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Abstract

The paper describes the use of statistical signal selection in DNA microarray data analysis.
The experiments considered produce time-series data. A commonly used method of thresholding
is compared to using the ‘run test’, ‘turning point test’,‘Kendall’s tau test’ and ‘autocorrelation
function’. We conclude that the use of such techniques, developed for time-series analysis, can
help to distinguish between non-informative signals or noise and signals which show either a trend
or are correlated over time.

1 DNA Microarray Data

For the data considered in this paper we assume that gene expression profiles were obtained from
time course DNA microarray experiments. To illustrate the idea and without loss of generality, we
use the yeast data set described by Eisen et. al [2] and choose the 18 measurements obtained for
the cell division cycle after synchronization by alpha factor arrest. In general, a gene expression
data matrix X has i = 1, ..., n rows for the genes and j = 1, ..., r columns for samples. Here we
have n = 2467 yeast genes and r = 18 time-points. Each row vector xi = [xi1, ..., xij , ..., xir]
represents a particular gene expression profile. Throughout the paper we refer to a gene by its
(row) number in X. xij is the gene expression level at time j of gene i. xij ∈ xi is the normalized
log2 ratio Eij/Rij where Eij is the expression level or state at time j of the gene i, and Rij is
the reference state of the gene, which is a constant value throughout the experiment [1]:

xij =
log2

(
Eij

Rij

)
√∑18

k=1

(
log2

(
Eij

Rij

))2
i = 1, . . . , 2467 j = 1, . . . , 18 (1)

With the normalization of (1), xij is positive when Eij ≥ Rij and we say the gene is induced
or “up-regulated”. When Eij ≤ Rij , xij is negative and it is said that the gene is repressed or
“down-regulated”.

In this paper we assume that there are no missing values, i.e., measurements have been ob-
tained for all sampling points of the time course or missing values have been replaced by a suitable
method. Assuming that not all genes are involved in the dynamic response to an experiment, the
problem considered here is one of signal selection. We investigate test for randomness, stationar-
ity and trend to identify informative signals and to disregard genes from the analysis for which
signals appear non-informative or as noise.

2 Signal Selection and Preprocessing Problems

The principal aim of microarray experiments is to study gene activity levels through the mea-
surement of mRNA abundance under varying conditions. Knowledge of the functional role of a
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Fig. 1: Three “similar” genes expression profiles (1274, 1281 and 1745).

gene can be used to classify other genes by comparing their expression profiles. Genes involved in
the same processes are expected to have “similar” expression profiles in a microarray experiment.
Two difficult problems arise from such analysis:

• Conditions of the experiment may not affect all genes. Frequently, a large number of genes
are not involved in the process under consideration leading to a “flat” signal with little or
no change from the reference state. Those signals can be eliminated from the matrix. This
preprocessing can lead to a substantial reduction of the number of genes which makes the
analysis of the remaining easier. The criteria for such as selection are not clear as we will
discuss later.

• What do we understand by “similar” and how do we decide when two signals are similar?
Fig. 1 shows three gene expression profiles. Two of the three profiles are clearly similar to
each other. A common approach to discuss similarity is to view the vector xi as describing
a point in a r-dimensional space where r is the size of the vector. Using the Euclidean
distance between the three points, the two signals which are virtually identical would be
separated from the third which is time shifted. On the other hand, if we are to view the
time course as a dynamic response and fit an autoregressive (AR) model to the data, we
find that for all these signals the distance in the parameter space of the AR model is small
and all three genes appear related.

In this paper, we will discuss the first problem using statistical test for randomness and trends.

3 Statistical Test for Signal Selection

This section reviews some techniques used to decide whether a signal has been produced by a
process with a “deterministic” component or whether it is just “noise”. The condition for a
sample of data to be regarded as noise is that, if we assume that each data point is a random
variable, these have to be independent identically distributed. The distribution that they follow,
depends on the process that generates the data. Purely random data such as a lottery, may follow
an uniform distribution but very often, processes in life, such as the error of a machine which is
taking measurements, follows asymptotically a normal distribution i.e. the random variable which
represent the process is a normal distributed when the same experiment is carried out a large
number of times. This can be the case for microarray data where noise comes from the apparatus
involved in the measurement process. The gene expression ratio xij in these cases fluctuates
around zero if the gene does not responds to the experiment, Eij ≈ Rij . This generates a “flat”
signal on the horizontal axis, xi ≈ 0. This suggest that signals around zero, with little variations
may be considered as noise.
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Fig. 2: Length of the radius of the interval around zero against the number of
signals considered non-informative.

Threshold Method

The selection criteria used by some authors consist of choosing an interval around zero and all
signals falling inside the interval are assumed to be non-significant. Fig. 2 shows the plot of the
radius of the interval about zero against the number of significant signals using the threshold
method.

This method can also discard signals which, for all j, stay inside the interval but have some
trend which could indicate a weak response of the genes to the experiment. In Fig. 3 the signals
numbered 256, 260, 268, 330, 452 and 529 illustrate this point. These signal will be rejected using
the threshold method but they will be considered to have a “significant” trend if a statistical test
is applied. In fact, the responses appear cyclical and suggesting a weak response despite small
values. We do not suggest that this would lead to errors in the analysis the specific yeast data
set but try to illustrate the problem of using a simple threshold.
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Fig. 3: Genes 256, 260, 268, 330, 452 and 529, all of which would be disregarded
using an interval [−1, 1] for signal selection.

Many other signals, for example 13, 25, 31, 33, 49 and 51, plotted in Fig. 4, are inside
the interval with radius one and also have no significant trend. For signals verifying these two
properties, we make a division between the signals which follow a random pattern and those that
do not. To get this division, a statistical test for randomness, such as runs test, discussed in the
next section, is applied. In Fig. 5 we can see genes 1 and 129. They do not have a significant
trend component and are not considered as a pure random signals by a test for randomness.
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Fig. 4: Genes 13, 25, 31, 33, 49 and 51 fall within the interval [−1, 1] and have not
evidence of trend.
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Fig. 5: Genes 1 and 229. They verify the same conditions as the genes in Fig 4
with the difference that they are not considered random signals by the runs test.
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Fig. 6: Runs above “+” and below “-” the median (dashed line).

Runs Test

The runs test is used to check whether the data sample satisfies the following hypotheses:

• H0: The series has no trend and is independently distributed.

• Ha: The series has a trend and/or has autocorrelated errors.

Under H0, each data point of the time series is considered as a independently distributed
random variable. Note that H0 is a necessary condition for a sample of data to be regarded as
noise. Under H0 it is supposed that the probability of a point being above the median m of the
sample is the same that being below it. Then, if the sample size is even the median under H0 is
m = r/2 otherwise, the median is itself an observation and we ignored it, being m = (r − 1)/2.
The statistic used is the number of runs above and below the median, denoted R. If we denote
with the symbols “+” and “-” the values above and below the median respectively, R is the
number of blocks of pluses and minuses. Fig. 6 shows an example. The median is shown as a
dashed line and the “+” and “-” are plotted below the axis. The observation which coincides
with the median is denoted by a “*”. R is asymptotically normally distributed with

µR = m + 1, σR =

√
m(m − 1)
2m − 1

Then, normalizing R, z = |R−µR|
σR

we reject H0 if |z| > zα/2. Where α is the confidence level of
the test. For m ≤ 20, R cannot be considered as normally distributed since it is an asymptotic
property. However, confidence intervals [RL, RU ] for small sample sizes can also be calculated.
In [3], a table is provided for values of m ≤ 20 and α = 0.10. We have reproduced it in Tab. 1.

m 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
RL 2 3 3 4 5 6 7 7 8 9 10 11 11 12 13 14
RU 10 11 13 14 15 16 17 17 19 20 22 23 25 26 27 28

Tab. 1: Critical values for R in a two-tailed runs test for stationarity (α = 0.10).

If H0 is rejected, the test suggests that the series has a trend with (1−α)×100% of confidence
or that the values are not independently distributed. The signals in Fig. 7 are considered random
by the runs test. Note how this test has to be carefully applied for microarray data, since some
signals as the two at the top of the Fig. 7 are not close to zero and may well be informative.
In Fig. 8 we can see three trended signals, two inside the unit interval and one outside. The
implementation of the runs test is summarized in Fig. 9.
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Fig. 7: Signals 49, 561 and 562.
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Fig. 8: Signals 4, 8 and 2146.
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1. Hypotheses to test for:

H0: The series has no trend and is independently distributed.

Ha: The series has a trend and/or has autocorrelated errors.

2. Statistic: R= the number of runs above and below the median.

3. Decision rule for small sample(m ≤ 20, α = 10%):

Reject H0 if R ≥ RU or R ≤ RL. (See Tab. 1 for RL and RU .)

Otherwise do not reject H0.

4. Decision rule for large sample (m > 20, α)

Reject H0 if |z| > zα/2.

Otherwise do not reject H0.

i. z = |R−µR|
σR

ii. µR = m + 1, σR =
√

m(m−1)
2m−1

and m = r/2 for r even or m = (r −
1)/2 for r odd.

iii. zα/2= the upper (α/2) × 100% point of the standard normal distribution.

5. Conclusion:

a) If H0 is rejected, the test has shown with (1 − α) × 100% confidence that a
no-trend independent model is inappropriate.

b) If H0 is not rejected, the test has shown some support for using a no-trend
model.

Fig. 9: Runs test procedure.

Turning Points Test

The Turning points test is used to check whether the time series verify the following hypotheses:

• H0: The series is a random no-trend series.

• Ha: The series has trend and/or has autocorrelated errors.

A turning point is defined as an inflexion point, i.e., the instant of time at which the series
changes from ascending to descending and vice versa. Fig. 10 illustrates the way turning points
are identified. Under H0 the number of turning points U may not be too large and neither too
small. The statistic U is asymptotically normally distributed with

µU =
2(r − 2)

3
, σU =

√
16r − 29

90

where r is size of the sample. Then, normalizing U , z = |U−µU |
σU

, H0 is rejected with a α confidence
level if |z| > zα/2. If H0 is rejected, the test has shown with (1 − α) × 100% confidence that
the series has trend or the values are not independently distributed. If H0 is not rejected there
is evidence that the time series has no trend. In Fig. 11 the confidence level is plotted against
the number of signals rejected by H0 using the turning points test. The implementation of the
turning point test is summarized in Fig. 12.

Kendall’s Tau Test

The Kendall’s τ -test is based on Kendall’s correlation coefficient τ and is used to check whether
a time series follows a trend or not. The hypotheses are

• H0: The series is a random no-trend series.

• Ha: The series has trend either upward or downward.

The procedure is as follows. The r(r − 1)/2 possible pairs of values from the series are
constructed, counting the number of upward pairs Nu (where the first is smaller than the second)
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Fig. 10: Example of turning points.
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Fig. 11: Confidence of the turning point test against number of signals rejecting
H0.
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1. Hypotheses to test for:

H0: The series is a random no-trend series.

Ha: The series is either trended or has autocorrelated errors.

2. Statistic: U= the number of turning points in a series.

3. Decision rule for a moderate or large sample(r ≥ 10):

Reject H0 if |z| > zα/2.

Otherwise do not reject H0.

i. z = |U−µU |
σU

ii. µU = 2(r−2)
3

and σU =
√

16r−29
90

iii. zα/2= the upper (α/2) × 100% point of the standard normal distribution.

4. Conclusion:

a) If H0 is rejected, the test has shown with (1 − α) × 100% confidence that a
no-trend independent model is inappropriate.

b) If H0 is not rejected, the test has shown some support for a no-trend independent
model.

Fig. 12: Turning point test procedure.
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Fig. 13: Confidence of Kendall’s tau test against number of signals rejecting H0.

and the number of downward pairs Nd. The statistic τ is defined as

τ =
Nu − Nd

r(r − 1)/2
(4)

or for the normalized version
zτ =

τ − µτ

στ
(5)

where

µτ = 0 and στ =

√
2(2n + 5)
9n(n − 1)

. (6)

H0 is rejected if |zτ | > zα/2 and we conclude with (1 − α) × 100% confidence that the series is
trended. In Fig. 13 the confidence level is plotted against the number of signals rejecting H0.
Note the different graphs in Fig. 11 and 13 despite the fact that the hypotheses tested are similar.
The implementation of the Kendall’s τ -test is summarized in Fig. 14.
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1. Hypotheses to test for:

H0: The series is a random no-trend series.

Ha: The series has trend, either upward or downward.

2. Statistic: τ = Nu−Nd
r(r−1)/2

3. Decision rule for a large sample (r ≥ 10):

Reject H0 if |z| > zα/2.

Otherwise do not reject H0.

i. z = τ−µτ
στ

ii. µτ = 0 and σtau =
√

2(2r+5)
9r(r−1)

iii. zα/2= the upper (α/2) × 100% point of the standard normal distribution.

4. Conclusion:

a) If H0 is rejected, the test has shown with (1 − α) × 100% confidence that the
series is trended.

b) If H0 is not rejected, the test has shown some support for a no-trend model.

Fig. 14: Kendall’s τ test procedure.

Autocorrelation Function

Another method, commonly used in time series analysis for checking the independence and trend
in a time series, is the study of the sample autocorrelation function or ACF of the time series.
The autocorrelation of lag k is defined as the correlation between points with a distance of k
sampling points, for a xi, this is

rik =

r−k∑
j=1

(xij − xi)(xi(j+k) − xi)

r∑
j=1

(xij − xi)2
(7)

where xi is the mean of xij , for j = 1, ..., r and k = 1, ...,m. m must be smaller than r. Note
that for values of m close to r, rk is constructed from very few data points and the calculated rk

may be not consistent. From (7), it is obvious that |rk| ≤ 1. The closer rk is to zero the more
independent are points separated by lag k. Values close to 1 or −1 indicate that there exist a
strong relation between values which are separated by k time units. A very simple method to
decide whether an autocorrelation is different to zero is based in the asymptotically normally
distribution of rk, with the assumption that r is sufficiently large. The mean is then zero and
the variance σ2 is 1/r. Since a 95% confidence interval of a normal distribution is approximately
[−2σ, 2σ], we reject the hypothesis ρ 	= 0 if rk is outside of the interval where ρ is the theoretical
value of the autocorrelation of lag k.

In Fig. 15 and Fig. 16 we have two examples of the sample autocorrelation functions and their
confidence intervals marked by dashed lines. In Fig. 15, there is no significant rk, and we can
conclude that the expression profile has no trend and no dependency for any lag k. In the second
figure, r1 is significant which means a strong dependence between values of distance one. The
r5 is significant too, meaning there exist a dependence between data of distance equal to 5. The
reason for this is that the signal is cyclical.

4 Conclusions

In the present paper, we suggest the use of statistical tests for signal selection in DNA microarray
time-course experiments. The basic idea is to treat the gene expression profile as a dynamic
response and to use methods for time series analysis to identify informative signals.
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Fig. 15: Gene 13, its ACF and 95% confidence interval.
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Fig. 16: Gene 2146, its ACF and 95% confidence interval.

Many others statistical tests exist and can be used to check the same or similar hypotheses.
Since they are based on the asymptotic distribution of the statistics, these tests work relatively
well when the size of the sample is large. For small samples, as is often the case in microarray
experiments, different bounds than zα/2 for the rejection area may be used. In this case as for
any problem were decisions have to be taken from few sample data, the result is less reliable and
may require a certain degree of supervision. This may not be feasible for whole-genome data.

An additional difficulty arises when the amount of data is huge as in case of the microarray
data where a supervised method for signal selection would increase the effort for pre-processing
considerably. On the other hand, we have shown that a simple threshold carries the risk of
ignoring informative signals while retaining noisy ones.
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