Modelling Snf1 regulation in *Saccharomyces cerevisiae*

Simone Frey, Henning Schmidt, Katja Rateitschak, Olaf Wolkenhauer
Systems Biology and Bioinformatics Group, University of Rostock, Germany

Gemma Beltran, Raul Garcia-Salcedo, Karin Elbing, Daniel Bosch, Tian Ye, Stefan Hohmann
Department of Cell and Molecular Biology, Göteborg University, Sweden

Background

The AMP-activated-protein-kinase (AMPK) signaling pathway plays a central role in monitoring the cellular energy status and controlling energy production and consumption. The yeast AMPK orthologue Snf1 is best known for its role in glucose repression/derepression. One ultimate goal of the study of these pathways is to generate a computational model able to support drug development, targeted at advancing diseases such as obesity and type II diabetes. In this work, we focus on a quantitative dynamic model describing the Snf1 activation/deactivation pathway.

Model

Snf1 plays a main role in transcriptional activation and repression of gene expression:

- Glucose depletion → Snf1 activation by phosphorylation through its upstream kinases Sak1, Tos3, Elm1. Activation of Snf1 → Inactivation of the repressor Mig1 via phosphorylation → Expression of genes involved in alternative carbon utilization.
- Glucose abundance → Snf1 deactivation by dephosphorylation through its upstream phosphatase Req1/Glc7. Deactivation of Snf1 → Mig1 remains active → Repression of genes involved in the utilization of alternative carbon sources.

Key Questions

- Does regulation of Snf1 occur via its phosphatase or its kinase or both?
- How are the kinase and phosphatase of Snf1 regulated?
- Which role do the hexokinases play?
- Can the huge variety of hexosetransporters (Hxts) be summarized in one pool?

Hypotheses

1. **Regulation by complex formation:**
 - Snf1 binds to Mig1 and regulates its activity.
2. **Regulation directly from Hxts:**
 - Hxts provide glucose and activate Snf1.
3. **Regulation directly from Hxts with respect to the X-factor:**
 - X-factor (e.g., stress) affects the activity of Snf1.

Results

- Experimental data for extracellular glucose, OD, and Snf1P provided the basis for modelling.
- The model correctly reproduces the experimentally measured Snf1 activation and deactivation responses.
- To reproduce *in silico* the glucose correctly, we included synthesis and degradation reactions for the Hxts.

Acknowledgments

S.F., O.W. and S.H. are supported by EU FP6 project “Systems biology of the AMP-activated protein kinase” (AMPKIN; grant LSH-CT-2005-518181).

Contact

Simone Frey
Systems Biology and Bioinformatics
University of Rostock
Albert Einstein Str. 21
18059 Rostock, Germany
simone.frey@informatik.uni-rostock.de

Karin Elbing
Department of Cell and Molecular Biology
Göteborg University
Box 462
40530 Göteborg, Sweden
karin.elbing@vmb.gu.se