

Format Overflow? Handling of Modeling Projects in Systems Biology

Arne T. Bittig & Henning Schmidt

University of Rostock, Systems Biology and Bioinformatics Group

Starting Point: SBML

 Milestone in the evolution of systems biology

Simulation

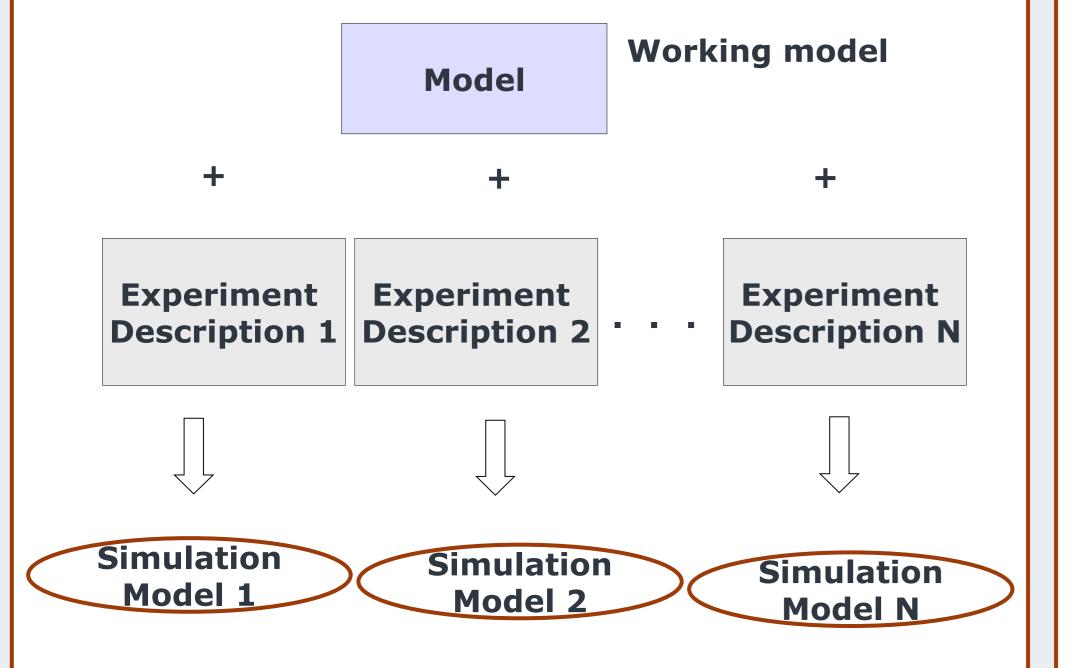
Analysis

Sharing

1 Level up: Modeling Project

"Working Model" **Experiment Descriptions Insilico Experiments**

Implementation


- Proof-of-concept impl. in SBtoolbox2
- -Im/exports SedML project description (modified) and SBML models instead of proprietary (mainly text-based) formats

Ignores plot generation info (so far)

Storage in Databases

- 1 SBML file: 1 single model
- Actual Systems Biology:
 - Different experiments on "same" system (knockout, overexpression, change of concentration 1, knockout & c.o.c.,...)
- How to code the experiments?
 - -1 experiment = 1 model? (large number of models to keep track of, higher risk of modeling errors, hard to handle modeling projects, model overflow)
 - Flags and switches for all experiments (huge model, also quite impractical)
 - Seperate experiment descriptions

Measurement Data "Modeling Project" (insilico representation)

- Combination model + data relevant for many (most?) simulation tools
 - Current state:
 - Messy and overly complicated combination of model + experiments (if present)
 - Proprietary modeling project representations (PottersWheel, SBtoolbox2)
 - Interoperable project format useful
- Possible starting point: MIASE [1]

(Minimum Information About a Simulation Experiment)

- Guidelines for descriptions of simulation runs (perturbed & unperturbed models)
- Focus: reproduction of exact simulation procedures and resulting outputs (plots)

- Each model has an associated
 - -list of changes (=exp. settings) w.r.t. original model (=SBML file) (SedML)
 - list of measurements = reference(s) to file(s) with experimental data obtained using the experimental settings (new)
- Measurement data: xls or csv files

	•		0	D	_	_	0	
	A	В	C	D	E	F	G	Н
1	Name	Measurement	Example 2					
2	Notes	Just some notes in a single line						
3	Componentnotes					Component B	Component C	
4	Components	time	Α	A+	A-	В	С	
5	Values	0	0,0172	0,01892	0,01548	0,0116	0,0009	
6		49,0552	0,0171892	0,0189081	0,0154703	0,0115591	0,000865671	
7		98,9524	0,0170854	0,0187939	0,0153769	0,0114354	0,000858473	
8		128,814	0,0173518	0,019087	0,0156166	0,0118688	0,000825422	
9		151,362	0,0169693	0,0186663	0,0152724	0,0109388	0,00104578	
10		160,548	0,0181534	0,0199687	0,0163381	0,0125635	0,00104271	
11		173,206	0,0170857	0,0187943	0,0153772	0,0119458	0,000671465	
12		186,74	0,0146325	0,0160957	0,0131692	0,00809325	0,0010277	
13		189,85	0,0150251	0,0165276	0,0135226	0,00806028	0,00138207	
14		190,64	0,0151959	0,0167155	0,0136763	0,00811683	0,00149481	
15		199,735	0,0173497	0,0190847	0,0156147	0,00929493	0,00295474	
16		207,51	0,0186011	0,0204612	0,016741		0,00337649	
17		211,924	0,0190048	0,0209053	0,0171043		0,00270628	
18		217,317	0,0190811	0,0209892	0,017173		0,00120062	
19		226,538	0,0161404	0,0177545	0,0145264	0,0111411	0,000550005	
20		235,681	0,0135297	0,0148827	0,0121768	0,00717188	0,000783385	
21		241,166	0,0139325	0,0153258	0,0125393	0,00671213	0,00146087	
22		241,697	0,0140435	0,0154479	0,0126392	0,00672502	0,0015506	
23		242,971	0,0143499	0,0157849	0,0129149	0,00679063	0,00178496	
24		255,948	0,017554	0,0193094	0,0157986	0,00790143	0,00460672	
05		007.011	0.0404000	0.0040000	0.0170115	0.000.0000	0.0050.700	

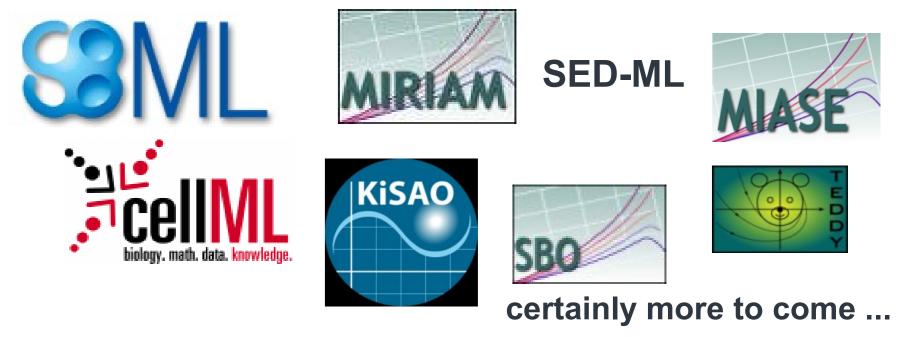
Scope question

- One project = one model + some exp.s
- Or: one project = a few models + several

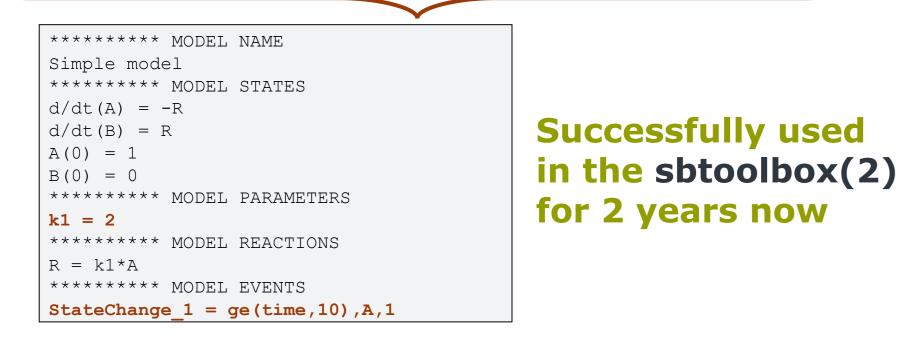
- Wet-lab experimental settings analogue
- Automatic merging with model
- Once model finished: documentation of models validity

<pre>******** MODEL NAME Simple model ************************************</pre>	<pre>******** EXPERIMENT NAME Simple Experiment for simple model ********* EXPERIMENT INITIAL PARAMETER AND STATE SETTINGS k1 = 2 ***********************************</pre>
<pre>******** MODEL PARAMETERS k1 = 0.5 ********* MODEL REACTIONS R = k1*A</pre>	******** EXPERIMENT STATE CHANGES time=10, A=1

- SedOM/SedML: Simulation experiment ____ descript. object model/markup language
 - UML/xml-based representations of MIASE
- SedML as modeling project format
 - SedML independent of model description (only references to model in SBML, CellML, or other format)
 - Experiment descriptions already there (sort of: model perturbations as XPath expr. refering to SBML [2] tree of model)
 - Measurement data still missing


Measurement Data Format

- Standard not in sight
 - Mostly two-dimensional data (components x time points), xml not too suitable
- Needed, primarily:
 - Representation of time series data


experiments?

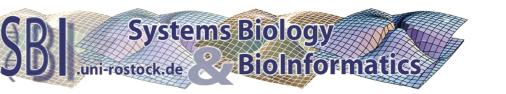
Summary

- Bioinformaticians, database experts:
 - Focus on model storage & annotation, reproduction of simulation results, etc.
 - Much effort put in already:

- Modelers, systems biologists:
 - Universal measurement data format & experiment descriptions needed
 - Not much progress so far
- Inter-disciplinary dialogue possible
 - as indicated by the proof-of-concept implementation in SBtoolbox2

- Representation of steady-state data
- Variance, error bounds
- For additional convenience: storage format for simulation data
- Objectives need to be reconciled
 - Who needs the plot reproduction features of SedML without included experimental data?
 - Which features of modeling projects in other software tools are still missing?

References


[1] D Köhn, N le Novere. SED-ML – An XML Format for the Implementation of the MIASE Guidelines, to appear in LNCS CMSB08

[2] M Hucka et al. The system biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, 2003, 19(4), 524-531 www.sbml.org

Acknowledgements

EC FP6 – AMPKIN **BMBF – Forsys Partner**

Contact

Henning Schmidt FORSYS Research Group hIMOsYS Systems Biology and Bioinformatics University of Rostock Albert Einstein Str. 21 18059 Rostock, Germany henning.schmidt@uni-rostock.de