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1 Introduction

M. tuberculosis is the world leading cause of death by a single infectious factor. It is estimated that in
the next 20 years 1 billion people will be newly infected, 200 million will get sick and M.tuberculosis
will cause 35 million deaths.

The complicated genesis ofM.tuberculosis makes developing effective treatment for it a continued
challenge for researchers. In addition it has been recently discovered the link between tuberculosis
and the human immunodeficiency virus.

For those reasons, the sequence of the 4,411,529 base pairs of the M. tuberculosis genome was
an important step in the understanding of the mechanisms that control this bacteria. The project
was developed by the researches of the Wellcome Trust Genome Campus of the Sanger Centre,
in collaboration with the Institut Pasteur in Paris. The complete annotation can be found in
Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence Nature
393, 537-544 (1998).

In an interview by Jennifer Fisher Wilson to Julian Parkhill, a member of the pathogen sequencing
group at the Sanger Centre and coauthor of the Nature paper, he said: “We hope that our success in
sequencing the tubercle bacillus will lead to better treatment for tuberculosis. Genome sequencing
of pathogenic bacteria is basic research (...) it provides a data set that will underpin all future work
on these organisms”

His hope is already a reality. With the advance of microarray technology, the possibility of
monitoring the response of all genes in the genome of an organism is already a fact. Although
microarrays focusses in the transcription level and tells little about the proteins that will be later
encoded, they have been already a key player in many discoveries all around the world.

This report focusses in the different methods developed by the Systems Biology Group to extract
valuable information from microarray data. More in particular, we are trying to establish a normal-
isation protocol as universal as possible. We have showed how some of the available normalisation
methods hold very restrictive assumptions that make them impossible to be applied to all different
types of microarray experiments. Applying these methods to the data generated by the Bacterial
Microarray Group at St George’s Hospital Medical School (BµG@S) was very useful to study the
effect of the normalisation in the replicated profiles and how this will affect the number of genes de-
tected as differentially expressed. The Bacterial Microarray Group at St George’s Hospital Medical
School (BµG@S) has been funded by The Wellcome Trust to generate whole genome microarrays
for twelve bacterial pathogens, among them M.tuberculosis. We hope these methods will be valuable
in the future for the achievement of important biological conclusions about the mechanisms that
regulate the smaller particle of life: the cell.

The report is structured as follows: In the Section number 2 we describe the flow of the normal-
isation process, which are the main sources of non-biological variability introduced in microarray
experiments and which possibilities are readily available for their correction. This methods were
applied to the three biological replicates performed by BµG@S to achieve some conclusions about
the growth curve of M.tuberculosis. The results obtained are reported in Sections 3,4 and 5. For
any of the three biological replicates LOWESS and dye-swap normalisation were applied to correct
the data. The replicates before and after any of the methods were studied Finally, some conclusions
about the detection of genes differentially expressed are also presented.

2



F.Sanchez-Cabo et al. Normalisation and Quality Control

2 Normalisation methods

2.1 Introduction

Normalisation of Microarray Data is a very important issue unavoidable previous to further analysis.
In this pages we will try to summarize all the different possibilities that can be chosen at every stage
of the normalisation process. We will see how different combinations of methods provide a very
different time series profile for the normalised data. It is important to choose a suitable method to
normalise our data reasoning in which way every of the approaches corrects our data and which are
the assumptions made for all of them.

The following pages are structured as following:

• In the next section a sketch of the possibilities that can be chosen at every stage of the
normalisation process is described.

• Afterwards, we will apply the theoretical approach to normalise the growth curve experiment
carried out by the Bacterial Group at St. George’s Medical School, London. This experiment
has three different biological replicates that were performed in completely independent condi-
tions and that are named according to the period when they were performed. The three time
series have a different experimental design, what made not possible to apply every one of the
normalisation methods to every one of them.

• For everyone of the time series and according to the different combinations of normalisation
methods at every stage, we show the resulting time series.

• To conclude, we show the genes that appear differentially expressed performing a student-t test
for the three biological replicates. The error model for the data is presented and the problems
that to use a t-test for this data presents are described.

2.2 Sequential method: Options implemented in MADE

2.2.1 Dye correction

After background correction, systematic errors must be corrected. The most important of all of
them is the one introduced by the different properties of both fluorescent dyes labelling the two
RNA pools. We have detected four properties that are different for both dyes. The most important
of them is the lower incorporation rate of Cy5, but as well the quantum yield, the photobleatching
and the quenching properties are different. All these differences distort the real intensity values of
both channels so they must be balanced previous any further analysis of the data. However, we must
be careful at this stage. The most popular dye correction methods are based on the idea that the
majority of the genes are equally expressed in both channels. But this is not going to be the case of
all experiments. For this reason, two different approaches were implemented in our interface. The
correction of the dye effect (as well known as within-array normalisation) can be performed:

• using the whole data set to normalise the data, as well known as self-consistency.

• using the quality control elements provided in the experiment. This includes the dye-swap
normalisation, the use of spotted controls or the use of a reference channel.

Dye-effect correction by self-consistency

Assuming that most of the genes are going to be equally expressed in both channels, an expression ξ

is estimated to force the overall intensity of both channels to be the same. Both channels intensities
would be then related according to the expression:

R = ξ ·G,
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Effects corrected Options

Background effect
1. Background subtraction
2. No subtraction

Spatial effect pi =
ri

gi

Dye effect Using all genes

1. Global constant
2. Linear regression
3. LOWESS function
4. LOWESS for print-tips

Quality control elements
1. Dye-swap normalisation
2. Use of spotted controls

Array effect: Across replicates normalisation
1. Against median all arrays
2. Against median value reference channel

Average experimental replicates (slides/spots)

Array effect: Across samples normalisation
1. Against all arrays
2. Against arrays in J

3. Against median value reference channel

Transformation of the data

1.log2(•) transformation
2.
√
• transformation

3. lin-log2 transformation
4. arsinh(•) transformation

where R ≡ red and G ≡ green. The estimation of this expression ξ is going to result in many
different methods to correct the different properties of the dyes. Four of them can be selected in our
interface:

Global normalisation In this case, we assume that the systematical bias due to the different dyes
properties is affecting all spotted genes in the array in the same amount. A constant k relating
both channels is estimated. If most of the genes are expected to be equally expressed, then a
good representative value of the distribution of the ratios is:

k = medi
Ri

Gi

and ξ = k. For experiments for which a high percentage of genes is differentially expressed
comparing both channels, the use of the first or third quartiles are more suitable options. The
three choices are implemented in our interface.

Linear regression normalisation A regression line is fitted to the scatter plot (G,R). Under the
assumption that most of the genes should be equally expressed for both channels, the regression
line should have a slope one. Hence,

R = m ·G+ n→ R

m
− n

m
= G .

From that follows ξ ' m, where m is the slope of the regression line fitted to the scatter plot
and n is the intercept with the ordinate.

LOWESS normalisation Looking at the (A,M) plot it can be detected if the distribution of the
log ratios depends on the intensity. In this case, it is not appropriated to correct every spot by
the same amount as the global method does. At the same time, the linear regression method is
very sensitive to outliers, so a more robust alternative is required. For these reasons the use of
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a LOWESS function to correct the dye bias is becoming more important in the normalisation
of microarray data. (A,M) scatter plot will show:

M = log2

Si

Ri
,

A =
1

2
· (log2 Si + log2 Ri) .

The LOWESS function c(Ai) : I 7→ R can be calculated from this plot, where the set of indexes
I denotes all genes spotted on the array. The fitting of the LOWESS function c(A) from the
(A,M) scatterplot leads to:

M = log2

(

R

G

)

∼= c(A) ⇒ ξ = k(A) = 2c(A).

To estimate this function in MATLAB takes extremely long, but we can improve its efficiency
using a C function implemented by the Jackson’s laboratory. LOWESS is computationally
efficient also in R.

LOWESS for different print tips During the spotting process, the spots located in the same
“grid” are printed by the same print tip. Some authors suggest that different LOWESS func-
tions should be fitted for the different print tip subgroups. In our interface we have implemented
the scatter plots that show the genes ordered as in the array to detect print tip effects and
correct them if necessary. However, and although the option is implemented in our interface,
we would expect this effect to cancel with the ratios in two color-microarrays.

Regardless to the method used to estimate ξ, any of them corrects the data to get,

Ri

Gi

∼= 1⇒M = log2

Ri

Gi

∼= 0

For this reason, to look at the scatter plots, boxplots and kernel fitted functions before and after the
correction is essential.

Dye-effect correction using the quality elements provided in the experiment

In general, there are many experiments for which the assumption of most genes equally expressed
cannot be known “a priori” or for which a very different number of genes is expected to be differen-
tially expressed in both channels. In those cases we would rely on the quality control elements. We
have implemented two methods:

Dye-swap normalisation Given two arrays for which the same material was labelled with a dif-
ferent dye each time, for every spotted gene i the following expressions are considered

Mi = log2

(

Ri

Gi

)

,

M ′

i = log2

(

R′

i

G′

i

)

.

From these two equations, we obtain

Mi = log2

(

Ri

Gi

)

= log2

(

si

ri
· ki

)

= log2

(

si

ri

)

+ log2 ki = log2

(

si

ri

)

+ ci,

M ′

i = log2

(

R′

i

G′

i

)

= log2

(

ri

si
· k′i

)

= − log2

(

si

ri

)

+ log2 k
′

i = − log2

(

si

ri

)

+ c′i,
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where ri stands for the intensity of the gene i in sample r and si for the same value in sample
s. The target is to estimate log2(

si

ri
) from Mi, M

′

i . Hence, it follows that

Mi − ci = log2

(

si

ri

)

.

−M ′

i + c′i = log2

(

si

ri

)

.

For this expression, ci and c′i depend on the properties of the dyes. It is important to mention
at this point, that the scan gains must have been set at the same numbers from array to array
(no necessarily from channel to channel). Otherwise ci and c′i are not similar and the dye swap
normalisation method cannot be applied to the data. Considering that ci ' c′i, adding both
equations, we have

Mi −M ′

i ' 2 · log2

(

si

ri

)

=⇒ 1

2
· (Mi −M ′

i) ' log2

(

si

ri

)

.

The main advantage of the dye-swap normalisation is that it transforms the data preserving the
characteristics of every singular gene. Note that the computational cost for the implementation
of this method is very low.

Using the controls In order to normalise a particular Microarray data set, we can spot a pre-
defined set of genes as controls. They have some particular and known characteristics and
this information can be used to reduce the non-biological variability introduced in the experi-
ment. But not every subset of genes in the array can be considered as a set of controls. Some
requirements must be fulfilled:

• The subset of genes should cover the whole range of intensities expected for the array.
Otherwise, if the effects that want to be removed are intensity-dependent (as we know is
the case of most of the dye effects) we cannot know the effect of the systematical error in
a particular range just by looking at the controls.

• The subset of genes that are used as controls should be plotted all over the array. If
plotted in very specific areas their values can be affected by spatial effects in the array.
It happens the same in the case of duplicated genes within an array.

• It would be desirable that the controls were constant across different biological conditions,
or at least that the response of the control genes to different biological conditions was
known for those genes.

• Those genes should give a good reading in both channels.

If controls covering the whole intensity range are available, we can normalise our data according
to them. For controls for which the expression level in both channels is expected to be the
same, a non-linear function can be fitted to the (A,M) plot of the controls and used to correct
the entire data set. However, because the number of controls available per slide is usually not
very large, we do not recommend to fit a LOWESS function but a more general method such
as Levenberg-Marquardt. The model used will be in most of the cases a quadratic function.

Normalisation controls for the TB data set. Those are 5s rRNA?(*), 16s rRNA?(*) and
23s rRNA?(*). Ribosomal RNA molecules are components of the ribosomes, the large multi-
molecular structures that act as factories for protein synthesis. During translation, ribosomes
attach to mRNA molecules and migrate along them as they go, analogous in a way to the role
of RNA polymerase in transcription. Ribosomes are made up of rRNA molecules and proteins,
and are extremely numerous in most cells. Each ribosome contains one copy of each of the
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different rRNA molecules (3 for prokaryotes and 4 for eukaryotes). The most efficient system
would be for the cell to produce the same number of each of these molecules. Because the
gDNA contains a copy of every gene in the genome, it contains as well a copy of the rRNA.
However, the total RNA used for the signal channel contains 98 % of rRNA against just 2 %
of mRNA. While the abundance of gDNA (reference channel) in the controls should be similar
to the abundance of gDNA in the rest of the spots, the signal channel is expected to present a
much higher intensity value than the signal intensity for the rest of the spots. Both channels
log ratio for the controls will be much higher than the same for the rest of the spots. If we
correct all the data according to the function that we obtain from centering the ratio of both
channels for the controls around 1, we are bringing really down the rest of the ratios. This can
be seen in Figure 2.1.

In consequence, many controls appear saturated. The spotted controls were printed in a three-
fold dilution series. As we go down the dilution series there is less printed material, so the
intensity values should decrease. We won’t use in the analysis those saturated measurements.

Furthermore, we should check if our controls fulfill the conditions previously described. The
range of intensities is for most of the arrays between 4 and 15.7. The use of controls to
normalise the data set would be appropriated if the genes in the subset of controls cover all the
range of intensities. Otherwise we would be just correcting some genes. As shown in Figure
2.1 for most of the arrays our controls won’t fulfill this requirement.

4 6 8 10 12 14 16
−4

−2

0

2

4

6

8

10

(a) MA plot for the controls (green)
and the genes (black). Levenberg-
Marquardt function (red) was fitted
to the controls.

4 6 8 10 12 14 16
−20

−15

−10

−5

0

5

(b) Corrected data using the function
fitted to the controls.

Fig. 2.1: Use of controls to correct the TB data set.

2.2.2 Array effect

Across replicates normalisation

If the overall intensity from one array to the other is observed to be different, this can be due to
real biological variability (in one biological condition most genes are higher expressed than in the
other) or it can be due to non-biological variation. If we expect most of our genes to be equally
expressed for both channels in all the arrays, we may want yet to correct small variations from the
mean value of 1 from array to array. Besides that, replicated arrays should have all the same or a
very similar mean value. For this reason it would be useful to normalise across replicates. There are
two possibilities:

• Dividing every gene i expression level for the median of the expression level of this gene across
different replicated slides. This will bring all our slides around a value of one for the ratios or

7



F.Sanchez-Cabo et al. Normalisation and Quality Control

zero for the log ratios. We would expect,

qij ' k ' 1 ∀ j ∈ set replicates

where,

qij =
signalij

referenceij
.

Signal and reference have been already normalised within array. We correct then our data
according to:

tij =
qij

medj(qij)

where medj is the median of the gene expression level across the different replicates.

• Dividing the signal value for the median of the reference channel across replicated slides.

tij =
signalij

medj(referenceij)

wheremedj is the median across the different replicates and signal, reference have been already
within-array normalised.

It is important to remark that with the first approach we are bringing the log ratio distribution
of every array around zero. We must be careful in the observance of this hypothesis for every data
set. The replicates must be similar among them, but may be not centered around zero.

2.2.3 Replicate handling

At this stage of the normalisation process we are in conditions to take the average among replicated
spots within an array or replicated arrays within a biological class. The reason for that is to
remove the random error that could not be remove in the previous normalisation steps for not being
systematic or for not affecting both channels in the same amount.

Imagine that we have two replicated measurements of a particular gene i in a given biological

condition. These are
R1

i

G1

i

, and
R2

i

G2

i

.

The ratio of the raw intensity values measured for every spot in the two channels (Red and
Green) can be modelled as follows:

R1

G1
= N1 ·

A1
R

A1
G

+ error1

R2

G2
= N2 ·

A2
R

A2
G

+ error2

G stands for the intensity of material labelled with the green dye that binds to the spot i and R is the
same for the material labelled with the red dye. A1, A2 are the abundance of RNA in the samples
and 1, 2 indicate the replicate number. It is important to mention that N1, N2 are summarizing
the systematic error due to the dyes together with the spatial and print-tip effects that affect both
channels in the same amount.

Because the dye effect is the most important of the systematic errors in microarrays, after within
array normalisation the ratio of the corrected data c will appear as follows:

(

R1

G1

)c

=
A1

R

A1
G

+ error’1 (2.1)

(

R2

G2

)c

=
A2

R

A2
G

+ error’2 (2.2)
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Where error’1 and error’2 are summarizing the random errors after within array normalisation.
The aim of replicating a measurement is to minimize the random errors introduce in the estimator

of the relative expression level of a gene in the two studied samples. According to (2.1), (2.2) it
follows:

1

2
·
[(

R1

G1

)c

+

(

R2

G2

)c]

=
1

2
·
[

A1
R

A1
G

+
A2

R

A2
G

]

+
1

2
· (error’1 + error’2).

Random errors are assumed to be independent1 and identically distributed as:

error’1 ∼ N(0, σ2)

error’2 ∼ N(0, σ2)

From the properties of variance:

V

[

1

2
· (error’1 + error’2)

]

=
1

4
· V [error’1 + error’2] =

1

4
· 2 · σ2 =

σ2

2
.

Hence, since the random and systematic errors have been reduced, we would be in conditions to
calculate any transformation of the final corrected value.

2.2.4 Across samples normalisation

After averaging the data, we will get for every gene i a unique ratio tis where s denotes the biological
condition.

tis =
1

nr

nr
∑

j=1

tij for every biological condition s for which nr replicates were performed.

Before getting the final log-ratio that will be used for the analysis of the data, we need to make the
measurements comparable across different biological conditions. To achieve this objective, we have
three possibilities:

Option 1. Dividing the expression level of the gene in every biological condition by the median
value of the profile. Mathematically we express it as:

eis =
tis

meds(tis)

Where meds is the median of the gene expression level across the different biological samples.
This approach approximates every overall array expression level even more close to one.

Option 2. Dividing the ratio of every gene by the ratio in the first array. This is very useful for time
series analysis. It is more than a way to normalise the data, a way to visualize the data, but
must be taken into account for any further study and will affect, for example, in the clustering
method chosen.

eis =
tis

ti1

Option 3. If we average corrected signal and corrected reference independently we obtain, for every
biological condition s:

signalis =
1

nr

nr
∑

j=1

signalij

referenceis =
1

nr

nr
∑

j=1

referenceij

1We know that the error between slides are just independent for biological replicates for which the original RNA
was pooled from independent cell populations
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We can then normalise our data like:

eis =
signalis

medsreferenceis
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