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Section 1: Learning Objectives 4

1. Learning Objectives

� Fuzzy rule-based systems can also be used to devise control laws.

� Fuzzy control can be particular useful if no linear parametric model
of the process under control is available.

� Fuzzy control is not ‘model-free’ as a good understanding of the
process dynamics may be required.

� Fuzzy control lacks of design methodologies.

� Fuzzy controllers are easy to understand and simple to implement.

�� �� � � Back View



Section 2: Feedback Control 5

2. Feedback Control

Feedback: When we desire a system to follow a given pattern the
difference between this pattern and the actual behaviour is used as a
new input to cause the part regulated to change in such a way as to
bring its behaviour closer to that given by the pattern.

reference
−

error
Controller

control
action

Process
output

(feedback loop)
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3. Fuzzy PI-Controller

setpoint
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fuzzification rule-base
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process
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rate of change

error
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Section 3: Fuzzy PI-Controller 7

� Conventional PI-Control:
du(t)
dt

= Kp
de(t)
dt

+Ki e(t) (1)

where e(t) = s(t)− y(t).
� To obtain a control action the term du(t)/dt is integrated.

✘ A fuzzy-PI-controller is developed analogously :

deriv′(k) = Kp · rate′(k) +Ki · error′(k) (2)

� error, rate, deriv are fuzzy (or linguistic) variables partioning
the underlying spaces by piecewise linear (triangular) fuzzy sets
as shown in figure 1.
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Figure 1: Fuzzy sets for the variables error, rate and the output.
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Section 3: Fuzzy PI-Controller 9

� Scale (2) to a range from −1 to +1.
� Use scaling factors Gu, Gr and Ge, where

deriv′ = Gu · deriv, Gr · rate′ = rate, Ge · error′ = error
� Substituting these into (2)

deriv(k) =
Kp

GuGr
rate(k) +

Ki

GuGe
error(k) (3)

� The constants Kp (GuGr) and Ki/(GuGe) are assumed equal
to 0.5 to make deriv fall into the interval [−1, 1].

✘ The fuzzy controller is then equivalent to a conventional PI-
controller with proportional gain Kp = 0.5 ·Gu ·Gr and integral
gain Ki = 0.5 ·Gu ·Ge.

� Note: there are infinitely many combinations of Ge, Gr, and Gu

to hold true for these expressions.
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Section 3: Fuzzy PI-Controller 10

The complete rule-base :

R1 : IF error is ‘negative’ AND rate is ‘negative’,
THEN deriv is ‘negative large’

R2 : IF error is ‘negative’ AND rate is ‘zero’,
OR error is ‘zero’ AND rate is ‘negative’,

THEN deriv is ‘negative small’
R3 : IF error is ‘negative’ AND rate is ‘positive’,

OR error is ‘zero’ AND rate is ‘zero’,
OR error is ‘positive’ AND rate is ‘negative’,

THEN deriv is ‘zero’
R4 : IF error is ‘zero’ AND rate is ‘positive’,

OR error is ‘positive’ AND rate is ‘zero’,
THEN deriv is ‘positive small’

R5 : IF error is ‘positive’ AND rate is ‘positive’,
THEN deriv is ‘positive large’
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Section 3: Fuzzy PI-Controller 11

� ‘negative’, ‘zero’, ‘positive’, etc. are fuzzy sets.

� The logical connectives ‘AND’ and ‘OR’ are are t- and t-conorms.

� firing level of the ith rule, denoted µDERIVi(deriv).

� Assuming ns fuzzy sets for ‘error’, ‘error rate of change’ we
require 2(ns − 1) fuzzy sets (and rules) for the output deriv.

error
ra
te

N Z P

P

Z

N

Z PS PL

NS Z PS

NL NS Z
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Section 3: Fuzzy PI-Controller 12

� The principal values for which µDERIVi
(deriv) = 1, are equally

spaced, but at half the interval of the antecedent fuzzy sets.

� With three fuzzy sets on the input spaces. The principal values
of the ith member of the fuzzy partition DERIVi are given by

−1 + (i− 1)/(ns − 1)

� Linear defuzzification strategy :

deriv(k) =
2ns−1∑

i=1

µDERIVi
(deriv) ·

(
−1 + (i− 1)

ns − 1

)
. (4)

� This value is integrated and scaled to obtain the control action
required to drive the plant.
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Zadeh-logic :

Conjunction: T
(
µA(·), µB(·)

)
= min

(
µA(·), µB(·)
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Mixed-logic :
Rule 1 and 5: Zadeh-logic
Rule 2 and 4: Lukasiewicz-logic

Conjunction: T
(
µA(·), µB(·)

)
= max

(
0, (µA(·) + µB(·))− 1

)
Disjunction: S
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= min
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Section 4: Example: First-Order System with Dead-Time 15

4. Example: First-Order System with Dead-Time

� Replace linear defuzzification by non-linear strategy [5].

� Notation : (sampling period equals one)

error′(k) = s(k)− y(k)
error(k) = Ge · error′(k)
rate′(k) = error′(k)− error′(k − 1)
rate(k) = Gr · rate′(k)
deriv′(k) = Gu · deriv(k)

u(k) = u(k − 1) + deriv′(k) .

� Input and output fuzzy sets.
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Input (error,rate) and output fuzzy sets:
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Section 4: Example: First-Order System with Dead-Time 17

4.1. Fuzzy Rule-Base

There are three fuzzy control rules composed out of four :

R1 : IF error is ‘negative’ AND rate is ‘negative’,
THEN deriv is ‘negative’

R2 : IF error is ‘negative’ AND rate is ‘positive’,
THEN deriv is ‘zero’

R3 : IF error is ‘positive’ AND rate is ‘negative’,
THEN deriv is ‘zero’

R4 : IF error is ‘positive’ AND rate is ‘positive’,
THEN deriv is ‘positive’
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4.2. Centre Average Defuzzification

Instead of

deriv(k) =
2ns−1∑

i=1

µDERIVi
(deriv) ·

(
−1 + (i− 1)

ns − 1

)
. (4)

normalise the membership degrees to one :

deriv(k) =

2ns−1∑
i=1

µDERIVi
(deriv) ·

(
−1 + i−1

ns−1

)
2ns−1∑

i=1

µDERIVi
(deriv)

(5)

... called Center Average Defuzzification.
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4.3. Control Surface: Zadeh Logic
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✘ Compare with linear defuzzification!
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4.4. Analysis

The membership functions associated with ‘error’ and ‘rate of change’
of the error :

µerror is pos

(
e(k)

)
=
error(k) + 1

2
=
Ge · error′(k) + 1

2
(6)

µerror is neg

(
e(k)

)
=

−error(k) + 1
2

=
−Ge · error′(k) + 1

2
(7)

µrate is pos

(
r(k)

)
=
rate(k) + 1

2
=
Gr · rate′(k) + 1

2
(8)

µrate is neg

(
r(k)

)
=

−rate(k) + 1
2

=
−Gr · rate′(k) + 1

2
. (9)
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Section 4: Example: First-Order System with Dead-Time 21

Partition of the phase-plane into sectors :

Sector R1 R2 R3 R4

1 error is ‘neg.’ rate is ‘neg.’ error is ‘neg.’ rate is ‘pos.’
2 error is ‘neg.’ rate is ‘neg.’ error is ‘neg.’ rate is ‘pos.’
3 rate is ‘neg.’ rate is ‘neg.’ error is ‘neg.’ error is ‘pos.’
4 rate is ‘neg.’ rate is ‘neg.’ error is ‘neg.’ error is ‘pos.’
5 rate is ‘neg.’ error is ‘pos.’ rate is ‘pos.’ error is ‘pos.’
6 rate is ‘neg.’ error is ‘pos.’ rate is ‘pos.’ error is ‘pos.’
7 error is ‘neg.’ error is ‘pos.’ rate is ‘pos.’ rate is ‘pos.’
8 error is ‘neg.’ error is ‘pos.’ rate is ‘pos.’ rate is ‘pos.’
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Section 4: Example: First-Order System with Dead-Time 22

Partioning of the phase-plane for a fuzzy PI-controller :

Ge · error′

Gr · rate′

21

8 3

7 4

6 5
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Section 4: Example: First-Order System with Dead-Time 23

From equations (6)-(9) and (5) we obtain the following equations
for the output :

Sector 1 and 2 :

deriv(k) =
−µerror is neg

(
e(k)

)
+ µrate is pos

(
r(k)

)
µer. is neg

(
e(k)

)
+ µrate is neg

(
r(k)

)
+ µrate is pos

(
r(k)

)
=
Ge · error′(k) +Gr · rate′(k)

3−Ge · error′(k) (10)

Sector 3 and 4 :

deriv(k) =
−µrate is neg

(
r(k)

)
+ µerr is pos

(
e(k)

)
µrate is neg

(
r(k)

)
+ µer. is neg

(
e(k)

)
+ µer. is pos

(
e(k)

)
=
Gr · rate′(k) +Ge · error′(k)

3−Gr · rate′(k) (11)
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Sector 5 and 6 :

deriv(k) =
−µrate is neg

(
r(k)

)
+ µerr is pos

(
e(k)

)
µrate is neg

(
r(k)

)
+ µrate is pos

(
r(k)

)
+ µer. is pos

(
e(k)

)
=
Gr · rate′(k) +Ge · error′(k)

3 +Gr · error′(k) (12)

Sector 7 and 8 :

deriv(k) =
−µerror is neg

(
e(k)

)
+ µrate is pos

(
r(k)

)
µer. is neg

(
e(k)

)
+ µer. is pos

(
e(k)

)
+ µrate is pos

(
r(k)

)
=
Ge · error′(k) +Gr · rate′(k)

3 +Gr · rate′(k) (13)
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If Gr|rate′(k)| ≤ Ge|error′(k)| ≤ 1, we then have

deriv(k) =
Ge · error′(k) +Gr · rate′(k)

3−Ge · |error′(k)| (14)

and if Ge|error′(k)| ≤ Gr|rate′(k)| ≤ 1,

deriv(k) =
Ge · error′(k) +Gr · rate′(k)

3−Gr · |rate′(k)| . (15)
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� As we have seen in the previous section, the fuzzy PI-controller
with linear defuzzification and mixed logic is equivalent to a
nonfuzzy PI-controller with proportional gain Kp = 0.5 ·Gu ·Gr

and integral gain Ki = 0.5 ·Gu ·Ge :

deriv′(k) = Kp · rate′(k) +Ki · error′(k) . (16)

� Comparing (16) with equations (14) and (15), we notice that the
fuzzy PI-controller with nonlinear defuzzification and Zadeh-
logic for rule evaluation is equivalent to a linear PI-controller
with changing gains Kp and Ki :

Kp =
Gr ·Gu

3−Ge|error′(k)| (17)

Ki =
Ge ·Gu

3−Ge|error′(k)| (18)
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when Gr|rate′(k)| ≤ Ge|error′(k)| ≤ 1, and

Kp =
Gr ·Gu

3−Gr|rate′(k)| (19)

Ki =
Ge ·Gu

3−Gr|rate′(k)| (20)

when Ge|error′(k)| ≤ Gr|rate′(k)| ≤ 1.

� If we define the static gains Kps
and Kis

as the proportional
and integral gains when both error′ and rate′ are equal to zero,
we have :

Kps
=
Gr ·Gu

3
(21)

Kis
=
Ge ·Gu

3
(22)
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Section 4: Example: First-Order System with Dead-Time 28

and find for the conventional PI-controller

deriv(k) =
Kps

Gu
· rate′(k) + Kis

Gu
· error′(k)

=
Gr · rate′(k) +Ge · error′(k)

3
. (23)

� Comparing equality (23) with equations (14) and (15), the fol-
lowing inequalities are obtained :

1
3−Ge · error′(k) ≥ 1

3

when Gr|rate′(k)| ≤ Ge|error′(k)| ≤ 1, and

1
3−Gr · rate′(k) ≥ 1

3

when Gr|error′(k)| ≤ Ge|rate′(k)| ≤ 1.
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4.5. Summary

� The (absolute value of the) incremental control action of the
fuzzy PI-controller is equal or greater the (absolute value of
the) incremental control action of the nonfuzzy PI-controller
when Ge|error′(k)| ≤ 1 and Gr|rate′(k)| ≤ 1.

� We can conclude that the larger (absolute values of) error (rate)
values, the larger is the difference between the outputs of the
two controllers.

� The nonlinearity of the fuzzy PI-controller can therefore be used
to improve the control performance in comparison to a nonfuzzy
and linear PI-controller.
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4.6. First-Order Delayed Process

� Comparison: Fuzzy PI-controller with Zadeh logic and nonlinear
defuzzification vs linear PI-controller.

� Static proportional gain Kps
and the static integral gain Kis

of
the fuzzy controller were set equal the proportional and integral
gainsKp = 2.38 andKi = 4.43 of the conventional PI-controller.

� The process plant is taken to be a first order system with time
delay and transfer function ;

Y (s)
U(s)

=
1

s+ 1
· e−0.2s
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Step responses...
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Phase plane and trajectory...
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Section 5: Example: Coupled Tanks 33

5. Example: Coupled Tanks

� The control input is the pump drive voltage.

� The sensed output is the water depth in tank 2.

Q

H HQ Q

i

1 12 2 o

Cross-sectional area = A

Volume of fluid = V

Tank 1

1

Inter-tank hole

Cross-sectional area = a

Discharge coefficient = C

Tank 2

Volume of fluid = V212

d
12

Drain tap

oCross-sectional area = a

Discharge coefficient = Cd
o

Cross-sectional area = A
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Section 5: Example: Coupled Tanks 34

5.1. Design of a fluid level proportional controller

� Plot the root locus of the open loop transfer function Gv(z),
select the gain Kp that gives a closed loop damping factor of
ϑ = 0.7.

� Read off the c.l. natural frequency ωn.

� The closed loop transfer function is :

Hv(z) =
vd2(z)
vr(z)

=
Kp Gv(z)

1 +Kp Gv(z)
(24)

where :

Gv(z) =
z − 1
z

Z

(
Gv(s)
s

)
(25)

� The steady state error can be calculated using :

ess = [vr(z)− vd2(z)]z→1 = vr(1) [1−Hv(z)]z→1 (26)

Where vr(1) is the steady state reference input.
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5.2. Design of a proportional plus integral controller

� Set the integral action time constant to a reasonable value (in
this case Ti = 50s).

� Plot the root locus of the open loop system in cascade with the
compensator 1+ 1

Ti

z
z−1 , and select the gain k that gives a closed

loop damping factor of ϑ = 0.7.

� The proportional and integral gains Kp, and Ki can be com-
puted by comparing coefficients of the compensator transfer
functions:

K

(
1 +

z

(z − 1)Ti

)
= Kp +

Kiz

(z − 1)
(27)

� The value of ωn can be read off the root locus plot.

�� �� � � Back View



Section 5: Example: Coupled Tanks 36

� Writing the open loop system in series with a proportional plus
integral action compensator as Gc(s), where :

Gc(s) =
K (sTi + 1)

sTi
·

gpgd2
K2

T1T2s2 + (T1 + T2) s+ 1
(28)

� The closed loop transfer function is :

Hv(s) =
Kgpgd2

k2
· sTi + 1

TiT1T2s3 + Ti (T1 + T2) s2 + Ti

(
1 + Kgpgd2

K2

)
s+ Kgpgd2

K2

(29)

� Assuming :

T1 > 0; T2 > 0; gp > 0; gd2 > 0; k2 > 0; Ti > 0; K > 0
(30)
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Section 5: Example: Coupled Tanks 37

The closed loop system is stable for :

Ti (T1 + T2)
(
1 +

Kgpgd2

K2

)
> T1T2

Kgpgd2

K2
(31)

� Hence the closed loop system can become unstable for suffi-
ciently large gain if :

Ti <
T1T2

T1 + T2
(32)

and the gain required to make the closed loop system unstable
is :

K =
K2

gpgd2

· Ti (T1 + T2)
T1T2 − Ti (T1 + T2)

(33)

� The closed loop system under proportional plus integral con-
trol has three poles, and one zero. Using the design procedure
outlined above, two of the poles will be complex conjugate (at
ϑ = 0.7), the remaining pole and zero are negative real.
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Section 5: Example: Coupled Tanks 38

5.3. Design of a fuzzy-PI-controller.

� The constants KpGr

Gu
and KiGe

Gu
are set to make the output to

fall within the interval [−1,+1].
� Choose fuzzy sets for the input and output as in figure 1.

� For example, Ge = 0.02, Gr = 1, and Gu = 15.

� Fix the number of (triangular, fully overlapping) fuzzy sets par-
titioning the input spaces.

� On the basis of the phase-plane characteristic and/or trajec-
tory decide upon the fuzzy logic employed. This will decide the
overall gain structure of the phase-plane.

� Adjust input-output gains to have trajectories of the system to
fall within the [−1, 1] range.

� Change positions of principal values for input fuzzy sets to fine-
tune gain structure in the quadrants of the phase-plane.
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Simulink block diagram :

uod Rate

uod Error

Zero−Order
Hold1

Zero−Order
Hold

uod_Error

To Workspace4

uod_Rate

To Workspace3

FC_output

To Workspace2

Output_H2

To Workspace1
Sum2

Sum1

Sum
Step

fuzzy_controller

S−Function

Output H2

Mux

Mux1

Mux

Mux

7.5

Kp

0.15

Ki

15

Gu

1

Gr=
Kp/(0.5*Gu)

0.02

Ge=
Ki/(0.5*Gu)

FC output

T(z+1)

2(z−1)

Discrete−Time
Integrator1

Tz

z−1

Discrete−Time
Integrator

1−z −1

1 

Discrete
Filter1

1/2.37

1149.293s  +111.834s+12

Coupled tanks1

1/2.37

1149.293s  +111.834s+12

Coupled tanks
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Step responses: non-fuzzy PI-controller, Ki = 0.15, Kp = 7.5,
(dashed line) and its fuzzy equivalent :
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