
Functional Models and

Probability Density Functions.
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Abstract. There exist many approaches to discern a functional relation-
ship between two variables. A functional model is useful for two reasons:
Firstly, if the function is a relatively simple model in the plane, it pro-
vides us with qualitative information about the relationship. Secondly,
given a fixed value for one variable, the other one can be calculated as
a means for prediction. In this paper an approach for the extraction of
functional models from probability density functions is proposed. The
transformation of the conditional probability density function into a sin-
gle value or a set of values is the basis for our discussion. Several trans-
formations such as the mean value, the median and the modal intervals
are well established. Regression models are compared to the functional
models introduced here and as a consequence, two indicators to relate
functional models to probability density functions are provided.

1 Introduction

Let f be a probability density function (pdf) of the variable z = (x,y) where
x and y are a multivariate and a univariate variables, respectively. There exist
many techniques to find the best function that explain the relation between those
variables. The most frequently used objective function is the mean squared error
which is the sum of the square of the Euclidean distances between the functional
models and the data. In this paper we introduce a general functional model
based on the probability density function of the joint variable z. The idea is to
summarize the conditional probability density function for each value of x into
a single value or set of values. Firstly, we introduce the general formula and
secondly we provide the application of some commonly used statistics to the
conditional pdfs. Some cases where the conditional pdfs are summarized into
intervals instead of single values are considered. It is interesting to know whether
or not a functional model defined on the state space falls inside high density
areas. In this case the functional model provides the most likely responses. The
last section introduces two new indicators to measure how close the forecast
generated by a functional model is from the most likely response.
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2 Extracting functional models from probability density
functions

The marginal pdf for x is defined

fx(x) =
∫ ∞

−∞
fz(x, y) dy, ∀x ∈ R,

and the conditional probability density function, denoted by f
y|x(·|x), of y know-

ing that x = x is defined as

f
y|x(y|x) =

f
z
(x, y)

f
x
(x)

, ∀y ∈ R, (1)

if for the marginal pdf fx(x) > 0.
Similarly than in regression analysis, supposing that x is the independent

variable and y the dependent variable, a general formulation to extract functional
models from a pdf by means of the conditional pdf is

ŷo = G
(
f
y|x(·|xo)

)
, ∀xo ∈ R, (2)

where G is a function defined on the space of pdfs F , and ŷo is a real number
or a set of real numbers. In the last case it is denoted by Ŷo. In next section we
introduce some functionals that summarize the conditional pdf (1), into some
familiar statistics and intervals.

3 Forecasting with density functions

Forecasting with pdfs comprises two important steps: estimation of the pdf
[Ros56,Par62,Sil86] and choice of functional G. In what follows several func-
tional G are introduced. To start we classify G depending on the range space, R

or 2R, i.e., whether the forecast is a single point or a of set points.

3.1 Single-value forecast

In this case functional G maps elements from F to R. The following are some
examples of functions that provides single-value forecasts.

1. From function

G(f) =
∫

R

yf(y) dy ,

the conditional mean forecast is obtained:

ŷo =
∫

R

yf
y|x(y|xo) dy, ∀xo ∈ R. (3)

In Figure 1 (red curve) an example of conditional mean functional is shown.
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2. From function

G(f) = {yo :
∫ yo

−∞
yf(y) dy = α},

where α ∈ [0, 1], the conditional quantile forecast is obtained:

ŷo = {yo :
∫ yo

−∞
yf

y|x(y|xo) dy = α}. (4)

When α is 0.5 we obtain the conditional median forecast.
3. From function

G(f) = argmax{f(y) : y ∈ R} (5)

the conditional mode forecast is obtained:

ŷo = argmax{f
y|x(y|xo) : y ∈ R}, ∀xo ∈ R, (6)

In Figure 1 (blue curve) an example of conditional mean functional is shown.
Note that the conditional mode forecast is not a single point when the max-
imum of the pdf is achieved in more than one point.

Depending on the situation, a different approach may be used. For example, when
the mean square error1 cost function is applied, the mean value of Equation 4
is the only value of the support of the variable that minimizes it. When the
distance d(x, ẋ) = 0 iff x = ẋ, 1 otherwise, is applied, the single values that
minimize it are the global modes2 of the density function given by Equation 6.

3.2 Set forecast

In this case functional G maps elements of F onto elements 2R, which is defined
as the set of subsets of R or power set of R. There are different techniques to
summarize the support of a variable into a set according to the uncertainty re-
flected in its pdf . For unimodal and symmetric distributions such as a Gaussian,
symmetric intervals about the mean are the most reasonable choice. For exam-
ple in [KLRK97] the authors refer to the “three sigma” rule: values for which
|x − µ| > 3σ, where µ is the mean and σ the standard deviation, are classified
as “impossible” to occur. We define the symmetrical interval about the mean
forecast by applying the functional

G(f) = [µ − rσ, µ + rσ],

1 Mean of the square Euclidean distances between the actual response of the system
and predicted values.

2 A global mode is a value where the probability density function achieves its global
maximum.
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where r is a positive real number,

µ =
∫

R

yf(y) dy and σ =
∫

R

(y − µ)2f(y) dy.

Thus we obtain a conditional interval about the mean forecast

Ŷo = G(f
y|x(( · )|xo)), ∀xo ∈ R. (7)

This type of intervals are often used to eliminate outliers in sample of data. The
integral outside of this type of intervals, is the error that the random variable
is erroneously classified as an outlier, or in other words, that an observation
of the random variable takes a value outside the interval. For non-symmetric
distributions, functional G could be defined as

G(f) = [yα/2, y1−α/2],

where α ∈ [0, 1],

yα/2 = {yo :
∫ yo

−∞
yf(y) dy = α/2} and (8)

y1−α/2 = {yo :
∫ yo

−∞
yf(y) dy = 1 − α/2}.

Thus we obtain a conditional quartile interval forecast

Ŷo = G(f
y|x(·|xo)), ∀xo ∈ R (9)

as a set of “possible” values of the random variable knowing that x = xo. There
is a crucial difference with the previous defined above: opposed to the Gaussian
case, it could occur that some values outside of interval have a higher density
than values inside it, i.e., for a fixed value y inside the interval there exists one
or more values y′ outside of the interval such that f(y) ≤ f(y′). This clashes
with the following principle:

If a value y is “possible”, a “more” probable value y′ is “possible” too.

Although the probability for any single value is equal to zero since it is the
integral of the density function on a null-Lebesgue set, it still makes sense when
comparing single values probabilities by using the density function. For non-
symmetric distributions, there is not such a “centre” of the distribution from
which to construct symmetric intervals verifying the above principle. The only
approach that avoids this inconvenience consists of choosing the set of “possible”
values composed by the values with highest density, which corresponds to the
level set of the density function, which probability is equal to α, being 1 − α
a given fixed error. The level sets of density functions correspond to regions
with the minimum volume or Lebesgue measure for a given error 1 − α. This
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means, that given a real value t ∈ [0, sup f(y)], level set At = {y : f(y) ≥ t} with
P(At) = α and for all A ⊆ R such that P(A) = α, we have λ(A) ≥ λ(At), i.e.,
At has minimum volume [NK99,NnGKCW03]. This regions are also known as
modal sets [Pol95]. Thus we define the functional G

G(f) = {{y : f(y) ≥ t} :
∫

R

f(y) dy = α}.

for α ∈ [0, 1]. Thus that we obtain a conditional modal interval forecast

Ŷo = G(f
y|x(·|xo)), ∀xo ∈ R. (10)

Note that in this case Ŷo could be composed for more than one interval. This is
discussed in greater detail in [NnGKCW03].

4 Relation with regression models

Models from Equations (3) and (6) are similar when for all x ∈ R function
f
y|x(·|x) is symmetric and unimodal. This is the case for which f

y|x(·|x) is the
pdf of a normally distributed random variable. Note that this conditions are
commonly held by regression models. Suppose a regression model r such that

yi = r(xi) + ei, ∀i = 1, . . . , n , (11)

where n is the sample size and ei are n independent and identically normally
distributed random variables with mean equal to zero an variance equal to σ2.
Consequently, the response random variable yi is normally distributed with zero
mean and variance equal to σ2. In Figure 1, an illustration of the similarities
between the regression model (black line) and functional models 3 (red curve)
and 6 (blue curve) is shown. In the bottom of Figure 1 the conditional pdf for
the regression model (plain curve) and the conditional mean pdf (dashed curve)
for x = 0 is shown. The data set has been simulated from y = x + e, where
e ∼ N(0, 0.3) and x ∼ U(−2, 2). The probability density function was estimated
using two-dimensional kernel Gaussians.

Although the mean value minimizes the mean squared Euclidean distance, it
is not always the most adequate statistic for forecasting. This is more obvious
if interval forecasts are considered. Since a pdf indicates the distribution of the
uncertainty of the random variable for each possible value, the common sense
tell us that the best representative interval for forecasting is such that bounding
a given α probability, is the smallest possible respect to the Lebesgue measure.
This interval is the level set At of the pdf such that P(At) = α as indicated in
Equation 10. If the pdf is unimodal and symmetric, this interval is centered at the
mean since it is the same as the mode, i.e., interval forecasts given by Equations 7
and 10 are equal. For other shaped pdfs, for example, for a symmetric about the
mean but bimodal distribution, the modal intervals are the smallest (in terms of
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their Lebesgue measure) for a given α and so may be preferred over the intervals
about the mean value. As an example of this, in Figure 2 a Gaussian kernel
estimator of the pdf for the Old Faithfull geyser data from [Sil86] is shown. For
α = 0.77, the corresponding level set is the union of the intervals [1.58, 2.14]
and [3.38181, 4.8204] which length is 2. The mode and the mean value are 4.07
and 3.46, respectively. For the same probability, any symmetric interval around
the mean value will have a longer length than 2 or for any interval around the
mean value of length 2, the probability of the geyser to have an eruption is less
probable than 0.77.

As shown above methods to built functional models, such as regression, where
the errors are assumed independent and identically normally distributed, pro-
duce similar forecasts as the conditional models from pdfs introduced in this
paper. If this assumption on the errors is not verified the regression model could
provide forecasts that according to the pdf are little probable to occur. Thus,
the regression model and the model of Equation (6) will present important dif-
ferences which could indicate that the assumption on the error may be wrong.
Large differences between these models could also indicate a case of multimodal-
ity of the conditional pdfs: for example if there are two well separated clusters
of points in a plane, one over the other. The regression model would be a curve
crossing the middle of both clusters whereas the conditional pdfs is bimodal or
achieve the global mode inside of one of the clusters.

5 Functional models and the conditional modal model

For a given functional model constructed from a sample of data, using for exam-
ple regression techniques, we will define two indicators of the differences respect
to the model of conditional mode of Equation (6), which corresponds to the
most probable values to occur according to the pdf of the sample of data. Let
(xi, yi), i = 1, ..., n be a sample of data and let ŷi, i = 1, ..., n be the forecasts
generated by the regression model.

The first indicator M1 is the mean value of the densities of the responses
ŷi, i = 1, ..., n

M1 =
1
n

n∑
i=1

f
y|x(ŷi|xi) =

1
n

n∑
i=1

f(xi, ŷi)

The upper limit of M1, M̄1 is

M̄1 =
1
n

n∑
i=1

sup f
y|x(·|xi). (12)

The closer M1 is to M̄1 the better the model is with respect to pdf f . The
indicator M1 achieves M̄1 when f

y|x(·|xi) achieves its maximum at ŷi for all
i = 1, . . . , n. This means that

ŷi ∈ arg max f
y|x(·|xi), ∀i = 1, ..., n.
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Note that the real outputs yi, i = 1, ..., n are not directly involved in the calcu-
lation of the indicator M1 but indirectly when pdf f is calculated.

M1 is always equal to zero since inf f
y|x(·|xi) = 0, for all i = 1, ..., n. Sum-

marizing, the bounds of M1 are

0 ≤ M1 ≤ M̄1 ≤ sup f(·) (13)

For a second indicator denoted M2, we normalize the conditional possibility
measure f

y|x(·|x) for each data input xi,

f ′
y|x(y|x) =




f
y|x(y|xi)

sup f
y|x(·|xi)

, if sup f
y|x(·|xi) > 0

0, otherwise.

Thus,

M2 =
1
m

n∑
i=1

f ′
y|x(ŷi)

In this case, defining upper and lower bounds as for M1, we have

0 = M2 ≤ M2 ≤ M̄2 ≤ 1 (14)

M̄2 = 1, iff for all i = 1, . . . , n function f
y|x(·|xi) is not null, i.e., exists y such

that f
y|x(·|xi) > 0. Note thus that for the sample of data used to built the pdf

M̄2 = 1. The main difference between M1 and M2 is that M2 does not depend
on the variations of the heights of function f throughout the region of the space
where the data are placed.

As an example, we apply these indicators to a nonlinear plant studied in
[YW98,WY99,YW99,SR00]. The process is explained by the equation

y(k) = g
(
y(k − 1), y(k − 2)

)
+ u(k) (15)

where the nonlinear component g is

g
(
y(k − 1), y(k − 2)

)
=

y(k − 1)y(k − 2)(y(k − 1) − 0.5)
1 + y2(k − 1)y2(k − 2)

(16)

with initial condition (0, 0) and error u, uniformly distributed in [−1.5, 1.5]. A
sample of 200 training data is generated. The validation data are another 200
data where the input signal e(k) = sin(2πk/25). The vector of the input vari-
ables x has the form [y(k − 1), y(k − 2)]T , and points in the product space are
[y(k− 1), y(k− 2), g(y(k− 1), y(k− 2))]T . This means that the state space is R

3.
We have fitted a two-dimensional linear model by least squares regression and a
nonlinear model built by combining 200 local linear models weighted according
to 200 general Gaussian functions. Both models are shown in Figure 3. The dots
represent the set of training data and the squares a set of validation data. To
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estimate the three dimensional pdf from the training data, kernel estimation
has been used. For each data point in the state space, a uniform kernel pdf
was defined over the minimum sized hyperellipsoids containing its eight near-
est neighbours. The mean of these 200 kernels is the estimator of the pdf for
the training data (See [NnGW01,NnGW02,NnG02,Wol01]). In Table 1 different
results are summarized for this example. For both sets of data the indicators
M1 and M2 are calculated. Then M̄1 and M̄2 are the maximum values that the
indicators could achieve according to the pdf . Note that these two values are
independent of the studied model.

Table 1. Comparison of a linear and a nonlinear models, according to the conditional
mode functional of the pdf .

Training Data

M1 M̄1 M2 M̄2

Linear 2.31e−2 5.24e−2 0.428412 1

Nonlinear 5.12e−2 5.24e−2 0.982 1

Validation Data

M1 M̄1 M2 M̄2

Linear 1.13e−2 3.7e−2 0.276 0.96

Nonlinear 3.5e−2 3.7e−2 0.865 0.96

Note in Table 1 that M̄2 = 1 for the training data and M̄2 = 0.96 for the
validation data. This difference indicates that the functional models are trying
to generalize into new areas where no experience (training data) is available. The
difference between both maxima gives us the amount of validation data for which
the model is extrapolating. In the example, the difference 1− 0.96 = 0.04 means
that is 4% of the forecasts, i.e., eight data points, the models are extrapolating.
The conditional pdf for these input data are equal to zero. This means that there
is no evidence, based on the experience from the training data and according
to the uncertainty function, to ensure that the forecasts given by the functional
model for those points, behave as for the rest of the data.

6 Conclusions

The idea of using probability density functions for forecasting multiple-input
single-output systems is introduced. Estimation of probability density functions
in more than two dimensions could be a complex process. Nevertheless the ap-
proach explained here could also be applied to other uncertainty functions ex-
tracted from the experimental data, such as possibility measures [Zad68,DP86,DP93].
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In [DS85,Wol01,NnG02] one can find some examples of how to built possibility
measures from experimental data. Some techniques to summarize a pdf into a
single value or into a set of values are reviewed. As a further work, the properties
of functional G depending on the properties of pdf f could be determined. For
example it is trivial that if function f is continuous, then the conditional mean
functional G (3) is continuous too. Other functionals need additional properties
for function f in order to be continuous. We have pointed out that given an
input vector, the most likely response of the system is an alternative forecast to
the commonly used mean value. This is especially indicated when the distribu-
tion on the error is unknown or the distribution of the data difficultly can be
explained with a regression model. To finish two indicators that relate functional
models to the pdf are introduced. The more M1 and M2 approximate to M̄1 and
M̄2 respectively for a functional model, the more confidence we have that the
assumption on the error used to calculate such a model are true.
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Fig. 2. Gaussian kernel estimator of the pdf for the Old Faithfull geyser data.



12 J. Nuñez-Garcia and O. Wolkenhauer

-2
-1

0
1

2

-2

-1

0

1

2

-2

-1

0

1

2

-1
0

1
2

g(t)

y(t − 1)y(t − 1)

y(t − 2)

-2
-1

0
1

2

-2

-1

0

1

2

-2

-1

0

1

2

-1
0

1
2

g(t)

y(t − 1)y(t − 1)

y(t − 2)

Fig. 3. A linear and a nonlinear models fitted to the training data of the nonlinear
plant.
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