Data Engineering
Fuzzy Mathematics in System Theory and Data Analysis

Olaf Wolkenhauer
Control Systems Centre
UMIST

o.wolkenhauer@umist.ac.uk

www.csc.umist.ac.uk/people/wolkenhauer.htm
Introduction

General Issues:

✘ Teaching
✘ Lecture Notes [1]
✘ Recommended Literature
✘ Internet Resources
✘ Examination
✘ Questions
Motivation

We see an ever-increasing move toward inter and trans-disciplinary attacks upon problems in the real world.

The system scientist has a central role to play in this new order, and that role is to first of all understand ways and means of how to encode the natural world into “good” formal structures.
Data Engineering

.. and the rest of the world:

▷ Statistics
▷ System Theory

▷ Pattern Recognition
▷ Data Mining
▷ Soft Computing

Why...?
What has changed...

✗ Data:
 ▶ Imprecise, fuzzy, random.
 ▶ Sparse, and large data sets.

✗ Systems:
 ▶ Nonlinearity.
 ▶ Complexity.

✗ Methodologies:
 ▶ Learning.
 ▶ Strategy.

✗ Technology:
 ▶ Computer Power.
 ▶ Database- and Web-Technology.
 ▶ Imaging.
Data Engineering

.. is reasoning about data:

1. Decision Making
 ... a unified framework for
 prediction, control, prioritisation, classification.

2. System Theory
 ... the conceptual framework: systems as graphs.

3. Learning from Data
 ... matching data with models.

4. Uncertainty Techniques
 ... being precise about uncertainty.
Data Engineering: Decision Making

- **Prediction**: Forecasting
- **Classification**: Fault-Detection and Diagnosis
- **Control**: Feedback- and Anticipatory Systems
- **Prioritisation**: Maintenance

Decision Making

1. **Current State** $x(k)$
2. **Event** e
3. **Error** $e(k)$
4. **Alternatives** a_1, a_2, a_3
5. **Control Action** $u(k+1)$

Priorities, Schedule
Data Engineering: System Theory

System Analysis

Fact Explanation: \{theory, data\} \rightarrow singular factual statement

Law Explanation: \{theory, subsidiary assumption(s), data\} \rightarrow law

Descriptive Data Analysis

Inferential Formal Modelling
Data Engineering: The Modelling Relation

Phenomenal World

NATURAL SYSTEM

causal entailment

encoding

FORMAL SYSTEM

propositions, axioms, production rules, algorithms.

Mathematical World

encoding

the self

decoding

Natural Law

ambience

components, function phenomena, organisation.
Data Engineering: Learning from Data

\[y = f(\cdot) \]

SYSTEM, PROCESS

- **control**
- **prioritisation**

FORWARD

- **encoding**
- **forecasting**
- **classification**

IDENTIFICATION

- **parameters** \(\theta \)

DATA \(M \)

EXPERIMENTATION

FORWARD

- **encoding**
- **forecasting**
- **classification**
Course Outline

Data, Systems, and Uncertainty:

▷ System Theory
▷ Uncertainty Techniques
▷ Learning from Data
▷ Clustering, Classification
▷ Fuzzy Systems Identification
▷ Fuzzy Mathematics
▷ Fuzzy Systems
System Theory:

- The Modelling Relation.
- Observables.
- Representation of (dynamic) systems by mappings (as sets - graphs).
Uncertainty Techniques:

- The Expectation Operator.
- Descriptive Statistics.
- The Least-Squares Criterion.
- Linear Regression.
- Maximum Likelihood Estimation.

- Stochastic Processes, Kalman-Bucy Filtering.
Learning from Data:

▷ System Identification.
▷ The Probabilistic Perspective.
▷ Basis Function Approximation.

▷ Kernel Density Estimation.
Clustering:

▷ Pattern Recognition.

▷ Hard c-Means Algorithm.

▷ Fuzzy c-Means Algorithm.

▷ Gustavson-Kessel Algorithm.

..with application to

▷ Classification.

▷ System Identification.
Fuzzy Systems Identification:

▷ Fuzzy Systems Model Structures.
▷ Parameter Identification.
▷ Takagi-Sugeno Modelling.
▷ Switching Regression Models.

▷ Forecasting.
▷ Control.
Fuzzy Mathematics:

- Fuzzy Sets.
- Fuzzy Logic.
- Fuzzy Relations: Similarity Relations.
- Possibility Theory.

- Approximate Reasoning.
Fuzzy Systems:

▷ Fuzzy Inference Engines.

▷ Fuzzy Classification.

▷ Fuzzy Control.
Internet Resources

1. Control Systems Centre: http://www.csc.umist.ac.uk/
3. Pattern Recognition Information:
 http://www.ph.tn.tudelft.nl/PRInfo/
5. NFS Group Magdeburg: http://fuzzy.cs.uni-magdeburg.de/
6. BISC - The Berkeley Initiative in Soft Computing:
 http://www.cs.berkeley.edu/Research/Projects/Bisc/
Internet Resources

1. Virtual Laboratories in Probability and Statistics:
 http://www.math.uah.edu/stat/

2. Probability Net: http://www.probability.net/

3. WWW Virtual Libraries:
 - Systems and Control:
 http://www-control.eng.cam.ac.uk/
 - Mathematics:
 http://euclid.math.fsu.edu/Science/math.html

Recommended Literature

Fuzzy Mathematics:

...
Recommended Literature

Probability Theory, Statistical Inference:

References

http://www.csc.umist.ac.uk/people/wolkenhauer.htm.