ
=











aµdt + o(dt) : rµ = 1

1 − aµdt + o(dt) : rµ = 0

o(dt) : rµ > 1 .

(14)

where o(dt) denotes a negligible probability for more than one
Rµ reaction to occur during dt. Since aµ is a function of n,
prµ

is randomly varying and hence the averaging 〈prµ
〉 over

the ensemble in (13). Equation (13) thus becomes

〈#Rµ〉 = 0 · p0 + 1 · p1 +
∑

rµ>1

rµ〈prµ
〉 .

From (13) and (14) we then have

〈#Rµ〉 = 〈aµdt〉 + o(dt) . (15)

Now, from (12) and (15) the propensity of Rµ reactions to
occur in dt is given as

〈aµ〉 = k′

µ

Lµ
∏

j=1

〈#Sp(µ,j)〉
lµj . (16)

To proceed, we consider another alternative expression for
aµ, by substituting (5) into (3), and considering the average

〈aµ〉 = cµ ·

〈

Lµ
∏

j=1

(#Sp(µ,j))
lµj

Lµ
∏

j=1

(lµj !)

〉

, (17)

where #Sp(µ,j) denotes the random variable whose value is
np(µ,j). Note that this implied the assumption of a large num-
ber of molecules for all species Si and lµj > 1. Comparing
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(17) and (16)

k′

µ

Lµ
∏

j=1

〈

#Sp(µ,j)

〉lµj
=

cµ

〈

Lµ
∏

j=1

(

#Sp(µ,j)

)lµj

〉

Lµ
∏

j=1

(lµj !)

.

Making the same notorious assumption2 of zero covariance as
in [22], gives

k′

µ =
cµ

Lµ
∏

j=1

(lµj !)

, (18)

which can be turned into an expression for cµ:

cµ = k′

µ ·

Lµ
∏

j=1

(lµj !) . (19)

Inserting (11) for k′

µ, we arrive at

cµ =

(

kµ

(NAV )
Kµ−1

)

·

Lµ
∏

j=1

(lµj !) . (20)

Equation (20) establishes a relationship between the stochastic
constant cµ and rate constant kµ and is used in most imple-
mentations of Gillespie’s algorithm. Note that if above we
substitute 〈S〉/V in (1) for [S] instead of 〈#S〉/(NAV ), the
only difference to (11) and (20) is that the NA would not
appear in these equations.

The difference of our derivation to the one given by
Gillespie in [22] is that we introduced the average number
of reactions (12) to move from the general GMA represen-
tation (1), which is independent of particular examples, to
an expression that allows us to derive parameter cµ of the
stochastic simulation (20) without making reference to the
temporal evolution of moments from the CME. In [22], the
temporal evolution of the mean is derived for examples of
bi- and tri-molecular reactions only. Taking the variance of
#S(t) to be zero to make it a ‘sure variable’, this equation is
compared to the GMA model to derive cµ.

Equation (20) is at the heart of the Gillespie algorithm
and its implementations. There are two conclusions from the
derivation. First, using the approximation (5) for hµ is valid for
a large number of molecules with lµj > 1. Although in most
practical cases this will not lead to significant differences, this
has been ignored by some authors. More important however is
the fact that the derivation of (20) relies on the rate constants
of the GMA model. Note that this is not to mean that the
CME approach relies on the GMA model, since to derive
rather than postulate a rate equation, one must first postulate a
stochastic mechanism from which the GMA arises as a limit.
For most applications users of the Gillespie algorithm make
explicit use of the rate constants that define the GMA model.

2The assumption of zero covariance such that 〈#Si#Sj〉 = 〈#Si〉〈#Sj〉
means for i 6= j nullifying correlation, and for i = j nullifying random
fluctuations. The same assumption is required if one compares the temporal
evolution of the mean of the CME model with the GMA model. This then
demonstrates that a GMA model does not always arise as the mean of the
CME model ( [22], page 363).

In this situation it would then seem unreasonable to argue
against a GMA model.

So how do we compare deterministic and stochastic mod-
els? First, we ought to compare models with models and
simulations with simulations. The advantage of the GMA
model (1) is that its terms and parameters have a precise
meaning, they are a direct translation of the biochemical
reaction diagrams that capture the biochemical relationships
of the molecules involved. For a formal analysis of the model,
as opposed to a simulation, rate equations are in virtually all
cases simpler than the CME. One might argue that for any
realistic pathway model a formal analysis is not feasible for
either model and a simulation (numerical solution) is the way
to go forward. In this case the Gillespie algorithm provides an
efficient implementation to generate realizations of the CME.
An advantage of simulations is furthermore that, in principle,
it is possible to vary temperature and volume over time.

V. DISCUSSION

As concentrations and the number of molecules becomes
small, the variability of molecular populations in biochemical
reaction networks increases (Figure 3). It is frequently argued
that in this case differential equation models do not account
for the observed variability and a stochastic approach should
be preferred. To account for variability in chemical master
equations (2) and rate equations (1), for both conceptual
frameworks the identification of the model and its parameters
requires a set of replicate experimental time series over which
to average and estimate the moments of the distributions
that account for the variability. While there are indeed good
reasons to hypothesize stochastic mechanisms in intracellular
dynamics (see [23] for a recent overview and discussion),
the arguments used for stochastic simulation and against
differential equations are occasionally misguided.
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Fig. 1. Single run of a stochastic simulation using Gillespie’s Direct Method
[15] for Example (6) in the text. The parameters used are V = 1 pL, k1 =
0.5 (nM · sec)−1, k2 = 0.2 sec−1, α = 1, β = 1, γ = 1, #S2(0) =
#S3(0) = 0.

One ought to differentiate between a hypothesized princi-
ple or molecular mechanism and the observations we make
from experimental data. The Gillespie algorithm is an exact
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realization of a time-continuous Markov process. This is true
regardless of how these processes are motivated physically,
and one should not mistake this as an argument how well it
can describe intracellular dynamics. Many of the assumptions
regarding volume, temperature, homogenous culture etc., are
not avoided by this fact. For many applications or examples in
the literature the number of molecules is large enough to make
a single stochastic realization appear to be an exact copy of the
GMA solution. In the context of a discussion of low molecular
concentrations, one should not forget that, for fewer molecules,
it is necessary to obtain a series of realizations over which we
have to average before we get an ‘accurate’ estimate of the
properties of a stochastic system from either experimental data
or simulations.
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Fig. 2. Average over four realizations of a stochastic simulation of Example
(6), using the same parameters as in Figure 1. The GMA solutions have
been multiplied by NA · V · 10−9 to convert concentrations into a count of
molecules.

A common argument is that if the concentration or the
number of molecules of the chemical species involved in a
biochemical reaction is low, a stochastic approach in form of
the chemical master equation is a more accurate representation
than rate equations [10], [11], [13], [18]. In case of [11],
[18] and [13] this discussion is not done on the basis of the
chemical master equation but using the Gillespie algorithm
for stochastic simulation. A question is what is meant by
“low concentrations” or the consequences of small numbers
of molecules? Subject to approximation (5), Figures 1 and 2
compare realizations of the stochastic simulation of Example
(6) with solutions of the rate equations3. Figure 3 shows the
temporal evolution of aµ for a volume of 1 pL and initial
numbers of 10 molecules. The simulations demonstrate that
even for very small numbers of molecules single realizations of
stochastic simulations show steadily changing patterns that can
be modelled well using a continuous representation. The close
similarity between the numerical solution of the ODEs and the
stochastic simulation is no surprise since the rate constants
of the GMA model are also integral part of the stochastic
simulation, as shown by equation (20).

3MATLAB functions to simulate the GMA model (1) and the CME (2) are
available from www.sbi.uni-rostock.de
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Fig. 3. Example (6). Temporal evolution of the aµ. The parameters are the
same as in Figure 1. What is shown is an average of the aµ over realizations in
order to illustrate the overall trend, free of the variability in single realizations.
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Fig. 4. Data from western blot time course experiments.

In fact, plots shown in those publications that argue for
stochastic simulation in case of small molecule populations,
are almost always displaying steady increases and decreases
that are well approximated by ordinary differential equations.
Figure 4 shows typical experimental data as obtained from
western blot time course experiments to study proteins in
signal transduction pathways. While there surely is measure-
ment noise, it seems a reasonable assumption to believe the
concentration profiles follow roughly the linear interpolations
shown. If for the few time points that current experimental
practice generates, we were not observing steadily increasing
or decreasing pattern, and instead would argue for a truly
random process, one would find it difficult to validate such
a model from data (like those shown in Figure 4). Figure
5 shows random simulations of time series with only six
time points. How do we distinguish between random from
deterministic pattern in data?

Western-blot time series, like those shown in Figure 4, are
generated from a pool of about 107 cells although we are
trying to understand what is happening in a single cell. We
could explain the deterministic pattern in experimental data as
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Fig. 5. Random simulations of time series. We can only start modelling by
assuming that these curves are not random. If they are, we could not test this
since there are not enough data points for a statistical test to be applicable.
We call this the WYSIWYM principle: What You See Is What You Model!

follows. Looking at the population of molecules of species Si,
from each reaction channel a change νµi arises for when the
reaction channel Rµ is realized or active. The change νµi is a
random variable, and the total change of Si across all reaction
channels is a sum of random variables

∆(#Si) =

M
∑

µ=1

νµi .

For more than one reaction channel, from the central
limit theorem, ∆(#Si) is approximately normal distributed,
∆(#Si) ∼ N (·, σ2

v). For any further averaging process with
say m elements, e.g., using 107 cells in immunoblotting, the
variance of measurements is of the order σ2

v/m. This means
that if we are not considering single-cell measurements we
are likely to observe relatively smooth patterns. If we do
consider single-cell measurements, we ought to have in any
case replicates to average out random variations.

If we are to consider a stochastic simulation and wish
to validate it with experimental data, we get the following
requirements for the experimenters. In Gillespie’s algorithm,
the time interval for the next reaction to occur is calculated as

τ = (1/a∗) · ln(1/r1) ,

where r1 is a random number in the unit interval and

a∗ =

M
∑

µ

aµ . (21)

Note that τ is a function of state n and thus implicitly also a
function of time. As #Si goes down, there are fewer reactive
collisions and the propensity aµ decreases. This means that
for all relevant reaction channels, (21) will also decrease. This
does however mean that the ratio aµ/a∗ changes little. Since
the probability of the next reaction occurring is given by [14]

P (µ|τ) = aµ/a∗ , (22)

this means that the resulting concentration levels are relatively
similar. However, since τ , i.e., the time for the next reaction

to occur is exponentially distributed,

P (τ) = a∗ · exp(−a∗τ) , (23)

with mean 1/a∗ and standard deviation 1/a∗, the variance
of τ increases more substantially. This in turn means, that
for a specified t the variance of the realizations will increase.
Figure 6 illustrates the dependence of the variability on the
initial number of molecules. A consequence is that for fewer
molecules, more realizations are required to obtain an accurate
picture through averaging across realizations. Also, the larger
the number of reaction channels, M , the smaller is the average
time to the next reaction τ , as shown by (23). However, at the
same time, the number of possible transitions from state n will
increase as can be seen from (22).
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Fig. 6. Example (6). Temporal evolution of the normalized standard deviation
σSi

(t)/(#S1(0)) over 50 realizations at t. α = β = γ = 1, k1 =
0.6 (nM · sec)−1, k2 = 0.1 sec−1. #S4(0) = 10, #S2(0) = #S3(0) = 0,
#S1(0) = 10, 20, 40, 80. Note that the normalization is necessary to make
the plots independent of the initial #Si and thereby make them comparable.

In considering mathematical modelling and simulation, most
important are the context and the purpose of modelling. Do we
wish to use a model to hypothesize a fundamental molecular
mechanism, or are we trying to model the observed conse-
quences of these molecular mechanisms? Is the phenomena we
observe an aggregate of a group of dependent subcomponents
(e.g. molecules or cells) that combine individual, discrete
responses into graded response at higher levels of organization
(e.g. in tissue and organs)?

In some cases, authors who wished to argue for their use
of stochastic simulation, have unfortunately missed some of
the subtleties of our foregoing discussion. Let us look at some
examples. In [18] it is argued that

“The availability of a huge amount of molecular data
concerning various biochemical reactions provoked
numerous attempts to study the dynamics of cellular
processes by means of kinetic models and computer
simulations.”

To take western blot time course experiments as an example,
the problem we face for modelling is anything but one of
dealing with huge amounts of data. For a time series, usually
only six to ten time points are available and replicates are
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the subject of hard fought negotiations between theoreticians
and experimentalists. For realistic pathway models, because
of the costs and time required, usually only a fraction of all
pathway proteins can be covered by experiments. While the
area of bioinformatics is often associated with a flood of data,
in systems biology the lack of sufficiently rich quantitative
stimulus-response time course data sets remains a problem.

The authors of [13] clearly missed the mark:

“There is also a problem of interpretation by users.
Systems of differential equations have a number of
parameters that must be fitted from experimental
data. However, the parameters may have no meaning
to the biologists, who are therefore unable to gauge
whether the values are appropriate.”

Quite the opposite is true. The parameters of GMA model (1)
have a very precise meaning and practical interpretation. The
fact that for GMA models we can identify parameters directly
from experimental data is an advantage. Although this is not
a trivial task, there are well established algorithms available
for this purpose.

Whether one starts off with the GMA representation or the
CME, it is often not possible to obtain all necessary parameter
values from experimental data. For such practical reasons but
also in order to simplify the mathematical analysis it is often
desirable to make use of the quasi-steady-state assumption
(QSSA) [24], [25]. These assumptions allow a formal analysis
of various important aspects of cell signalling rooted in GMA
models. These simplifications do of course also simplify the
stochastic simulation since the k’s of the rate constants are
implicitly used in the simulation. Alternatively, one considers
the QSSA for the CME as discussed in [27].

We conclude that one should not argue the case for either
rate equations or stochastic simulations with the numerical
accuracy of a representation or physical realism but whether
a biological principle is reflected by the model. Whether we
are using the GMA or CME representation we make various
assumptions about the physical context, including for example
a constant volume, temperature, rapid diffusion etc. While
these assumptions may seem outrageous in light of what
we know and observe about intracellular dynamics, we are
reminded of Box’s dictum: “All models are wrong, but some
are useful”.
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