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Abstract

The background to these notes is the expectation that mathematical modelling and sim-
ulation is going to play increasingly important role in the understanding of the organization
and control of genetic-, metabolic-, and signalling pathways. I am going to argue that for
modelling and simulation to help our understanding of cellular dynamics, the current practice
of experimental design has to change - away from a ‘mining’ approach towards a signal- and
systems-oriented methodologies. The emergence of systems biology has therefore as much to
do with the development of new techniques as it is relying on a new ‘way of thinking’ about
cellular systems. This argument leads us to the fact that there exist a principal limit (or
uncertainty principle) to what we can achieve in simulation and with the machine metaphor
in particular. Amongst the many modelling paradigms suggested for cellular systems, it is
clear that none is accurate and yet general. I am therefore to discuss a conceptual framework
that generalizes a number of models (including Bayes nets, state-space models, Boolean net-
works) and should allow us to discuss the previous issues in a formal framework.

Keywords: Systems and control theory, machine metaphor, cellular systems and dynamics.

1 A Systems Approach to Cellular Dynamics

Data analysis in the context of bioinformatics, to this day, has had little to do with modelling
and simulation as a means to understand cellular processes. Transcriptomics and microarray
data analysis in particular, provide an example of the current ‘mode of operation’ in which
the primary objective has been ‘gene hunting’, i.e., the identification of (un)expected genes
in a known context.

In this section, I try to argue for a systems approach to represent cellular systems. I
believe that instead of trying to identify genes as causal agents for some change, function or
phenotype, we should relate observations to sequences of events as it is systems dynamics
that give rise to biological form and function. In terms of the analysis of experimental data,
this implies a shift of focus from classification towards system identification.

Remark. The arguments in this section are not directed against comparative studies in the
analysis of experimental data. Basic classification of array data, e.g. comparing cancerous
with non-cancerous tissue, to identify drug targets or genes is of course a useful approach
to diagnostics. The position taken here is to encourage the analysis of experimental data
in support of modelling the dynamics and control of genetic pathways. In comparative
studies and classification the results are usually a small piece in the jigsaw which represents
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our knowledge about cellular processes. In contrast, a systems biological approach employs
system identification, modelling and simulation in an attempt to represent the underlying
processes directly.

1.1 Intra- and Inter-Cellular Dynamics

The post-genome era of the life sciences witnesses a shift of focus away from molecular char-
acterization and the classification of genes. In this section, I distinguish the organizational,
descriptional, and experimental levels at which we investigate cellular systems in the post-
genome era. The definition of these levels leads us directly to the key biological questions
and research challenges.

The principal approach of modern biomedical research is to study cells, tissue, organs,
organisms from the perspective of genes and gene interactions. With regard to these orga-
nizational levels, the two fundamental questions investigated are:

1. How do genes act and interact within the context of the cell as to bring about structure
and function?

2. How do cells act and interact within the context of an organ, tissue or orgamism to
generate organized and functional wholes?

The first question, considering intra-cellular dynamics, is related to, for example, transcrip-
tional control. The second question, considering inter-cellular dynamics, is related to, for
example, the development of an organism or a bacterial colony.

My claim is that it is system dynamics, not a genetic program, that gives rise to biological
form and function (see also [2]). For experimental design this means that instead of trying
to identify genes as causal agents for some change, function or phenotype, we should relate
observations to sequences of events. Negative feedback is used in all cells and in metabolic
pathways in particular. Control of such processes is achieved through regulatory enzymes
that respond to changes in concentrations by increase or decrease in reaction rates. Cellular
processes such as cell division, programmed cell death, responses to drugs, nutrients, and
hormones are therefore regulated by complex interactions among large numbers of genes,
proteins, and other molecules. To further our understanding of pathways, the fundamental
problem is to understand the nature of this regulation. For example, cell signalling or ‘signal
transduction’ is the study of the mechanisms by which biological information is transferred
between and within cells. In this field, leading experts have made it clear that dynamic
interactions, feedback control, and time delays are the key to an understanding of pathways
and while pathway models have been static they need to be ‘brought to life’ if they are to
become a tool or methodology for the biomedical scientist.

From my discussion of the fundamental questions of the life sciences, the following key
research challenges arise for modelling and simulation:

1. Dynamic regulation and spatial organization: the need to capture both, spatial as well
as temporal aspects simultaneously (spatio-temporal modelling).

2. Intra- and inter-cellular actions and interactions: the need for large-scale and hybrid-
systems modelling and simulation.

3. Crossing organizational levels: from cells, to colonies, tissues, organs and organisms, ...

4. Integrating experimental levels: genome, transcriptome, proteome, metabolome and
the physiome.

5. Combining data analysis and data management: The need to combine computational
tools, developed for specific tasks and different organizational and descriptional levels.



6. Relating formal representations (mathematical models, e.g. Boolean networks and
rate-equations). Providing a conceptual framework and theoretical foundations for the
previous five points.

As a consequence of the described shift of focus, problems in the post-genome era of the
life sciences will not only be experimental or technical but also conceptual. In the ‘mining
approach’ mathematical or statistical models are a means to identify patterns or objects for
further analysis and model building. (The latter being in the head of the scientist, not a
formal or computational model). To model and simulate dynamic cellular systems as part
of hypothesis driven research, the nature of the model and its semantics do matter. The
machine metaphor is one popular account of cellular systems and is discussed next.

2 The Eternal Life of the Machine Metaphor

The practice of molecular biology and more recently virtual cell projects have once again
brought the machine metaphor into discussion. Molecular biology has been reductionist to
the extreme, focussing on the molecular characterization of cellular components (“the nuts
and bolts”) and thereby suggesting the cell to be a “chemical factory”. Given the extraordi-
nary illustrations that populate modern biology textbooks, it is not surprising that computer
scientists naturally translate these concepts into “computations in cells” and thereby revive
the machine metaphor.

In the following two sections I am going to argue that there exist a principal limit (or
uncertainty principle) to what we can achieve in simulation and with the machine metaphor.
I describe why we should look for an alternative to the machine metaphor as any research
in this direction may literally become ‘re-search’.

Remark. The arguments in this section should not be seen as a criticism of virtual cell
projects. These have of course their practical value in, for example, the testing of algorithms.
The position taken here considers some principal limits and therefore more philosophical than
practical issues.

2.1 Anticipatory and Self-Organizing Cellular Systems

The most concise argument against the machine metaphor, applied to cell systems, was
provided by the philosopher Immanuel Kant (see also [2]):

e In machines parts exist for each other but not by each other; they work together to
accomplish the machine’s purpose, but their operation has nothing to do with building
the machine.

e In organisms, each part is at once cause and effect, a means and an end. In organisms
the parts not only work together but also generate and maintain the organism and all
its parts.

From this follows that while a machine implies a machine maker, an organism is a self-
organising system. Life is then an emergent, rather than an immanent or inherent, property
of matter. Although it arises from the material world, it cannot be reduced to it. Or, in
other words, a cell is built up of molecules, as a house is with stones. But a soup of molecules
is no more a cell than a heap of stones is house.

If a cell is not a computer or doesn’t work like a machine, one might think that it would
not be possible to simulate it in or with a computer. This leads us to the question whether a
computer (or Turing machine) can do what a natural system does or whether there are any
limitations. Most of Robert Rosen’s work was dedicated to demonstrate such limitations,
particularly of modelling in the Newtonian realm. Amongst several books (e.g. [5]) in [4] the



concept of realizability in biology and physics is discussed in the context of Church’s Thesis.
While this discussion considers principal limits at a formal and abstract level, we of course
do model and simulate cellular systems. Mathematical modelling and simulation has been
very successful in engineering and the physical sciences but we can expect greater challenges
for cellular systems. Some of the more practical difficulties and research challenges arising
from them are discussed in the following section.

2.2 Cellular Weather Forecasting

In this section, I first define the complexity of cellular systems before arguing that modelling
and simulation of cellular systems is likely to face the problems that hundreds of years in
weather forecasting have not solved.

It is natural to consider the undisputed complexity of biological systems' as the main
difficulty in modelling and simulating cell systems. To be more specific in our subsequent
discussion I would therefore first clarify what is understood by the term complexity. I define
complexity in the context of cellular systems as

1. A property of an encoding (mathematical model, e.g., its dimensionality, order or
number of variables).

2. An attribute of the (sub-)system under consideration, e.g., the number of components,
descriptive and organizational levels that ensure its integrity.

3. Our ability to interact with the system, to observe it, i.e., to make measurements and
generate experimental data.

On all three accounts, genes, cells, tissue, organs, organisms and populations are individually
and as a functional whole a complex system. Warren Weaver defined disorganized complexity
as a problem in which the number of variables is very large, and any of these variables is
best described as a random process. Here we are at the ‘molecular level’ and the most
successful formal methods in representing phenomena at this level derive from statistical
considerations. In the context of the cell, at the ‘cellular level’, matters are complicated by
the fact that organization becomes an essential feature of the processes under consideration.
Weaver referred to problems in which a large number of factors are interrelated into a whole as
organized complexity. The number of variables is too large to be dealt with in the Newtonian
realm of physics and mathematical modelling, and the systems are too organized to allow a
statistical techniques either.

Modelling cellular systems we find that there exist a trade-off between the accuracy of
our representation and its generality. To illustrate this, consider two well know problems:
a) modelling the interactions of a large number of genes, and b) modelling transcriptional
control in bacteria. We can summarize a comparison of the two problems as follows:

Boolean gene-network simulation
> general (independent of organism, deals with thousands of genes).
> not predictive for a particular biological system.
> simple model (runs on any PC).

Biochemical interaction network
> specific (parameter for an organism can be identified, feasible for only few genes).
> relevant only to a particular system, does not generalize well.
> complex model (requires very fast computer).

! As Schopenhauer said: Anyone can squash a bug but all professors in the world couldn’t build one.



The principal limit suggested is in fact an uncertainty principle first outlined by Lotfi Zadeh:

“As the complexity of a system increases, our ability to make precise and yet
significant statements about its behavior diminishes until a threshold is reached
beyond which precision and significance (or relevance) become almost exclusive
characteristics.”

Gene expression and regulation takes place within the context of a cell, between cells,
organs and organisms. The inevitable, reductionist approach is to ‘isolate’ a system, con-
ceptually ‘close’ it from its environment through the definition of inputs and outputs, we
inevitably loose information in this approach. (Conceptual closure amounts to the assump-
tion of constancy for the external factors and the fact that external forces are described as
a function of something inside the system). Different levels may require different modelling
strategies and ultimately we require a common conceptual framework that integrates dif-
ferent models. For example, differential (mass-action or rate-) equations may provide the
most realistic modelling paradigm for a single-gene or single-cell representation but cell-to-
cell, and large-scale gene interaction networks could, for example, represented by logical or
finite-state models, using agent-based simulation.

In dynamic systems theory, one would usually ignore spatial aspects. This approach is
limited because both, space and time are essential to explain the physical reality of gene
expression. The fact that the concepts of space and time have no material embodiment;
they are not to be in the molecules or their DNA sequence; has been an argument against
material reductionism. Although this criticism is in principle correct, alternative methods
are in short supply. Without spatial entailment there can be no living cell and it seems that
a major challenge for areas like for example systems biology is the challenge to capture or
account for both, the behavior (dynamics) as well as the organization (structure).

In order to verify theoretical concepts and mathematical models we ought to identify
the model from experimental data or at least validate mathematical models with data. In
the context of post-genome technologies, the problem of complexity appears then in two
disguises:

1. System Dimensionality: hundreds or thousands of variables/genes/cells.

2. Experimental Uncertainty: small samples (few time points, few replicates), imprecision,
noise.

The data we currently have available, do not allow parametric systems identification
techniques to build predictive models. A conclusion from this section is that mathematical
modelling and simulation of cellular systems may have the same fate as weather forecast-
ing: regardless of the computer power and time available, the predictions remain uncertain.
However, even if we will never be able to build accurate predictive models of cellular or
genetic systems, systems thinking and the modelling process itself will prove valuable to the
biologist, helping him to identify which variables to measure and why. In fact, a common
engineering experience is that we learn most from those models that fail! The quest for preci-
sion is analogous to the quest for certainty and both — precision and certainty are impossible
to attain, at present if not in general.

3 Unifying Representations of Cellular Systems

The mathematical models that have been proposed for cellular systems (e.g. transcriptional
control, gene interactions, metabolic pathways, etc.) are limited by the uncertainty principle
described in Section 2.2. Given the complexity of cellular systems, it seems sensible to
contemplate the combination of methodologies and principles, i.e., for example combining
continuous- and discrete-time, with continuous/discrete-valued and symbolic dynamics, with
rate equations and logical representations, with cost-functional and agent-based models.



In this section, I am to discuss a conceptual framework that generalizes a number of
models (including Bayes nets, state-space models, Boolean networks). Such an abstract
conceptual framework may allow us to discuss the issues raised in previous sections in a more
formal context. The approach I have adopted for my research is in essence an extension of
Robert Rosen’s work (considered in the context of post-genomic technologies and genomic
data) [5, 6, 7, 8].

3.1 Relational Biology

One might argue that scientific theories deal with concepts - not reality. Therefore if math-
ematical models are so formulated as to correspond in some ‘useful’ way to the real world,
modelling and simulation is more an art than an objective discovery process (see Figure 1).

In this section I assume causation to be understood as the principle of explanation of
change in the realm of matter. Causation is therefore a relationship, not between components,
but between changes of states of a system. This perspective fits nicely into a systems-theoretic
representation of cellular dynamics.
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Figure 1: Rosen’s modelling relation [5] between a natural system N and a
formal system F'. If the modelling relation brings both systems into congruence
by suitable modes of encoding and decoding, it describes a natural principal.
In this case F is a model of N, that is, IV is a realization of F.

A system is defined by a set or sets of (material or abstract) objects and relations defined
on these sets [3, 7). We denote these sets with uppercase letters such as A and B with
elements a € A or A = {a}. The mapping f: A — B is then used as a representation of a
cellular (sub-)system:

f: A — B, (1)
a — b= f(a).

To model a particular cellular process, for example transcription, we have to discuss the
selection of subsets of A, B and identifying the map f. The exponential B4 = {f: A — B}
denotes the set of all maps from A to B and in our example would therefore represent all
transcription processes which are realizable by the cell. The transcription mapping f can be
subject to changes, either disturbances such as mutations or deliberate changes to the cell’s
operating conditions.

One way to be more specific about our previous formulation (1), is to view the element
a € A as a sequence of events, expressed through an observed time-series. As a entails b, we
define the ‘input’ sequence a and ‘output’ sequence b as elements of finite-dimensional vector



spaces A and B respectively:

A={a: a=ug,us,...]}, w €U, U=R",
B={b:b=[y1,y2,¥3,-- ]}, w€Y,Y=R?,

The space A describes all possible (finite) input sequences to the system. The system has m
independent inputs and ¢ output variables. Mathematical causation is acknowledged by the
fact that the first output appears one discrete time step after the first input. If f is further
assumed to be linear and constant, we can express the relationship between dependent and
independent variables in a form that is familiar from dynamic systems theory [1, 8]. The
measurements of input-output data (a,b) describe the system in an external sense. The
output of a system, in general, depends on both the present input u; and the past history of
the system. To allow us to present inner relations we say, therefore, that the present output
depends on the state of the system, and define the (present) state of the system as that part
of the present and past history which is relevant to the determination of present and future
outputs. A state is defined subsequently by a set of internal or state variables which must
not necessarily be directly observable (measurable). The problem of explaining the internal
dependencies, which generate the observed behavior, using a mathematical model called the
realization. This concept is a straightforward extension of the input-output map f: A — B
by adding a set of states and two new maps, g and h connecting this state-space with the

input and output space: f
A B
SO 2)
g e h

As before, a = [ug,u1,...], a € A, and u; € U are measurements of the input variables at
instances of time t € Z. Similar b = [y1,¥2,...], b € B and yx € Y. The measured data we
have available for the identification of system parameters is {(u¢, y¢+1)}. In the diagram (2),
X denotes the state-space and the map g is assumed to be surjective (onto X), i.e., more
than one input sequence a € A can map into the same state x € X. The output map h is
one-to-one (injective); i.e., any € X maps to exactly one output sequence b € B.

For the representation (2) to give rise to the observations {(u¢,y:41)}, we must be able
to construct the state-space X and the maps

p: X xU — X such that Tep1 = G(Te, ur) (3)
h: X — Y Yo = h(zy) .

In other words, given the present state z; € X and input u; € U the (nonlinear) map ¢
determines the next state and for every state z, the output map h determines an output y;.
It is usually assumed that X = R™ and thereby any state can be represented as a point? in
X. Note that the concept of state is a general notion, defining a set of n state-variables such
that the knowledge of these variables at some initial point in time ¢ = ty together with the
knowledge of the input for ¢t > ¢ty completely determines the behavior of the system for any
time ¢ > ty. State variables need not be physically measurable or observable quantities.

State-space equations (3) form the basis for two well established conceptual frameworks:
automata theory and control theory. An automaton is a discrete-time system with finite
input and output sets U and Y, respectively. In this context, ¢ is referred to as the next-
state function. If at any time ¢ the system is in state x; and receives input u;, then at time
t + 1 the system will be in state ¢(z¢, u;). We say the automata is finite if X is a finite set®.
Automata theory has been used to model numerous systems including ‘gene networks’. A

2A dynamical system is finite dimensional if X is a finite dimensional linear space; it is finite state if X is a
finite set. If X, U, and Y are finite sets and the system is discrete time, it is known as a (finite) automaton.

3The state of a linear dynamic system, continuous-time or discrete-time evolves in R”, whereas the state of an
automaton resides in a finite set of ‘symbols’.



state-space model or rate equations are obtained from (3) by considering (or assuming) a
linear time-invariant system:

Ti4+1 = Sﬂjt + Gut (4)
yr = Hay (5)

4 Conclusions

No conclusions yet - this will hopefully follow from the meeting! My main objective for
the Dagstuhl meeting is to learn more about different modelling paradigms and simulation
strategies in order to further develop the mathematics of this/my research in systems biology.

Appendix

For my discussion it will be useful to specify the meaning of some terms that I commonly
use or refer to.

System: A system is defined as a set of objects and relations defined on them.

Behavior: A particular time-invariant relation specified for a system is called the behavior
of the corresponding system.

Organization: If a system exhibits a particular behavior, it must posses certain properties
producing the behavior. These properties will be called the organization of the system.
Life resides in organization, not in material objects.

Dynamics: If the behavior of the system can change, the behavior is also referred to as the
dynamics.

Structure: If the organization of a system is fixed, the organization is also referred to as its
structure. For material systems (e.g. a cell) the structure is the specific embodiment
of components into physical entities (e.g. molecules).

Components: To study natural systems using formal systems, we decompose a system into
abstract objects, referred to as components. The organization and behavior of natural
systems can be studied through interaction inducing a change. Discrepancies between
behaviors determines its function while discrepancies between system structures deter-
mine its components.

States: In modelling natural systems,we define a set of state-variables such that the knowl-
edge of these variables at some initial point in time together with knowledge of the input
to some component determines the behavior of the component/system. The values of
the state-variables at any particular point in time define the state of the system.

Events: Causality manifests itself through changes of states, called state transitions. The
change of a particular state will be called an event. Causation is therefore not a
relationship between things but a relationship between changes of states.

Processes: Sequences of events (changes of state over time) define a process.

Genomics: Genomics is the field of biological research, taking us from the DNA sequence
of a gene to the activity of the product (usually a protein) for which it codes.

Gene Expression: Gene expression is the process by which information, coded in the DNA,
is converted into proteins (hormones, enzymes, antibodies,...).

Systems Theory: Systems theory is a family of methodologies to formally represent orga-
nization and behavior.

Systems Biology: Systems biology aims at a system-level understanding of the organiza-
tion and control of genetic-, metabolic-, and signalling pathways.
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