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Abstract. This paper proposes a new algorithm in the fuzzy-c-means
family, which is designed to cluster time-series and is particularly suited
for short time-series and those with unevenly spaced sampling points.
Short time-series, which do not allow a conventional statistical model,
and unevenly sampled time-series appear in many practical situations.
The algorithm developed here is motivated by common experiments in
molecular biology. Conventional clustering algorithms based on the Eu-
clidean distance or the Pearson correlation coefficient are not able to
include the temporal information in the distance metric. The temporal
order of the data and the varying length of sampling intervals are im-
portant and should be considered in clustering time-series. The proposed
short time-series (STS) distance is able to measure similarity of shapes
which are formed by the relative change of amplitude and the corre-
sponding temporal information. We develop a fuzzy time-series (FSTS)
clustering algorithm by incorporating the STS distance into the stan-
dard fuzzy clustering scheme. An example is provided to demonstrate
the performance of the proposed algorithm.

1 Introduction

Microarrays revolutionize the traditional way of one gene per experiment in
molecular biology [1], [2]. With microarray experiments it is possible to measure
simultaneously the activity levels for thousands of genes. The appropriate clus-
tering of gene expression data can lead to the classification of diseases, identifi-
cation of functionally related genes, and network descriptions of gene regulation,
among others [3], [4].



Time course measurements are becoming a common type of experiment in the
use of microrarrays, [5], [6], [7], [8], [9]. If a process is subject to variations over
time, the conventional measures used for describing similarity (e.g. Euclidean
distance) will not provide useful information about the similarity of time-series
in terms of the cognitive perception of a human [10]. An appropriate clustering
algorithm for short time-series should be able to identify similar shapes, which
are formed by the relative change of expression as well as the temporal informa-
tion, regardless of absolute values. The conventional clustering algorithms based
on the Euclidean distance or the Pearson correlation coefficient, such as hard
k-means (KM) or hierarchical clustering (HC) are not able to include temporal
information in the distance measurement. Fig. 1 shows three time-series with
different shapes to illustrate this point. An appropriate distance for the three
expression profiles would identify g2 as more similar to g3 than to g1, since the
deviation of shape across time of g3 from the shape of g2 is less than that of g1.
That is, the deviation of expression level of g1 from g2 in the transition of the
first to the second time point is one unit per one unit of time, while the devia-
tion of expression level of g3 from g2 in the transition of the third to the fourth
time point is one unit per seven units of time. The Euclidean distance and the
Pearson correlation coefficient do not take into account the temporal order and
the length of sampling intervals; for these metrics both g1 and g3 are equally
similar to g2. In this paper we introduce a new clustering algorithm which is
able to use the temporal information of uneven sampling intervals in time-series
data to evaluate the similarity of the shape in the time domain.
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Fig. 1. Three unevenly sampled time-series with different shapes

This paper is organized as follows: Section 2 defines the objective and basic
concepts of the short time-series (STS) distance based on the requirements of



short time-series clustering. In Section 3, the fuzzy short time-series (FSTS) al-
gorithm is introduced as a modification of the standard fuzzy c-means algorithm
(FCM). Section 4 presents an artificial data set to illustrate and compare the
performance of the proposed algorithm with FCM, KM and single linkage HC.
Finally, conclusions are made in Section 5 summarizing the presented research.

2 Short Time-Series Distance

This section presents a measure of similarity for microarray time-series data.
The performance of the distance is illustrated by means of simple tests for which
temporal information is a key aspect.

The objective is to define a distance which is able to capture differences in
the shapes, defined by the relative change of expression and the corresponding
temporal information, regardless of the difference in absolute values. We ap-
proach the problem by considering the time-series as piecewise linear functions
and measuring the difference of slopes between them. Considering a gene ex-
pression profile x = [x0, x1, . . . , xnt

], where nt is the number of time points, the
linear function x(t) between two successive time points tk and t(k+1) can be
defined as x(t) = mkt + bk, where tk ≤ t ≤ t(k+1), and

mk =
x(k+1) − xk

t(k+1) − tk
(1)

bk =
t(k+1)xk − tkx(k+1)

t(k+1) − tk
. (2)

The STS distance we propose corresponds to the square root of the sum of the
squared differences of the slopes obtained by considering time-series as linear
functions between measurements. The STS distance between two time-series x
and v is defined as:

d2
STS(x, v) =

nt−1∑
k=0

(
v(k+1) − vk

t(k+1) − tk
− x(k+1) − xk

t(k+1) − tk

)2

. (3)

To evaluate the performance of this distance in comparison with the Euclidean
distance and the Pearson correlation coefficient, two tests are performed. The
objective of the first test is to evaluate the ability to incorporate temporal in-
formation into the comparison of shapes. The objective of the second test is to
evaluate the ability to compare shapes regardless of the absolute values.

For the first test, let us consider the time-series shown in Fig. 1. Table 1
illustrates the corresponding STS distance, Euclidean distance, and the Pearson
correlation coefficient between g2 and g1, and g2 and g3, respectively. The results
show that the STS distance is the unique distance metric which reflects the
temporal information in the comparison of shapes.

For the second test, let us consider a linear transformation of the absolute
values of the time-series shown in Fig. 1. These modified series are shown in



Table 1. STS distance, Euclidean distance, and Pearson correlation coefficient between
g2 and g1, and g2 and g3 in Fig. 1

Euclidean distance STS distance Pearson correlation coefficient

(g2, g1) 2.29 0.500 0.904

(g2, g3) 2.29 0.071 0.904

Fig. 2(a). Since the STS and the Euclidean distance are both sensitive to scaling,
a z-score standardization of the series is required for them to neglect absolute
values [11]. The z-score of the ith time point of a gene x is defined in (4), where
x is the mean and sx the standard deviation of all the time points x1, . . . , xn in
vector x

zi =
(xi − x)

sx
. (4)

The time-series after standardization are shown in Fig. 2(b).

1 2 3 10
0

2

4

6

8

10

E
xp

re
ss

io
n 

le
ve

l

Time

g’
1

g’
2

g’
3

(a) Before standardization

1 2 3 10
−1.5

−1

−0.5

0

0.5

1

1.5

Time 

E
xp

re
ss

io
n 

le
ve

l

g’
1

g’
2

g’
3

(b) After standardization

Fig. 2. Three unevenly sampled time-series data with different shapes, which corre-
spond to linear transformations of the time-series in Fig. 1

Table 2 summarizes the STS distance, the Euclidean distance, and the Pear-
son correlation coefficient between g′2 and g′1, and g′2 and g′3. The results show
that the STS distance is the unique distance measure which can properly capture
temporal information, regardless of the absolute values.

3 Fuzzy Short Time-Series Clustering Algorithm

This section introduces the FSTS clustering algorithm as a new member of the
fuzzy c-means (FCM) family [12], [13], [14]. We present the minimization of the
standard objective function and the resulting cluster prototypes.



Table 2. STS distance, the Euclidean distance, and the Pearson correlation coefficient
between g′

2 and g′
1, and g′

2 and g′
3 in Fig. 2(b)

Euclidean distance STS distance Pearson correlation coefficient

(g2, g1) 0.756 1.103 0.904

(g2, g3) 0.756 0.386 0.904

There are a wide variety of clustering algorithms available from diverse dis-
ciplines such as pattern recognition, text mining, speech recognition and social
sciences amongst others [11], [15]. The algorithms are distinguished by the way
in which they measure distances between objects and the way they group the
objects based upon the measured distances. In the previous section we have al-
ready established the way in which we desire the “distance” between objects
to be measured; hence, in this section, we focus on the way of grouping the
objects based upon the measured distance. For this purpose we select a fuzzy
clustering scheme, since fuzzy sets have a more realistic approach to address the
concept of similarity than classical sets [16], [14]. A classical set has a crisp or
hard boundary where the constituting elements have only two possible values
of membership, they either belong or not. In contrast, a fuzzy set is a set with
fuzzy boundaries where each element is given a degree of membership to each
set.
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Fig. 3. Diagram of the iteration procedure for the FCM clustering algorithms. Consid-
ering the partition of a set X = [x1, x2, . . . , xng ], into 2 ≤ nc < ng clusters, the fuzzy
clustering partition is represented by a matrix U = [uik], whose elements are the values
of the membership degree of the object xk to the cluster i, ui(xk) = uik

Fuzzy clustering is a partitioning-optimization technique which allows objects
to belong to several clusters simultaneously with different degrees of membership
to each cluster [12], [13]. The objective function that measures the desirability
of partitions is described in (5), where nc is the number of clusters, ng is the
number of vectors to cluster, uij is the value of the membership degree of the
vector xj to the cluster i, and d2(xj , vi) is the squared distance between the
vector xj and the prototype vi and w is a parameter (usually set between 1.25



and 2), which determines the degree of overlap of fuzzy clusters.

J(x, v, u) =
nc∑
i=1

ng∑
j=1

uw
ij d2(xj , vi) . (5)

Fig. 3 illustrates the iteration steps of the FCM algorithm, the representative
of the fuzzy clustering algorithms. In order to use the STS distance following
the conventional fuzzy clustering scheme, we need to obtain the value of the
prototype vk that minimizes (5), when (3) is used as the distance. Substituting
(3) into (5) we obtain

J(x, v, u) =
nc∑
i=1

ng∑
j=1

uw
ij

nt−1∑
k=0

(
vi(k+1) − vik

t(k+1) − tk
− xj(k+1) − xjk

t(k+1) − tk

)2

. (6)

The partial derivative of (6) with respect to vik is:

∂J(x, v, u)

∂vik
=

ng∑
j=1

uw
ij

∂

∂vik

((
v(k+1) − vk

t(k+1) − tk
− x(k+1) − xk

t(k+1) − tk

)2

+

(
vk − v(k−1)

tk − t(k−1)

− xk − x(k−1)

tk − t(k−1)

)2
)

=

ng∑
j=1

uw
ij

[
2

(
vik − vi(k+1) − xjk + xj(k+1)

)
(
tk − t(k+1)

)2

]
−

[
2

(
vi(k−1) − vik − xj(k−1) + xjk

)
(
tk − t(k−1)

)2

]
=

g∑
j=1

2uw
ij

(
akvi(k−1) + bkvik + ckvi(k+1) + dkxj(k−1) + ekxjk + fkxj(k+1)

)
(
tk − t(k+1)

)2 (
tk − t(k−1)

)2 (7)

where

ak = −(t(k+1) − tk)2 bk = −(ak + ck) ck = −(tk − t(k−1))
2

dk = (t(k+1) − tk)2 ek = −(dk + fk) fk = (tk − t(k−1))
2 .

Setting (7) equal to zero and solving for vik we have

akvi(k−1) + bkvik + ckvi(k+1) = −

ng∑
j=1

uw
ij

(
dkxj(k−1) + ekxjk + fkxj(k+1)

)
ng∑
j=1

uw
ij

akvi(k−1) + bkvik + ckvi(k+1) = mik (8)

where

mik = −

ng∑
j=1

uw
ij

(
dkxj(k−1) + ekxjk + fkxj(k+1)

)
ng∑
j=1

uw
ij

.

Equation (8) yields an undetermined system of equations. We know the rela-
tions of the prototype values among the time points, but not the absolute value



at each time point. That is, we know the shape but not the absolute level. If we
add two fixed time points at the beginning of the series with a value of 0, and
solve the system for any nt, the prototypes can be calculated as

v(i, n) =

n−3∑
r=2

mir

r−1∏
q=1

cq

[
n−1∏

q=r+1

aq +

n−1∏
q=r+1

cq +
n∑

p=r+3

n−1∏
j=p−1

cj

p−2∏
j=r+1

aj

]
/

n−1∏
q=2

cq +

mi(n−1)

n−2∏
q=1

cq/

n−1∏
q=2

cq + mi(n−2)

n−3∏
q=1

cq(a(n−1) + c(n−1))/

n−1∏
q=2

cq (9)

where 1 ≤ i ≤ nc, 3 ≤ n ≤ nt (since v(i, 1) = 0 and v(i, 2) = 0), mi1 = 0 and
c1 = 1 .

The same scheme of the iterative process as for the FCM, described in Fig. 3
is followed, but the distance and the prototypes are calculated using (3) and
(9), respectively. The same three user-defined parameters found in the FCM
algorithm; the number of clusters nc, the threshold of membership to form the
clusters α, and the weighting exponent w are also found in the proposed FSTS
algorithm. Fig. 4 illustrates the pseudocode of the proposed FSTS clustering
algorithm.

4 Illustrative Example

This section presents a simple artificial data set to illustrate and compare the
performance of the proposed FSTS clustering algorithm in terms of the cognitive
perception of a human. Four groups of five vectors are created where each group
has the same parameters of linear transformation between time points, as shown
in Table 3. That is, for the group i, 1 ≤ i ≤ 4, xj(k+1) = mikxjk + bik with
0 ≤ k < (nt − 1) and 1 ≤ j ≤ 5. The values of m and b were obtained randomly
for each group.

Table 3. Artificial profile x = [x0, x1, . . . , xnt ]. A group of vectors with a similar shape
can be obtained by changing the initial value

Time points Value

x0 initial value

x1 m1x0 + b1

x2 m2x1 + b2

...
...

xnt m(nt−1)x(nt−1) + b(nt−1)

The resulting artificial data set, shown in Fig. 5(a), was clustered using FCM,
FSTS, KM and HC algorithms, respectively. All the algorithms were able to



STEP 1: Initialization
ng : number of genes
nt : number of time points
X : gene expression matrix (GEM) [ng × nt]
nc : number of clusters
w : fuzzy weighting factor
a : threshold for membership
ε : termination tolerance

STEP 2: Initialization of the partition matrix
Initialize the partition matrix randomly, U (0) [nc × ng].

STEP 3: Repeat for l = 1, 2, ...
3.1 Compute the cluster prototypes:

v(i, 1)(l) = 0,
v(i, 2)(l) = 0,
For v(i, n)(l) use Equation (9) 1 ≤ i ≤ nc, 3 ≤ n ≤ nt.

3.2 Compute the distances:

d2
STS(xj , vi) =

nt−1∑
k=0

(
v
(l)

i(k+1) − v
(l)
ik

t(k+1) − tk
− xj(k+1) − xjk

t(k+1) − tk

)2

1 ≤ i ≤ nc, 1 ≤ j ≤ ng.

3.3 Update the partition matrix:
if dSTSij > 0 for 1 ≤ i ≤ nc, 1 ≤ j ≤ ng,

u
(l)
ij =

1
nc∑

q=1

(dSTSij/dSTSqj)1/(w−1)

,

otherwise u
(l)
ij = 0 if dSTSij > 0, and u

(l)
ij ∈ [0, 1] with

nc∑
i=1

u
(l)
ij = 1.

Until |U (l) − U (l−1)| < ε.

Fig. 4. Pseudo code of the FSTS clustering algorithm.
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Fig. 5. Artificial data set and clustering results for FCM, FSTS, HK and HC algorithms

identify the four clusters shown in Fig. 5(b) successfully. The clustering param-
eters for both fuzzy algorithms which yield successful results were w = 1.6 and
α = 0.4.

The second test used a subset of the artificial data set shown in Fig. 5(a).
The original data set was “resampled” selecting 10 time points randomly out of
the 20 original time points. The resulting data set is shown in Fig. 6(a). In this
case, only the FSTS algorithm is able to identify the four clusters successfully,
while FCM and HC identify two clusters and the other two mixed, as shown in
Fig. 7, and KM does not produce consistent results. The clustering parameters
for the FSTS algorithm were w = 1.2 and α = 0.6. Different parameters were
tested for the FCM, 1.2 < w < 2.5 and 0.3 < α < 0.6 (54 combinations) giving
unsuccessful results. Finally the algorithms were evaluated using the three time-
series data presented in Section 2. The objective is to cluster g1, g2 and g3 in two
clusters. The FSTS algorithm is the unique method capable of grouping g2 with
g3 separated from g1 consistently. FCM, HK, and HC do not have consistent
results since they find g2 as similar to g1 as to g3 as described in Section 2.

5 Conclusions

The FSTS clustering algorithm was presented as a new approach to cluster
short time-series. The algorithm is particularly well suited for varying intervals
between time points, a situation that occurs in many practical situations, in par-
ticular in biology. The FSTS algorithm is able to identify similar shapes formed
by the relative change and the temporal information, regardless of the absolute
levels. Conventional clustering algorithms, including FCM, KM, or HC, are not
able to properly include the temporal information in the distance metric. We
tackled the problem by considering the time-series as piecewise linear functions
and measuring the difference of slopes between the functions. We illustrated the
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Fig. 6. Unevenly resampled artificial data set and the constituting clusters

(a) FCM clustering results (b) HC clustering results

Fig. 7. Clustering results for FCM and HC algorithms



algorithm with an artificial data set. The FSTS algorithm showed better per-
formance than the conventional algorithms in clustering unevenly sampled short
time-series data.
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