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Introduction

Clustering analysis is a multivariate technique for data mining 1 which develops mean-
ingful subgroups of individuals or objects (Everitt 1974, Jain and Dubes 1988). In the
gene expression context, the analysis is used to identify subsets of genes that behave
similarly along time under the set of test conditions; that is, to cluster gene expression
time-series data. In clustering, as in any data analysis, issues ranging from problem
definition to a critical diagnosis of the results must be addressed. As a first step, in
Section 1 we define the properties of time-series followed by the particular character-
istics of gene expression time-series. The statistical analysis of time-series is briefly
introduced and its suitability for gene expression time-series is discussed. Section 2
describes general aspects involved in clustering analysis. Next, in Section 3, the sim-
ilarities of gene expression time-series are discussed and the principal requirements
described. In Section 4 the clustering requirements of gene expression time-series are
described. In Section 5 an extensive literature review considering related work on time-
series similarity and clustering of gene expression time-series is presented. Section 6
discusses future work involving a briefly proposal of the development of a suitable
clustering algorithm. Finally, Section 7 concludes the report.

1 Time-series

In this section the general characteristics of time-series are described and their statis-
tical analysis is briefly introduced. Then, the particular characteristics of gene expres-
sion time-series are defined and their suitability for conventional statistical analysis is
discussed.

A time-series is often defined as a series of values of a variable taken in succes-
sive periods of time. The variables come from a variety of different domains, from
engineering (e.g. (Notohardjono and Ermer 1986)) to scientific research (e.g. (Tilman
and Wedin 1991, Aerts and De Cat 2003)), finance (e.g. (Boschen et al. 2003)) and
medicine (e.g.(Guo et al. 2003, Yum and Kim 2003)). The range, noise, scaling and
shifting factors of the values that such variables can take depend on the nature of
the variables and the instrument utilised to measure them. The instants in time at
which the measurements are taken are known as time points. The length between
time points can vary or be constant and is called sampling interval. There is a well-
established area in statistical analysis of data dedicated to the study of time-series.
The statistical analysis of time-series (Anderson 1958, Box and Jenkins 1976) accounts
for the fact that data points taken over time may have an internal structure (such as
autocorrelation, trend or seasonal variation) that should be accounted for. In general
most of the analysis is focused towards univariate2 time-series with a large number of
measurements and equally distant time points.

1.1 Statistical Analysis of Time-series

There are two main goals in the statistical analysis of time-series: identifying the
nature of the phenomenon represented by the series of observations and predicting

1Data mining is “the nontrivial extraction of implicit, previously unknown and potential useful
information from data” (Frawley et al. 1992). In this research we focus on temporal data mining
(Antunes and Oliveira 2001, Roddick and Spiliopoulou 2002), in particular clustering analysis.

2Univariate time-series: one type of measurement made repeatedly on the same object or individual.
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future values of the time-series variable. Many of the statistical techniques used in
time-series analysis are regression analysis techniques or analogues of them (Anderson
1958, Box and Jenkins 1976, Kendall 1976). Selecting a suitable mathematical model
is the first step in the analysis of a time-series. After choosing the model, it is possible
to estimate parameters and check for the goodness of fit to the data. The fitted
model can then be possibly used to understand the mechanism generating the series
or to forecast. There are many methods to model time-series. The selection of the
appropriate technique will depend on the application and the user’s preference.

An example of a model is the auto regressive (AR) model:

xt = δ + φ1xt−1 + φ2xt−2 + . . . + φpxt−p + At (1)

where xt is the time-series, At is noise, and

δ =

(
1 −

p∑
i=1

φi

)
µ (2)

where µ is the process mean. An autoregressive model is a linear regression of the
current value of the series against one or more prior values of the series. The value of
p is called the order of the AR model. AR models can be analysed with one of several
methods, for example the standard linear least squares technique.

Important properties of the time-series for their statistical analysis are autocorre-
lation, trend, seasonality and stationarity.

Autocorrelation refers to the correlation of a time-series with its own past and
future values. It is the correlation of the time-series with itself but shifted in time k
time points, k is usually called the lag. Autocorrelation complicates the application
of statistical tests by reducing the effective sample size. There are several tools for
assessing the autocorrelation: time-series plot, lagged scatter plot and autocorrelation
function.

Trend represents a linear or most often nonlinear component that changes over
time and does not repeat.

Seasonality are the periodic fluctuations displayed by many time-series. The
analysis of seasonality is formally defined as correlation dependency of order k between
each ith element of the series and the (i-k)th element and measured by autocorrelation
(Kendall 1976).

Stationarity in time-series is a common assumption in many analysis techniques.
A stationary time-series has the property that the mean, variance and autocorrelation
structure do not change over time. If the time-series is not stationary some trans-
formations can be applied to achieve stationarity (Kendall 1976). The data can be
differentiated, given a series zt a new series yi = z1 − zi−1 can be created. If the data
contain a trend, a curve can be fitted to the data and then the residuals from that fit
can be modelled. When the variance is non-constant, it might be stabilized by taking
the logarithm or square root of the series.

A very popular procedure in time-series analysis is smoothing the data, which
removes random variation and shows trends and cyclic components (Box and Jenkins
1976). The most common technique is the moving average smoothing which replaces
each element of the series by either the simple or weighted average of n surrounding
elements, where n is the width of the smoothing window. Figure 1 shows a continuous
sinusoidal function (continuous line) which was sampled and added a random error
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(squares), followed by a moving average smoothing process (circles); it can be seen
that extreme values are eliminated after the smoothing process.
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Figure 1: A continuous sinusoidal function (continuous line) is sampled and added a
random error (squares), also shown, the smoothed function (circles).

1.2 Gene expression time-series

Gene expression time-series have two main characteristics, they are very short (i.e.,
four to twenty samples) and are usually unevenly sampled.

The existing literature on short time-series focuses primarily on testing and es-
timating autocorrelation. Samples under 50 observations are already considered too
short for a classical statistical analysis. Calculation of the autocorrelation at different
lags is an essential instrument to identify the dependency structure of the series but
the estimation of the autocorrelation is biased with small samples, (Bence 1995, Arnau
and Bono 2001).

2 Clustering analysis

This section briefly describes several steps involved in clustering analysis. The first
step is the representation and modelling of the time-series. The next step is the defi-
nition of a similarity measure between time-series which make sense with the selected
representation or model utilised. The third step is the definition of a clustering al-
gorithm to group the represented or modelled time-series according to the similarity
previously defined. The last step is the validation or scoring of the clustering results.

2.1 Representation and modelling

The model used to represent the time-series has a great impact on the similarity mea-
sure adopted, and therefore, in the clustering outcome. Antunes and Oliveira (2001)
distinguish four main groups for temporal sequences representation: time-domain con-
tinuous, transformation based, discretisation based, and generative models.

In time-domain continuous representation the simplest approach is to rep-
resent a time-series using the original elements, ordered by their instant of occur-
rence without any preprocessing. Other alternatives are transformations related to
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the length of the series. If the series are too long to be able to manage them, they
can be shortened using, for example, piecewise linear functions. There are several
approaches to segment the time-series in order to reduce the noise or to reduce dimen-
sionality.

In transformation based representations the idea is to transform the initial
sequence from time to another domain, and then use a point in the new domain to
represent each original series. For example, the use of Discrete Fourier Transformation
(DFT) to transform the sequence in a point in the frequency domain choosing the k
first frequencies and then representing each sequence as a point in the k-dimensional
space (Agrawal et al. 1993). Other examples could be the Discrete Wavelet Transform
(DWT) (Popivanov and Miller 2002).

Discretisation based representations translate the initial time-series with real-
valued elements to a discretised sequence. An example of this translation is the Tran-
sitional State Discrimination (TSD) approach (Möller-Levet, Cho and Wolkenhauer
2003), where the time-series are discretised according to the difference of values be-
tween successive time points.

In generative models representation the idea is to obtain a model that can
be viewed as a generator for the time-series obtained. For example, Hidden Markov
Models (HMM) (Ji et al. 2003) or Auto Regressive models (AR) (Ramoni et al. 2002).

2.2 Similarity measures

After representing the time-series appropriately a similarity measure is needed in order
to determine if they match.

Depending on the application, the similarity measure should be able to deal with
elements such as outlying points, noise and scaling problems and existence of gaps
and other time axis distortion. Antunes and Oliveira (2001) distinguishes four main
groups for similarity measure based on the type of temporal sequences representation.

Similarity in time-domain continuous representation. The most common
distance is the Euclidean distance, where each series of length k is viewed as a point in
an k-dimensional space. In order to deal with noise, scaling and translation problems,
it can be done by determining if a portion of a sequence fits another, having both a
previous linear transformation (Das et al. 1997). In order to deal with small distor-
tions in the time axis the technique of Dynamic Time Warping (DTW) was proposed
(Sankoff and Kruskal 1983). Dynamic time warping aligns two sequences so that a
predetermined distance measure is minimized.

Similarity in transformation based methods. The simplest approach when
dealing with transformed series is to compare the points representing each time-series
in each sequence. The comparison of the points is usually given by Euclidean distance.

Similarity in discrete spaces. In this case the simplest approach is to compare
each symbol of the series. Also, there exist some specific measures for this represen-
tation, such as the Hamming distance3.

Similarity for generative models. In this case the similarity measure between
sequences can be obtained directly by how close the data fits one of the available
models. For stochastic generative models (e.g. Markov chains and mixture models)

3Hamming distance d(x, y) is the number of coordinates where (the sequences) x and y differ, or:
d(x, y) = |1 ≤ i ≤ n|x1 �= yi|.
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the probability that a given sequence was generated by a given model is used for the
comparison.

2.3 Clustering algorithm

The clustering algorithms can be divided into two main groups:
Hierarchical techniques. Hierarchical clustering proceeds successively by either

merging smaller clusters into larger ones, or by splitting larger clusters. The subtypes
of this clustering method differ in the rule by which it is decided which two small
clusters are merged or which large cluster is split. The final result of the algorithm is
a tree of clusters called a dendrogram, which shows how the clusters are related. By
cutting the dendrogram at a desired level a clustering of the data items into disjoint
groups is obtained.

Partitioning-Optimisation techniques. The partitioning techniques differ from
the hierarchical techniques in that they admit relocation of the elements; this allows
poor initial partitions to be corrected at a later stage. A centroid or a cluster repre-
sentative may represent each cluster; this is some sort of summary description of all
the objects contained in a cluster. These techniques can be considered as attempts to
partition the data set in a way that optimises some predefined criterion. Most of these
techniques have three distinctive steps: initiation of clusters, allocation of elements
to initialised clusters and reallocation of some or all of the elements to other clusters
once the initial segmentation has been completed.

When model-based representations are used for clustering, a generative statistical
model is proposed for the data and then a likelihood (or posterior probability) derived
form this model is used as the criterion to be optimised (Zhong and Ghosh 2002,
Fraley and Raftery 1998). In this approach, the merging of the groups in hierarchical
clustering or the reallocation techniques in a partitioning-optimisation clustering, are
based on a maximum-likelihood criterion and each cluster is represented by a particular
model. The type of model, for example a Gaussian or an HMM, has to be specified
according to the objectives of the clustering analysis and the properties of the data
set. The structure of the chosen model can usually be selected by model selection
techniques, and its parameters estimated using the Expectation Maximisation (EM)
algorithm (see Appendix).

2.4 Validity measures

The validity process explores whether the clustering algorithm with the specified pa-
rameters (number of clusters, similarity measure, model, etc.) can identify the un-
derlying patterns of the considered data set (Höppner et al. 1999). In order to solve
this problem, several cluster quality or validity measures have been proposed in the
literature. Cluster validity measures quality of a clustering relative to others created
by other clustering algorithms, or by the same algorithms using different parameter
values.

The validity measure should reflect the quality of the clusters based on the objec-
tives of the clustering algorithm. For example, fuzzy c-varieties algorithm defines the
prototypes as r-dimensional linear subspaces of the data space. If r=2, then the pro-
totypes are lines and it would not make sense to use a validity measure which prefers
clusters which are compact (i.e, which have a small radius).
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As stated in (Heyer et al. 1999), not all related genes are similarly expressed, and
some unrelated genes have similar expression patterns. Therefore, external biological
validation cannot be used as the only method to identify the best choice of similarity
measure and clustering algorithm.

3 Similarity of gene expression time-series

In this section the similarity requirements of gene expression time-series are described.
Similarity is understood as the resemblance, likeness, or equivalence of two objects.

It is a relative term, which only makes sense when comparing more than two elements
or when a threshold is utilised. Considering three different objects A, B, and C, there
are three possibilities for the similarity of A. A can be more similar to B than to C,
or more similar to C than to B, or as similar to C as to B. In order to be able to asses
the similarity, a quantitative measure of likeness has to be utilised. It is a common
practice to use correlation or distance metrics to quantify such resemblance. The
suitability and performance of a similarity measure for a specific comparison depend
on the nature of the objects to compare. Therefore, the requirements of similarity
of gene expression time-series have to be consider in order to design or select the
appropriate similarity measure.

3.1 Similarity requirements for co-expression

The general objective of the clustering of gene expression data is the identification
of co-expressed genes. However, there is not a clear definition of co-expression in
the literature. In general, it is understood that co-expressed genes have similar pat-
terns of expression. Buy then again, what are similar expression patterns? In (Heyer
et al. 1999), similar expression patterns are defined as “patterns that rise and fall
concordantly”. In (Filkov et al. 2002) the similarity function of time-series is mainly
based in the up-down weighted patterns of filtered series. In (Schleip et al. 2003)
and in (Ji et al. 2003) HMM are utilised based in qualitative behavior: up- down-
no change- regulated. It can be seen that the common idea behind the concept of
similar expression patterns lies in the direction of change of the expression level across
time points. Other approaches lack of a straightforward biological interpretation, for
example (Ramoni et al. 2002), where similar expression patterns are those which are
generated by the same stochastic process represented by the proposed AR model. Co-
expression has not a common and well defined meaning in the literature, which leaves
a wide open door for the suggestion for new and alternative clustering procedures.
In this section the basic biological-based requirements of gene expression time-series
comparison are summarised.

Three basic similarity requirements have been identified; the similarity measure
should be able to handle:

1. Scaling and shifting problems

2. Unevenly distributed sampling points

3. Shape (internal structure)
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3.1.1 Scaling and shifting problems.

A promoter is a structural regulatory sequence recognised by the sigma factor of the
RNA polymerase holoenzyme (the protein that is used to read the DNA for transcrip-
tion). Genes that share a common sequence will therefore share their expression, they
will be switched on at the same time but not necessarily at the same level. The reason
is that the recognition efficiency is not the same for every gene having that promoter.
This is one of the situations leading to scaled and shifted expressions. Therefore,
scaling and shifting factors in the expression level hide similar expressions and have
to be eliminated or not considered when assessing the similarity between expression
profiles. Other possible sources for scaling and shifting problems are intrinsic of the
microarray experiment (e.g. label efficiency of the dyes) which are usually eliminated
in the normalisation procedure. In a mathematical sense scaling and vertical (i.e. of
the expression level) shifting refer to the case were linear transformations are present.
Considering two time-series x and y, y is a linear transformation of x if it can be
expressed as y = mx + b. The scaling factor is m and b is the vertical shift. Figure
2(a) shows an example of the effects of scaling and vertical shifting.

Synchronisation of biological processes is not an easy task, common processes may
unfold at different times in different experiments or individuals producing horizontal
shifts in the resulting time-series. For a few number of time points the identification of
horizontal shifts can possibly be made after the clusters are obtained while for longer
series temporal aligning techniques can be utilised. Depending on the purposes of the
clustering analysis the horizontal shift might or might not be considered. For example,
in the DNA microarray analysis by Spellman et al. (1998), samples from yeast cultures
are synchronised by three independent methods4 to create a comprehensive catalogue
of yeast genes whose transcript levels vary periodically within the cell cycle. In this
case the authors used a Fourier transformation to identify periodicity, when using
this transform time shift is ignored. Later, Aach (2001) grouped these time-series
based on their time alignment. The author identified that small sample size and high
measurement noise decrease alignment stability.

3.1.2 Unevenly distributed sampling points

Since gene expression time-series rely on samples of the actual biological process, the
higher the sampling frequency the more information one has to recreate the actual
process. However, it is not possible to achieve high sampling frequency in microarray
experiments due mainly to the time and resources that would require. Therefore,
biological processes are sampled at shorter intervals of time when intense biological
activity or when the activity of interest is taking place, leading to unevenly distributed
sampling points. In consequence, the length of the sampling interval is informative and
should be consider in similarity comparisons. Consider the following three time-series:
F=[3.5 3 4 4], G=[2 2 3 3] and H=[1 1 2 1.5], as shown in Figure 2(b). The absolute
errors of time-series G and F , and G and H at each time point are e(G,F )=[1.5 1
1 1] and e(G,H)=[1 1 1 1.5], respectively. It can be seen that they have the same
overall absolute error. When the sampling interval is considered the rate of change
across time (i.e. slope) can be obtained. The rate is obtained by taking the ratio
of the difference of expression level in neighboring time points and the length of the
corresponding sampling interval. The absolute error of the slopes of time-series G and

4These methods are: α factor arrest, elutriation and arrest of a cdc15 temperature-sensitive mutant.
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F and G and H are e(sG, sF )=[0.5 0 0] and e(sG, sH)=[0 0 0.0714], respectively. Now
it is evident that G is more similar to H than to F when considering the rate of change
of expression, given by the length of sampling intervals.

3.1.3 Shape: internal structure.

The main difference between a set of measurements and a time-series is the inter-
nal structure, therefore a time-series can not be treated as independent identically
distributed data. The internal structure can be described by different models and
in general it is reflected in the shape of the series. In microarray experiments, the
intensity of gene expression is not relevant, instead, the relative change of intensity
characterised by the shape of the expression profile is regarded as characteristic and
informative. Figure 2(c) shows three time-series, J ,K and L, where J is more similar
to K, when the intensity of the gene expression is considered and J is more similar to
L, when the relative change of intensity is considered. A necessary condition for the
existence of internal structure or characteristic shape is the temporal order of measure-
ments. Therefore, the similarity function should not allow a change in the order. The
internal structure can be represented by a statistical model, by deterministic functions
or by symbols describing the series.
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(a) Scaling and shifting: three
time-series, A, B and C, where
B is A scaled by 2, and C is A
shifted by 2.
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(b) Sampling interval: three un-
evenly sampled time-series with
different rate of change of ex-
pression across time.
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(c) Shape: three time-series,
J ,K and L, where J is more
similar to K, when the intensity
of the gene expression is consid-
ered and J is more similar to L,
when the relative change of in-
tensity is considered.

Figure 2: Elements involved in gene expression time-series similarity.

3.2 Similarity in time-series literature

We have identified several approaches to compare times-series in the literature:

1. Transformation based: linear transformation

2. Temporal structure based

3. Shape based
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3.2.1 Transformation based: linear transformation.

A transformation T : Rn → Rm is a linear transformation if it satisfies:

T (u + v) = T (u) + T (v)
T (cu) = cT (u)

When Euclidean distance (of standardised time-series) or correlation are used as simi-
larity measures, similarity between two time-series can be understood as the strength
of their linear relationship. See the appendix for a short review of some common
distances, the Euclidean distance and correlation coefficient. Möller-Levet, Cho and
Wolkenhauer (2003) present the function relating the Euclidean distance and corre-
lation coefficient of standardised time-series, showing that the more are time-series
linearly related the smaller is the Euclidean distance between them after standardis-
ation. In the temporal database field, Das et al. (1997) considers that two time-series
are similar if there is a linear function f such that a long subsequence of X can be
approximately mapped to a long subsequence of Y using f . This is illustrated in
Figure 3 on complete sequences. However, two linearly related time-series can present
opposite shapes as discussed and illustrated in section 5, showing that this concept of
similarity can fail in identifying similar shapes.

In gene expression time-series data this concept of similarity is too naive and super-
ficial since the internal structure of the data set is of most interest. However, as stated
before, linearly transformed time-series are regarded as scaled and shifted similar ex-
pressions. This similarity can be uncovered simply by normalising5 or standardising6

the data set as illustrated in Figure 4.

x1 x2

y1
y2

m, b

similar?

m, b

similar?

x3

y3

m, b

similar?

xn

yn

m, b

similar?

Similarity
between X

and Y

Figure 3: Considering two time-series X = [x1, x2, x3, . . . , xn] and Y =
[y1, y2, y3, . . . , yn], the figure shows similarity based on the degree to which one time-
series can be expressed as the linear transformation of another, such that Y = mX+b.

Dynamic Time Warping (DTW) Algorithms align two time-series against each
other. This tool emerged originally for speech recognition in the 1970’s. In speech
recognition the alignment is necessary due to different parts of the words being spoken
at different rates. Therefore, the best alignment of the word to be recognised and a
reference pattern, identifies the word to be the same as the one represented by the
reference pattern. In contrast, in unsupervised gene expression clustering there are
not reference patterns to match the expression profiles with. Therefore, the similarity

5The time-series can be normalised by subtracting the mean and dividing by the highest value.
6The time-series can be standardised by subtracting the mean and dividing by the standard devi-

ation.
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Figure 4: The four dashed time-series are different linear transformations of a given
time-series. The continuous line represents the four identical patterns obtained after
the normalisation of the dashed time-series.

problem goes beyond the alignment. Alignment scores are based on Euclidean dis-
tance, implying that the similarity between already aligned sequences becomes the
conventional Euclidean distance between the two series. However, in some cases the
alignment of the series is essential when comparing series from different experiments
and DTW had shown to have a good performance (Aach 2001).

In conclusion, the similarity based in linear transformation is very basic and does
not consider the internal structure and the sampling interval. However, linearly re-
lated gene expression time-series are can be considered as shifted and scaled similar
patterns. By normalising or standardising the data set, linearly related expressions
are uncovered.

3.2.2 Temporal structure based

The underlying assumption of the statistical model is that the series can be well char-
acterised as a parametric random process, and that the parameters of the stochastic
process can be estimated in a precise, well-defined manner. Several models have been
utilised for gene expression time-series including: normal mixture, autoregressive, hid-
den Markov and splines models.

In a normal mixture model-based approach each gene is assumed to have
come from a mixture of multivariate normal densities with different means and cer-
tain parameterizations of the covariance matrix (Yeung, Fraley, Murua, Raftery and
Ruzzo 2001, Fraley and Raftery 1998). In this approach there is not consideration
towards the temporal structure of the data and the length of sampling intervals.

A more appropriate model for this application is the autoregressive model. In
its simplest form, an autoregressive (AR) model is a linear regression equation which
links the current value of some variable to its value in the previous period and a con-
stant term. The order of the AR is the number of past values that are considered to
generate the actual value. Given the size of the time-series in gene expression, AR of
order one is the most appropriate (Ramoni et al. 2002). When using AR, the internal
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structure considered is that the current value of the series is a linear combination of
the p most recent past values of itself plus an error term , which incorporates ev-
erything new in the series at time t that is not explained by the past p values. In
this approach time-series are similar when they are generated by the same stochas-
tic process represented by the proposed model as shown in Figure 5. There are two
main questions involved in the selection of the AR model: the order of the model
and the method for parameter estimation. The parameters are calculated from the
time-series using optimisation methods such as maximum likelihood and least squares
(Box and Jenkins 1976). The autoregressive model is limited by the requirement of
stationarity, that is, the system generating the time-series should be time invariant.
Although several techniques can be used for converting non-stationary time-series into
stationary ones, it is not always possible to meet the requirement. In this approach
the temporal structure of the data is established by an AR model, but the length of
sampling intervals is not considered.
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Figure 5: Considering two time-series X = [x1, x2, x3, . . . , xn] and Y =
[y1, y2, y3, . . . , yn], and an autoregressive model with parameters (δ,φ1...φp and ε), such
that xt = δ + φ1xt−1 + φ2xt−2 + . . . + φpxt−p + εt. The similarity of X and Y is given
by how well they fit the proposed model in terms of a small error or a high likelihood
to be generated by the system represented by the selected model.

In a Hidden Markov Model (HMM) the observations are a probabilistic function
of the state and the transition from one state to another is also given by a probability
function. A HMM (Rabiner 1989) is characterised by the following:

1. N , the number of states in the model.

2. M , the number of distinct observation symbols V = {v1, v2, · · · , vM} per state,
that is, the discrete alphabet size.

3. A = aij, the state transition probability, where aij = P [qt+1 = Sj |qt = Si],
1 ≤ i, j ≤ N . That is, given the current state qt been Si, aij is the probability
that the next state qt is Si. A is illustrated in Table 1.

4. B = bj(k), the observation symbol probability distribution in state j, where
1 ≤ j ≤ N and 1 ≤ k ≤ M . B is illustrated in Table 2.

5. π = πi the initial state distribution, where πi = P [q1 = Si], 1 ≤ i ≤ N .
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Given appropriate values of N,M,A,B and π, the HMM can be used as a generator to
give an observation sequence O = O1O2 · · ·OT , where T is the number of observations
in the sequence. The complete parameter set of the model has a compact notation
λ = (A,B, π).

xt >,< ,= xt+1

{0,1,2}

Si

aij

bi(1)

bi(2)

bi(3)

Sj

bj(1)

bj(2)

bj(3)

Figure 6: The time-series are transformed to a three letter-alphabet sequences de-
scribing the shape of the time-series, down-pattern (xt > xt+1) v1 = 1, up-pattern
(xt < xt+1) v2 = 2, and no change-pattern (xt = xt+1) v3 = 3. In the model, the
transition from state Si to Sj has a probability of aij, and at state Si, the probability
of having an observation of ‘down’ is bi(1), of ‘up’ is bi(2) and ‘no change’is bi(3).

Table 1: The state transition probability A = aij

S0 S1 . . . SN

S0 a00 a01 . . . a0N

S1 a10 a11 . . . a1N
...

...
... . . .

...
SN aN0 aN1 . . . aNN

Table 2: Observation symbol probability B = bj(k), with M = 3 and V = [1 2 3 ].
v1 v2 v3

S0 b0(1) b0(2) b0(3)

S1 b1(1) b1(2) b1(3)
...

... . . .
...

SN bN(1) bN(2) bN(3)

In this approach it is assumed that each gene expression profile has been generated
by a Markov chain with certain probability. Therefore, the temporal structure of the
time-series is considered in the HMM, given that the next state is a probabilistic func-
tion of the current state. However, as in the AR model, the length of the sampling
interval is not incorporated in the similarity assessment.

In a Spline Model the time-series are represented by a model which defines a curve



3.2 Similarity in time-series literature 15

in time. Splines are piecewise polynomials with pieces that are smoothly connected
together.

The main elements of the B-splines are:

1. The number n of B-splines connected together. That is, the number of functions
in which the interval 0 ≤ t ≤ T is divided, where T is the time of the last
measurement.

2. The degree k of the n B-splines.

3. The number p of joining points of the polynomials which are called knots.

For a spline of degree k, each segment is a polynomial of degree k, which should
suggest that k+1 coefficients are needed to describe each piece. However, there is
an additional smoothness constraint that imposes the continuity of the spline and its
derivatives up to order (k-1) at the knots, so that, effectively, there is only one degree
of freedom per segment. A cubic spline is a piecewise cubic polynomial such that the
function, its derivative and its second derivative are continuous at the knots.

This approach considers the shape of the profiles and could consider the length
of sampling interval if the knots are properly defined. Bar-Joseph et al. (2002) used
statistical spline estimation to represent time-series gene expression profiles, however,
the method require data that has been sampled at a sufficiently high rate (Bar-Joseph
et al. 2002). In addition, whereas cubic splines are used more commonly, for the
usual shortness of gene expression time-series, they are not suitable (de Hoon et al.
2002). Later, Luan and Li (2003) proposed a mixed-effects model using cubic B-splines
utilising “long” gene expression time-series (12 and 18 time points), and four equally
spaced knots. However, it is not always possible to define equally spaced knots if the
series are unevenly sampled. In addition, equally spaced knots can not properly reflect
the unevenly distributed time points.

In general this is a good approach for time-series similarity which considers a tem-
poral structure by considering the shape of the profiles and could consider the length
of sampling intervals. In this case the actual value of the series is not related with the
previous one by a specific model or function, but the values are a function of the time.

A different approach not based in a probabilistic model but which considers a tem-
poral structure is the one presented in (Möller-Levet, Cho and Wolkenhauer 2003). In
this case the proposed structure is: xt+1 = mt+1xt + bt+1 and 1 ≤ t ≤ number of time
points. The similarity is based on the resemblance of the parameters of linear trans-
formation between time points as illustrated in Figure 7. Once again, this approach
considers a temporal structure but fails to consider the length of sampling interval.

3.2.3 Shape

This approach has a straight forward biological interpretation. In this case, the up
and down patterns of the series are considered to calculate the similarity between two
series. Although it seems to be a simpler approach, special attention has to be given
to the selection of the elements used to describe the shape. One possible approach is
the use of slopes, in (Wen et al. 1998) the expression level at each time point and the
slopes between time points are included in the comparison of profiles. However, the
slopes were calculated based on a reduced time interval of one, not taking into account
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x1 x2m1, b1
x3 xn

Similarity
between
X and Y

similar? similar? similar?

m2, b2 m3, b3

y1 y2m1, b1
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Figure 7: Considering two time-series X = [x1, x2, x3, . . . , xn] and Y =
[y1, y2, y3, . . . , yn], and the model xt+1 = mt+1xt + bt+1, the similarity of the series
is given by the resemblance of the parameters m and b of linear transformation be-
tween time points.

the variable time intervals. In (Möller-Levet, Klawonn, Cho and Wolkenhauer 2003)
time-series are considered as piecewise linear functions and the slopes calculated with
the real length of sampling intervals are compared. However, as the measurements are
weighted proportionally inverse to the length of sampling intervals, very long sampling
intervals could have too low impact in the comparison, while short sampling intervals
could have too much impact. In addition, the temporal order of the slopes is not
considered. Other approaches are based on the discretisation of the series according
to the direction of the change of expression. In these cases one or several thresholds
are used to define an event (i.e. up, down or no change) and have to be defined. This
last approach is somewhat restrictive since biological information (i.e. the amount and
rate of change of expression level) is lost with the discretisation.

4 Clustering of gene expression time-series

After having described the requirements of similarity for gene expression time-series
and the approaches found in the literature. This section specifies the requirements for
clustering the aforementioned series.

Several requirements can be identified for the clustering algorithm, in specific it
should be able to handle:

1. Unknown number of clusters

2. Varying membership

3. Outliers

4. Noise

4.1 Number of clusters

Unsupervised clustering is the most common approach for clustering gene expression
data. This means that there is no previous knowledge of the number and characteristics
of the clusters forming the data. Different clustering algorithms have special techniques
for identifying the number of clusters. A common approach to identify the number of
clusters is the use of validity measures; the data is clustered defining different number
of clusters and the best value of the validity measure will identify the most convenient
number. For example, in (Ji et al. 2003) a validity measure based in the FOM presented
in (Yeung, Haynor and Ruzzo 2001) is utilised successfully to identify the number of
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clusters. In fuzzy clustering the fuzziness of the partition can be used to evaluate the
goodness of the results for different number for clusters (Höppner et al. 1999). Other
approaches do not have to define a number of clusters, because it is obtained as a result
of the partition, but additional parameters have to be defined. For example, in the
CAST algorithm (Ben-Dor and Yakhini 1999) the number of clusters do not has to be
determined. Instead, a parameter called affinity threshold is used to determine what
is the minimum similarity required between an object and a cluster for that object to
be a member, and not all the genes are assigned to a cluster. In this approach each
cluster is formed by alternating between adding and removing genes from the current
cluster until such time that changes no longer occur or a maximum of iterations has
been executed. Therefore, the number of clusters obtained from the partition of the
data set depends on the selection of the affinity threshold. In general, a clustering
algorithm for gene expression data should be able to identify the hidden number of
clusters by appropriate means relevant to the algorithm.

4.2 Varying membership

Several researches have identified and emphasize the importance of overlapping clusters
in gene expression clustering analysis, (Ji et al. 2003, Gasch and Eisen 2002). The
partition of genes into classical sets implies that each gene has been associated with
a single biological function or process which, may be an oversimplification of the
biological system. Therefore, genes should be allowed to have varying probability or
membership degree to different clusters to allow connection of genes to more than one
clusters, revealing distinct aspects of their function and regulation. The EM algorithm
utilised for model-based clustering allows for partial credit to different clusters, that
is, genes have varying probability to belong to different clusters. Other approach is
fuzzy clustering, which allows genes to belong to more than one group by assigning
different degrees of membership to each cluster.

4.3 Outliers

Given the restricted number of time points in gene expression time-series, an outlier
has a high influence on the similarity measure. The clustering algorithm should be
able to minimise this impact. A good example is (Heyer et al. 1999), where the authors
use the jack-knife correlation. This measure corresponds to the minimum of all the
possible calculations of correlation between two series, where each calculation is done
with the omission of a different time point. In this way, the effects of outliers in the
clustering procedure are reduced. Another approach is the identification of outliers as
a previous step to the clustering procedure as suggested in a section 6.

4.4 Noise

It is well known that microarray experiments are subject to a large experimental
error producing very noisy measurements. The clustering algorithm should be able
to handle these common levels of noise. There are several approaches to achieve
this. For example, in fuzzy clustering a noise cluster can be added to the partition
(Dave 1991). This cluster attracts all those genes which do not show a minimum
level of similarity to the rest of the clusters and reduces the influence of this group
in the whole partition. Some algorithms based in stochastic models have remarked
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the possibility of incorporating noise in the model (Fraley and Raftery 1998, Yeung,
Fraley, Murua, Raftery and Ruzzo 2001).

5 Literature review

This section presents the related literature divided in two sections, the first section
concentrates in time-series similarity and the second on clustering gene expression
time-series.

5.1 Literature review on time-series similarity

The statistical literature on time-series is vast, however, it has not studied similarity
notions that would be appropriate for data mining applications such as clustering anal-
ysis. Most of the work done so far in similarity of time-series come from the problem
of similarity queries in the field of temporal databases. Similarity queries can be clas-
sified into two categories: whole matching or subsequence matching. Whole matching
refers to the comparison of two complete sequences, while subsequence matching, as its
name implies, is the comparison of a small sequence to small sequences in a complete
sequence. The tendency in the literature is to focus on the subsequence matching.

Agrawal et al. (1993) was the first to examine similarity matching of time-series
data. The authors present an indexing structure for fast similarity searches over
time-series databases. They use a form of dimensionality reduction, (i.e., feature ex-
traction), where the time-series are represented as points in a low dimensional feature
space. They use the Euclidean distance to measure the similarity of the time-series rep-
resented by the first few coefficients of their Fourier transformation since the Euclidean
distance is conserved after the transformation. They showed that a few coefficients
(1-3) are adequate to provide good performance, which is increased with the number
and length of sequences. They worked with time-series of 400 time points in a whole
matching scheme. Later, Faloutsos et al. (1994) examine the problem of subsequence
matching extending the idea of (Agrawal et al. 1993).

A different approach was introduced by (Agrawal et al. 1995), proposing a new
model for time-series similarity where two sequences are considered similar if they have
enough non-overlapping time-ordered pairs of subsequences that are similar. Then,
two subsequences are considered similar if after a given transformation one can be
enclosed within an envelope of a specified width drawn around the other. They used
windows of size w of 5 to 20 elements to form the subsequence for further matching,
dealing with scaling and shifting by normalising each window to a range (-1,+1). They
use L∞ norm as the distance measure between subsequences, which are considered as
points in a w-dimensional space. They assume equally sampled time-series, therefore,
they do not consider different lengths of sampling interval. Also, by using the L∞
norm the shape is not consider, although is somewhat delimited by the threshold of
similarity used.

The concept of longest common subsequence was then used by (Das et al. 1997),
defining similarity as follows: two sequences X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn)
are F -similar, if there is a function f ∈ F such that a long subsequence X ′ =
(xi1 , . . . , xiγn) of X can be approximately mapped to a long subsequence Y ′ = (yj1, . . . , yjγn)
of Y using f . They propose f to be a linear transformation.

yjk/(1 + ε) ≤ axik + b ≤ yjk(1 + ε) (3)
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where ε ≤ 1, 0 ≤ γ, 1 ≤ k ≤ γn. The matched subsequences allow for a number
of “holes” in the original sequences, conserving the same relative order in X and Y .
As observed by the authors, the main differences of this approach compared with
(Agrawal et al. 1995) are that the later model does not allow outliers within windows
of a specified length w, and the linear function can vary slightly in the length of a
matched common subsequence. (Das et al. 1997) present some experimental results
using equally sampled time-series of equal length. The distance between two sequences
is obtained by subtracting from the total length of the series the length of the longest
common subsequence. A distance matrix is created which is the input for a clustering
software package. This idea can handle scaling and shifting very efficiently but it does
not consider shape and length of sampling interval. Figure 8 shows two linearly related
time-series (y = −1.8428x + 0.9968) presenting opposite shapes to illustrate how this
concept of similarity fails to identify similar shapes.
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Figure 8: Two linearly related time-series y = −1.8428x + 0.9968 presenting opposite
shapes.

Keogh and Pazzani (1998) introduce a time-series representation consisting of
piecewise linear segments to represent shape and a weight vector that contains the
relative importance of each individual linear segment. The total weight associated
with a sequence of a given length is constant, regardless of how many segments are
used to represent it. Considering two time-series, x and y, the metric measure they
present is given by:

d(x, y) =
n∑

k=1

xwkywk|(x(tk) − y(tk)) − (x(t(k+1)) − y(t(k+1)))| (4)

where xwk and ywk are the weights for the segment k, x(tk) and x(t(k+1)) are the
values of the series at time point tk and t(k+1), respectively, and as for y. This metric
measures how close corresponding segments from x and y are to being parallel.

Todorovski et al. (2002) proposed a new qualitative similarity measure for short
time-series and use it in a hierarchical clustering scheme. The distance distinguishes
the up-down patterns. It correspond to the normalised sum of scores given to up, down
or equal change. It is a simple and intuitive measure suitable for short time-series and
a statistical test of the significance of change is suggested.
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5.2 Literature review on gene expression time-series clustering

A very good paper for gene expression clustering is the one of Heyer et al. (1999). This
presents an analysis procedure for the clustering analysis of the yeast Saccharomyces
cerevisiae data set by Cho et al. (1998). The authors present as a first step their
proposed definition of similarity. Haven studied the disadvantages of the correlation
coefficient and Euclidean distance as a similarity measurement, they proposed what
they called, the jack-knife correlation. For a pair of genes, i and j, let ρij denote
the correlation of the pair i and j; also, let ρ

(l)
ij denote the correlation of the pair i

and j computed with the lth observation deleted. For a data set with t observations,
they define the jackknife correlation Jij as Jij = minρ

(l)
ij · · · ρ(2)

ij , · · · ρ(t)
ij , · · · ρij. Then

they proceed to the grouping of genes quantifying the quality of the clusters by their
diameter, defined as 1 − mini,jεCSij, in which s is the similarity measure being used,
and i, j are genes in cluster C. The focus of the algorithm is to find large clusters that
have a quality guarantee. Transitivity is ensured by finding clusters whose diameter
does not exceed a given threshold value d, so any two genes in a cluster have a jackknife
correlation value that is at least 1 − d. The jacknife correlation is insensitive to the
outlier effect and it captures the shape of an expression pattern, although it does not
consider the sampling interval.

(Lukashin and Fuchs 2001) presents a strategy which organizes the search of the
optimal number of clusters simultaneously with the optimisation of the clustering.
They normalise the profiles such that the expression level varies between 0 and 1. The
similarity metric they use is the Euclidean distance and they use a function to optimise
the clustering by minimising the sum of distances within clusters. To minimise the
function they apply the simulated annealing algorithm (Kirkpatrick et al. 1983). They
present a very well structured strategy for obtaining the optimal number of clusters.
Considering that the optimal number of clusters depends primarily on the variation
between profiles within a given data set, they treat the problem introducing a cutoff
distance D and postulate that the assumption that vectors i and j belong to the same
cluster is incorrect if the distance between two vectors is larger than D.

(Yeung, Fraley, Murua, Raftery and Ruzzo 2001) present a model-based approach.
In general, the model-based approach assumes that the data is generated by a finite
mixture of underlying probability distributions, and in this case multivariate normal
distributions. In the Gaussian mixture model, each component is modelled by the mul-
tivariate normal distribution with parameters µk (mean vector) and Σk (covariance
matrix). Geometric features such as shape volume and orientation of each compo-
nent are determined by the covariance matric Σk. In this approach the problem of
determining the number of clusters and of choosing an appropriate clustering method
become statistical model choice problems (Fraley and Raftery 1998). For a complex
model a small number of clusters may suffice, whereas for simple models, a large num-
ber of clusters to fit the data adequately may be needed. The authors state that
the advantages over CAST are the selection of number of clusters and an appropriate
model. However, in CAST it is not necessary to define the number of clusters. So, it
can not be considered as an advantage.

In (de Hoon et al. 2002) the authors identified that the use of conventional tech-
niques for time-series analysis, such as Fourier analysis or autoregressive or moving-
average modelling are not suitable for the small number of data points present in most
of the gene expression time-series data. They propose to model the time-series with
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linear splines7, and cluster the resulting models using k-means clustering. The authors
remark that cubic splines are used more commonly, however, the linear spline func-
tions are more suitable for this application given the restricted number of time points.
They outline a strategy based on fitting linear spline functions to time-series using the
maximum likelihood method and Akaike’s Information Criterion, (Akaike 1974). The
significance of the gene expression measurements is assessed by applying Student’s
t-test and only the genes considered to be significantly affected by the experiment are
considered. The percentage variance explained for each gene is used as a measure of
the goodness of fit of the linear spline function. The authors are able to determine how
many measurements are needed at each time point (replicates) in order to estimate
the linear spline function reliably. The accuracy of the selection of knots is related
to the number of replicates available. The conventional approach when dealing with
replicates would use the average at each time point while this approach uses their
linear spline estimates.

Gasch and Eisen (2002) proposed the use of fuzzy clustering for extracting biolog-
ical insights for gene-expression data. They utilised a modified fuzzy c-means cluster-
ing to identify overlapping clusters of yeast genes based on published gene-expression
data following the response of yeast cells to environmental changes. The algorithm
was modified in two ways: fist, they performed three successive cycles of fuzzy c-means
clustering, with the second and third rounds of clustering performed on subsets of the
data. The second modification is the initialisation of the algorithm by seeding proto-
type centroids with the eigen vectors identified by PCA of the respective data set. The
authors used the Pearson correlation as a distance measure. The number of clusters
has to be selected, however, it is shown that fuzzy c-means appears to be less sensitive
to over-fitting, because the genes are not forced to belong to only a single cluster. One
of the most significant advantages of fuzzy c-means clustering is that genes can belong
to more than one group, revealing distinct aspects of their function and regulation.
The fuzzy k-means was chosen for its conceptual and algorithmic simplicity. One of
the limitations identified by the authors is the selection of meaningful cutoffs for the
membership degree, which was alleviated by the use of visualization software for the
clustering results.

Ramoni et al. (2002) present a Bayesian method for model-based clustering of gene
expression time-series. The method represents gene expression time-series as autore-
gressive equations and uses an agglomerative procedure to search for the most probable
set of clusters given the available data. The authors consider that two time-series are
similar when they are generated by the same stochastic process. To reduce the effort
of selecting which time-series are merged in the agglomerative process, they use a
heuristic strategy based on a measure of similarity between the time-series (e.g. Eu-
clidean distance, correlation coefficient). The method identifies the number of clusters
and partitions the gene expression time-series in different groups on the basis of the
principled measure of the posterior probability of the clustering model. The method
has two components: a stochastic description of a set of clusters, from which they
derive a probabilistic scoring metric, and a heuristic search procedure. The derivation
of the scoring metric assumes that the processes generating the data can be approx-
imated by autoregressive models. The model assume the time-series are stationary,
which can be observed with a series of plots, nevertheless the authors claimed that in

7A spline function is a continuous function formed by piecewise liner functions, which are connected
to each other at knots.
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their experience, the clustering process seems to be largely unaffected by the presence
of nonstationary time-series. After some tests they found the order one for the au-
toregressive model had the best performance. The order of the autoregressive model
is somewhat restricted by the number of time-points which is very small for gene ex-
pression data. The sampling interval is not considered by this method. A possible
drawback of this method is that the model-free distances are calculated on the raw
data, therefore shifting and scaling factors are not considered. However it does cluster
based in the temporal properties of the data set.

(Filkov et al. 2002) is a very comprehensive paper which discusses several issues
of the analysis for microarray time-series data. The similarity function of time-series
proposed by these authors, is mainly based in the up-down weighted patterns of filtered
series. The filtering removes changes of expression which are less than a predefined
threshold by labelling time points as as local minima, maxima and in-between allowing
a given expression error level. The points which do not pass the error threshold are
eliminated. Local minima and maxima are connected and the normalised expression
changes smaller than a threshold are erased. The remaining points may or may not be
merged. Then, narrow picks (i.e., points that vary significantly in relative expression
from their adjacent points, typically a factor of 2) are eliminated. Finally, the similarity
measure between two time-series x and y is given by scoring each slope ex of x against
each slope ey of y after the filtering, as shown in the following equation.

Sg =
∑
all e

d

(
1 − δ

δmax

)/√
nanb (5)

where e are all the slopes remaining after filtering, d is the comparison of up-down
shape (d = 1 if the signs of the slopes agree, otherwise, d = −1), δmax is the maximum
allowable time difference between the middle of ex and ey (interactions between pairs
of slopes with time difference > δmax are considered biologically meaningless and are
simply ignored), δ is the observed time difference between the middle of ex and ey, nx

and ny are the number of slopes in x and y respectively. It can be seen from equation
(5) that (1 − δ/δmax) is the weight of d, corresponding to the closeness in time of the
measurements. Another contribution of this paper related to the similarity problem is
the comparison of the Hamming distance. Concluding that the correlation coefficient
is inadequate as a similarity measure of two-letter-alphabet sequences.

(Ji et al. 2003) presents a model-based clustering method based on hidden Markov
models which produce clusters of quality comparable to two prevalent clustering algo-
rithms (k-means and SOM). This model-based approach assumes that each gene ex-
pression profile has been generated by a Markov chain with certain probability. They
determined the number of clusters using a validity measure and testing for different
number of clusters. The algorithm is more sensible to the number of clusters that
the conventional algorithms which the authors consider an advantage for using their
validity measure for selecting the number of clusters. The original data set of N time
points is standardised followed by a transformation to a three-letter-alphabet sequence
(0=no change, 1=up or 2=down) aided by a tolerance factor. A simple HMM was
constructed for the transformed sequences with N − 1 states, where each state could
generate a character (0, 1, or 2) according to a distribution representing the regulation
trend at this state. For convenience they added a dummy ”Begin” state and a dummy
”End” state. So, the gene transformed sequence could be generated commencing at
state ”Begin”, choose a transition to another state and generate the character (0, 1,
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or 2) based on the distribution at this state. Then choose a transition to the next
state and generate the next character, and so on until the ”End” state is reached.
The model was then trained with the Baum-Welch method (Rabiner 1989) and the
probability of a sequence given the HMM was calculated with a forward-backward
algorithm (Rabiner 1989). Each cluster is represented by a HMM. The parameters of
the model are initialised randomly and optimised iteratively, such that sequences that
had a higher probability of a particular HMM had a greater influence on re-estimating
the parameters of that HMM. Since the HMMs were initialised randomly assigning
values to the elements of the model, each calculation could potentially generate very
different clusters. Therefore, every two genes that cluster more than 40 times over
the 100 clustering calculations are preserved and those that cluster for fewer than 40
times are excluded. The authors remark that partitioning genes into disjoint set may
be an oversimplification of the biological system. In this approach, genes have varying
probability to belong to the different clusters, allowing connection of genes to more
than one cluster. As the authors remark, the method is not very fast, because it has
to train the parameters of the model with the gene expression data set.

Schleip et al. (2003) used the HMM within a model-based clustering framework.
The authors regard the model-based methods as the only ones which assume the dif-
ferent experiments to be dependent, which can be further questioned. The authors
do not really capture the qualitative behavior of time-series since they have to be fur-
ther separated in order for them to be qualitatively similar. Starting from an initial
collection of HMMs encompassing typical qualitative behavior (up- down- regulated),
an iterative procedure finds cluster models and an assignment of data points to these
models that maximises the joint likelihood of the clustering. In Ji et al. (2003) the
starting value of the parameters of the models are initialised randomly and they are
adjusted iteratively such that sequences that had a higher probability for a particular
HMM had a greater influence on re-estimating the parameters of that HMM. In con-
trast, in this paper the starting point HMMs encompass typical qualitative behavior
and then followed an adapted k-mean algorithm for the partition (the prototypes are
the models, and the parameters of the models are estimated in every iteration). The
authors use a noise cluster, which in this context is a simple model that can generate
all possible expression profiles with less probability and that is excluded from training.
A re-assignment of a profile to the model that maximises its likelihood only occurs
when the likelihood exceeds that of the profile under the noise model. In order to select
the number of clusters they merge small clusters and separate big clusters. The clus-
tering method produce clusters that may contain many different forms of prototype
appearances and further analysis within one cluster is needed. In this paper special
emphasis is made to partially supervised learning.

In (Luan and Li 2003) the authors propose a mixed-effects model using cubic
splines. In this modelling framework, the observed time-series are treated as samples
taken from underlying continuous smooth process. Treating the clustering problem
as a mixture model problem, they assume that the observed gene time-series come
from a mixture of C probability distributions with the cth probability defined by the
mixed-effects model with cubic splines proposed. After fitting the mixture model in
the framework of the mixed-effects model using an EM algorithm, the authors obtained
the smooth mean gene expression curve for each cluster. Then, for each gene, they
obtained the best linear unbiased smooth estimate of the gene expression trajectory
over time, combining data from that gene and other genes in the same cluster. The
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number and locations of the knots for the B-splines corresponding to the mean function
and the random effects have to be specified. Cubic B-splines with four equally space
knots are used for both mean and random effects, assuming the same spline basis for
all the clusters. The number of clusters is determined via BIC scores. They compare
their approach with the AR model presented in (Ramoni et al. 2002) concluding that
a simple low order AR model is not appropriate for modelling possible non-linear
relationship between the gene expression levels at different time points. Also, that
the simple AR model as used in (Ramoni et al. 2002) cannot be used for modelling
time-trend, which can sometimes be precisely what differentiates among different gene
clusters.

6 Future work

Microarray data can be analysed using a wide variety of clustering algorithms with
which different information can be obtained. There is not a omnipotent algorithm
which can extract every single biological information hidden in the data. Some algo-
rithms will identify different kinds of relations among genes useful for different analysis
of the data. For example, for some experiments the objective is to identify genes which
picked at a particular time (Cho et al. 1998), in others it is to find genes following
similar cycles of expression (Spellman et al. 1998), in others the pattern of gene in-
duction under particular biological conditions (Chu et al. 1998), in others genes that
are switch on and off concordantly (Heyer et al. 1999).

In the next two months we will develop a clustering algorithms which meets the
required characteristics specified in earlier sections which are not completely followed
by any of the existing algorithms proposed for gene expression time-series clustering.
The objective of the algorithm will be the identification of genes which truly behave
similar across time, meaning that we will not concentrate in the complete partition of
the data set, but in the identification of very strongly similar groups. The partition
of the whole set forces genes to be grouped together even when they have a small
probability or a small membership degree to a given cluster, usually corrupting the
model or the prototype, and therefore, the clusters become less suitable for further
analysis. Clusters formed using this approach might be good starting points for further
analysis of expression data since they have a high quality and the the selection of a
number of clusters is not required since it is implicit in the data set.

Several analysis had follow this approach, for example the CAST algorithm. As
mention in an earlier section, this technique groups genes based in a measure of their
“affinity” to the clusters. Not all the genes meet the affinity threshold, and the re-
sulting clusters are not affected by these genes. Another example is the algorithm
presented in (Heyer et al. 1999), where the focus of the algorithm is to find large clus-
ters that have a quality guarantee by finding clusters whose diameter does not exceed
a given threshold value d. So any two genes in a cluster have a similarity value that is
at least 1− d. As in the CAST algorithm, the number of clusters is inherent from the
data set. Other similar approach is the adaptive quality-based clustering algorithm
from De Smet et al. (2002). This method is an iterative two-step algorithm, the first
step is to find a sphere in the data space where the density of expression profiles is
locally maximal, based on a preliminary estimate of the radius of the clusters. In
the second step, an optimal radius of the cluster is derived so that only significantly
co-expressed genes are included in the cluster. CAST and the adaptive quality-based
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clustering are two of the leading algorithms for clustering of gene expression, however,
they are not designed to meet the specific requirements of temporal data.

Table 3: Main requirements for gene expression time-series clustering and proposed
solution.

Requirement Solution
Number of clusters Inherent from the data set

Varying membership Fuzzy clustering
Outliers Previous identification
Noise Noise clustering

Table 3 presents the main requirements for gene expression time-series cluster-
ing and the proposed solutions. As commented in the previous paragraph, given the
particular objectives of the proposed algorithm, the number of clusters is inherent in
the data set. Following to the next point of the table, we will use a fuzzy cluster-
ing approach which will allow varying membership degrees. Gasch and Eisen (2002)
successfully proposed the use of fuzzy clustering for extracting biological insights for
gene-expression data, showing the biological relevance of varying membership degrees.
Next, the outliers will be identified before hand to avoid their effect in the clustering
procedure. Then, in order to appropriately deal with noise and not so obvious outliers,
a noise cluster will be implemented.

Identification of outliers. As seen in a previous section, in (Heyer et al. 1999)
the proposed similarity measure reduces the effect of outlier values, however, with this
method false outliers could be identified since it is just based in the comparison of
two genes. Outliers often have a relatively large distance to all of the data groups and
are equally shared among the groups. This can be used to identify possible outliers.
Figure 9 shows the Euclidean distance between pairs of series with one time point
omitted at a time. It can be seen that the pairs which include the series number one,
have a similar behavior. They have smaller distance when time point two is omitted,
identifying successfully the outlier value of the series number one in the second time
point. For large data sets this plot is not informative, but the main idea can still be
used. This method identifies an outlier value in context with the similarity measure
being used. When the Euclidean distance is used on un-standardised data, outliers
will be those values with a high absolute value. There are other methods to identify
outliers based in the statistical properties of the data set (Benett and Lewis 1984),
which will be properly reviewed in the following months.

The similarity measure. We will implement a hand tailored similarity measure
based in the similarity requirements defined in an earlier section. In (Möller-Levet,
Klawonn, Cho and Wolkenhauer 2003) a new similarity measure was proposed, but its
robustness was limited by the optimisation problems of the fuzzy objective function.
We will study the possibility of optimising the objective function using evolutionary
strategies, allowing the implementation of a more sophisticated similarity function.

Artificial data set. In order to find out whether an algorithm can meet the
specified objectives, we have to define test data with which the performance of the
technique can be evaluated for characteristic cases.

Validation. The algorithm will be validated with real biological data set as well
with quantitative measures of quality.
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Figure 9: Euclidean distance between pairs of series with one time point omitted at a
time.

7 Conclusions

An extensive literature review of similarity of time-series and clustering of gene ex-
pression time-series was perform, which help to the elaboration of an outline of basic
requirements for the clustering of the aforementioned series. In the following months
a new approach will be presented which will use the knowledge acquired in the devel-
opment of the previous methods and will meet the specific requirements identified in
this report.

Appendix

Distance functions

A scalar function, d(x,y), of the ordered pair of vectors x, y, is a distance function if
it satisfies the following axioms of a distance measure on R

n:

d(x, y) ≥ 0 and d(x, y) = 0 if x = y, (6)
d(x, y) = d(y, x),
d(x, y) ≤ d(x, z) + d(z, y) for any z.

The most common distance function is the Euclidean distance, which is defined
as the distance measured along a straight line from one point to another in the data
space. It is the square root of the sum of the squared differences between all the
dimensions of two elements:

dE(x, y) =

√√√√ n∑
i=1

(xi − yi)2. (7)

Figure 10 shows three expression profiles, A, B and C, where dE(A,B) = dE(C,B) =
2. However, it can be seen that B is more similar to C than to A. In fact, C is just a
linear transformation of B, C = B − 0.7559, while A is a completely different pattern.
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Figure 10: Euclidean distance: three expression profiles, A, B and C, where
dE(A,B) = dE(C,B) = 2.

Although it is frequently used, it is very weak for time-series. It is affected by scaling
and shifting. Also, shape, order in the measurements and length of sampling interval
are not considered since the distance is formed by sums of intensity differences at each
time point.

Another common distance function is the City block, which is defined as the recti-
linear route measured parallel to the axes, it corresponds to the sum of the distances
on each dimension.

dCB(x, y) =
n∑

i=1

|xi − yi|. (8)

Both Euclidean distance and City block distance are examples of the more general
Minkowski measure, where Euclidean corresponds to m=2 and City block to m=1,
[Everitt, 97].

dMm(x, y) = (
n∑

i=1

(xi − yi)m)1/m. (9)

A valuable feature of the Euclidean distance, is that it is preserved under orthonormal
transforms. Other distance functions, where m �= 2, to not have this property (Agrawal
et al. 1993).

Correlation: a statistical relationship

The Pearson product-moment correlation coefficient, ρ, is a statistical term which
measures the linear relationship between two variables. The statistical significance
of a correlation coefficient depends on the sample size, defined as the number of in-
dependent observations. If time-series are autocorrelated, the sample size must be
adjusted downward to account for dependence of successive observations when eval-
uating significance. The statistical significance of a calculated ρ can be computed if
populations from which samples were drawn are normally distributed; otherwise, when
the assumption of normality is not satisfied, the procedure can be justified for large
samples. Most of the gene expression time-series come from an unknown distribution
(Kruglyak and Tang 2001) and are usually very short. Therefore, in this case, a large
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correlation coefficient does not necessarily indicate two similarly shaped profiles, nor
does a small correlation coefficient necessarily indicate differently shaped profiles. As
in Peddada et al. (2003), Figure 11 presents an example to illustrate this point.

ρ =
cov(x, y)√

var(x) var(y)
=

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1
(xi − x̄)2

n∑
i=1

(yi − ȳ)2
(10)

Considering the time-series as vectors, the correlation coefficient measures the cosine
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Figure 11: Correlation coefficient and profile shape. (a) Similar shaped profiles with
ρ = 0.56, (b) Different shaped profiles with ρ = 0.82.

of the angle between the expression vectors minus their means. Therefore, vectors
with a correlation coefficient of zero are said to be orthogonal (uncorrelated), with a
correlation coefficient of one are parallel in the same direction (positively correlated),
and with a correlation coefficient of -1 are parallel but in opposite direction (negatively
correlated). All vectors parallel on the same direction have similar expression profiles
in the time domain. These profiles have the same shape and could be scaled as
illustrated in figure 12. Shifted vectors are un-shifted by the subtraction of the mean,
as can be seen from equation (10)

The correlation-based rest on the assumption that the set of observations for each
gene are independent and identically distributed. The correlation or Euclidean dis-
tance are invariant with respect to the order of observations: if the temporal order of
a pair of series is permuted their correlation or Euclidean distance will no change. Ad-
ditionally, the correlation coefficient is very problematic in cases when we are dealing
with very short time-series, measured at ten or less time points.

Expectation-Maximisation algorithm

In the EM algorithm, the Expectation (E) steps and Maximisation (M) steps alter-
nate. In the E-steps, the probability of each observation belonging to each cluster
is estimated conditionally on the current parameter estimates. In the M-step, the
model parameters are estimated given the current group membership probabilities.
When the EM algorithm converges, each observation is assigned to the group with the
maximum conditional probability.
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(a) Vectors in the data space
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(b) Equivalent time-series in the time domain

Figure 12: Data space and equivalent time domain. (a) Three vectors in the data space
where Gene1 and Gene3 are parallel, thus, ρ = 1 (Gene3 is a linear transformation
of Gene1, Gene3=2(Gene1)). (b) The corresponding time-series of vectors in (a), the
three profiles show an increase of the expression level at each time point, although the
rate of Gene1 and Gene3 is constant (although different), while the rate of G2 is not
constant.
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