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Section 1: Learning Objectives 4

1. Learning Objectives

O Fuzzy rule-based systems can also be used to devise control laws.

Fuzzy control can be particular useful if no linear parametric model
of the process under control is available.

[J Fuzzy control is not ‘model-free’ as a good understanding of the
process dynamics may be required.

0 Fuzzy control lacks of design methodologies.

[ Fuzzy controllers are easy to understand and simple to implement.
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Section 2: Feedback Control 5

2. Feedback Control

Feedback: When we desire a system to follow a given pattern the
difference between this pattern and the actual behaviour is used as a
new input to cause the part regulated to change in such a way as to
bring its behaviour closer to that given by the pattern.

control
reference ~  error action output

) Controller Process

(feedback loop)
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3. Fuzzy PI-Controller

setpoint

fuzzification

rule-base

—

de-

fuzzification

rate of change
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Section 3: Fuzzy PI-Controller 7

> Conventional PI-Control:
du(t) de(t)
=K
dt Pode
where e(t) = s(t) — y(t).

+ K; e(t) (1)

> To obtain a control action the term du(t)/d¢ is integrated.

[0 A fuzzy-Pl-controller is developed analogously :
deriv' (k) = K, - rate’ (k) + K; - error’ (k) (2)
> error, rate, deriv are fuzzy (or linguistic) variables partioning

the underlying spaces by piecewise linear (triangular) fuzzy sets
as shown in figure 1.
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Section 3: Fuzzy PI-Controller

-1 70‘9 70‘6 70‘4 D‘ E"ﬂgm‘e 0‘2 D‘A 0‘6 ﬂ‘B 1 -1 70‘6 70‘6 70‘4 70‘2 deﬂw ‘2 0‘4 0‘6 D‘B 1

Figure 1: Fuzzy sets for the variables error, rate and the output.
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Section 3: Fuzzy PI-Controller 9

> Scale (2) to a range from —1 to +1.
> Use scaling factors G, G, and G, where
deriv' = G, - deriv, G, -rate’ =rate, G.-error’ = error

> Substituting these into (2)

deriv(k) = GKg rate(k) + e é

>> The constants K, (G,G,) and K;/(G,Ge) are assumed equal
to 0.5 to make deriv fall into the interval [—1,1].

0 The fuzzy controller is then equivalent to a conventional PI-
controller with proportional gain K, = 0.5-G,, - G, and integral
gain K; =0.5- G, - Ge.

> Note: there are infinitely many combinations of G, G,., and G,
to hold true for these expressions.
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Section 3: Fuzzy PI-Controller 10

The complete rule-base :
Ry :  IF error is ‘negative’ AND rate is ‘negative’,
THEN deriv is ‘negative large’
Ry @ IF error is ‘negative’ AND rate is ‘zero’,
OR error is ‘zero’ AND rate is ‘negative’,
THEN deriv is ‘negative small’
R3 :  IF error is ‘negative’ AND rate is ‘positive’,
OR error is ‘zero’ AND rate is ‘zero’,
OR error is ‘positive’ AND rate is ‘negative’,
THEN deriv is ‘zero’
R, . IF erroris ‘zero’ AND rate is ‘positive’,
OR error is ‘positive’ AND rate is ‘zero’,
THEN deriv is ‘positive small’
Rs :  IF error is ‘positive’ AND rate is ‘positive’,

THEN deriv is ‘positive large’
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Section 3: Fuzzy PI-Controller 11

> ‘negative’, ‘zero’, ‘positive’; etc. are fuzzy sets.

> The logical connectives ‘AND’ and ‘OR’ are are t- and ¢-conorms.
> firing level of the it" rule, denoted upgrrv, (deriv).

> Assuming ng fuzzy sets for ‘error’, ‘error rate of change’ we

require 2(ns — 1) fuzzy sets (and rules) for the output deriv.

error

N Z P

Pl Z PS | PL

NS Z PS

rate
N

N|NL NS  Z
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Section 3: Fuzzy PI-Controller 12

>

The principal values for which upgrrv, (deriv) = 1, are equally
spaced, but at half the interval of the antecedent fuzzy sets.

With three fuzzy sets on the input spaces. The principal values
of the i*" member of the fuzzy partition DERIV; are given by

—1+ (@ —1)/(ns 1)

Linear defuzzification strategy :

deriv(k) = SZ_ UDERIY, (deriv) - (—1 + (Z;l)) . (4)

ng — 1
i=1 s

This value is integrated and scaled to obtain the control action
required to drive the plant.
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Section 3: Fuzzy PI-Controller

Zadeh-logic :

= min(pa(-), u5("))
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Section 3: Fuzzy PI-Controller

Mized-logic :

Rule 1 and 5: Zadeh-logic

Rule 2 and 4: Lukasiewicz-logic

1)
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(
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Section 4: Example: First-Order System with Dead-Time 15

4. Example: First-Order System with Dead-Time

> Replace linear defuzzification by non-linear strategy [5].

> Notation : (sampling period equals one)
error’ (k) = s(k) —y(k)
(k) = Ge-error'(k)
(k) = error’(k) —error'(k —1)
rate(k) = G, -rate'(k)
(k) = Gy - deriv(k)
(k) = u(k —1)+deriv'(k) .

> Input and output fuzzy sets.
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Input (error,rate) and output fuzzy sets:

T T T T T T T T T T T T T T T T T T
R negative positive R negative 260 positive

osF 4 08 4

06 4 06 4

0ap 4 04 4

02 4 02 4

S1 08 06 04 02 o 02 04 06 08 1 S1 08 06 04 02 o 02 04 06 08 1

error, rate deriv
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Section 4: Example: First-Order System with Dead-Time 17
4.1. Fuzzy Rule-Base

There are three fuzzy control rules composed out of four :

Ry @ IF error is ‘negative’ AND rate is ‘negative’,
THEN deriv is ‘negative’

Ry @ IF error is ‘negative’ AND rate is ‘positive’,
THEN deriv is ‘zero’

R3 @ IF error is ‘positive’ AND rate is ‘negative’,
THEN deriv is ‘zero’

Ry :  IF error is ‘positive’ AND rate is ‘positive’,

THEN deriv is ‘positive’
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4.2. Centre Average Defuzzification

Instead of

deriv(k) = Z_ UDERIV, (deriv) - (—1 + (i - 1)> .

ng—1
i=1 s

normalise the membership degrees to one :

2ngs—1 .
Z upeRrIv;(deriv) - (—1 + J:—l)
deriv(k) = =%

2ngs—1

> wupgrrv,(deriv)
i=1

. called Center Average Defuzzification.
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Section 4: Example: First-Order System with Dead-Time
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4.3. Control Surface: Zadeh Logic

[J Compare with linear defuzzification!
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Section 4: Example: First-Order System with Dead-Time 20

4.4. Analysis

The membership functions associated with ‘error’ and ‘rate of change’
of the error :

error(k) + 1 G, -error’(k) + 1

Lerror is pos(€(k)) = 5 _ . (©)
Lerror is neg(€(k)) = _6”07”2(’“) +1_ —Ge-err;r’(k) +1 -
firate s pos (T(E)) = ’"“te(’;) +1 Gr'mt;’(k) +1 -
firate is neg (r(k)) = _m’feék) +1 _ =G -m;e’(k) +1 o)
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Partition of the phase-plane into sectors :

21

Sector

R

R

R3

Ry

0 3O Ui W N

error is ‘neg.’
error is ‘neg.’
rate is ‘neg.’

rate is ‘neg.
rate is ‘neg.
rate is ‘neg.
error is ‘neg.’
error is ‘neg.’

)

k]

)

rate is ‘neg.’
rate is ‘neg.

rate is ‘neg.’

rate is ‘neg.’

)

error is ‘pos.
error is ‘pos.

¢

error is ‘pos.

¢

error is ‘pos.

error is ‘neg.’

error is ‘neg.
error is ‘neg.

error is ‘neg.’
rate is ‘pos.’
rate is ‘pos.

rate is ‘pos.’

rate is ‘pos.’

)

)

)

rate is ‘pos.’
rate is ‘pos.’

error is ‘pos.’

error is ‘pos.’
error is ‘pos.
error is ‘pos.
rate is ‘pos.’

rate is ‘pos.’
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Section 4: Example: First-Order System with Dead-Time 22

Partioning of the phase-plane for a fuzzy PI-controller :

G, -error’

G, - rate’
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Section 4: Example: First-Order System with Dead-Time 23

From equations (6)-(9) and (5) we obtain the following equations
for the output :

Sector 1 and 2 :

deriv(k) _ —Herror is neg (e(lﬂ)) + Wrate is pos (r(k))

Her. is neg (e(k)) + Hrate is neg (T(k)) + Hrate is pos (T(k))
G. -error’(k) + G, - rate’ (k)

- 3 — Ge -error'(k) (10)

Sector 3 and 4 :

—Hrate is neg (T(k)) + Herr is pos (6(k’))
Mrate is neg (T(k)) + Her. is neg (e(k)) + Her. is pos (e(k))
_ Gy rate' (k) + G - error' (k) (11)
o 3 — G, - rate' (k)

deriv(k) =
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Section 4: Example: First-Order System with Dead-Time 24

Sector 5 and 6 :
—Hrate is neg (T(k)) + Herr is pos (6(k))

deriv(k) =
eru}( ) Hrate is neg (T(k)) + Urate is pos (T‘(k‘)) + Her. is pos (e(k))

G, -rate'(k) + G, - error’ (k)
o 3+ G, -error'(k)

(12)

Sector 7 and 8 :

—HMerror is neg (6(k)> + Hrate is bos (T(k)>
Her. is neg (e(k)) + Her. is pos (e(k)) + Hrate is pos (T(k))
_ G -error'(k) + G, - rate’ (k)
- 3+ G, - rate’ (k)

deriv(k) =

(13)
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Section 4: Example: First-Order System with Dead-Time

If G,|rate' (k)| < Gelerror’ (k)| < 1, we then have

G. - error'(k) + G, - rate’ (k)
3— G, - |error'(k)|

and if Gelerror' (k)| < G,|rate’ (k)| < 1,

G, - error’ (k) + G, - rate’ (k)
3 — G, - |rate! (k)|

deriv(k) =

deriv(k) =
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Section 4: Example: First-Order System with Dead-Time 26

> As we have seen in the previous section, the fuzzy Pl-controller
with linear defuzzification and mixed logic is equivalent to a
nonfuzzy PI-controller with proportional gain K, = 0.5-G,, -G,
and integral gain K; = 0.5- G, - G¢ :

deriv' (k) = K, - rate’ (k) + K; - error’ (k) . (16)

> Comparing (16) with equations (14) and (15), we notice that the
fuzzy Pl-controller with nonlinear defuzzification and Zadeh-
logic for rule evaluation is equivalent to a linear PI-controller
with changing gains K, and K :

G, -G,
Ky = 3 — G.lerror' (k)| (17)
K; = Ge - Gu (18)

3 — G.lerror' (k)|
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Section 4: Example: First-Order System with Dead-Time 27

when G,|rate’ (k)| < Gelerror’ (k)| <1, and

G, -Gl
= —r v 1

Ky 3 — Gy lrate (k)] (19)

K= e Gu (20)

3 — Gy lrate (k)]
when Gelerror' (k)| < G,|rate’ (k)| < 1.
> If we define the static gains K, and K, as the proportional

and integral gains when both error’ and rate’ are equal to zero,
we have :

K, = 21
Ps 3 ( )
K,

= 2= (22)
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Section 4: Example: First-Order System with Dead-Time 28

and find for the conventional PI-controller

K K;
deriv(k) = Gp“ -rate’ (k) + G—S ~error’ (k)
_Gr- rate’ (k) —;Ge -error’ (k) . (23)

> Comparing equality (23) with equations (14) and (15), the fol-
lowing inequalities are obtained :

1 1
3—Ge-error'(k) — 3

when G,|rate’ (k)| < Gelerror’ (k)| <1, and
1 1
R
3— G, -rate'(k) — 3
when G, |error’ (k)| < G.|rate’ (k)| < 1.

—_
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Section 4: Example: First-Order System with Dead-Time 29

4.5. Summary

> The (absolute value of the) incremental control action of the
fuzzy Pl-controller is equal or greater the (absolute value of
the) incremental control action of the nonfuzzy PI-controller
when Gelerror’ (k)| <1 and G, |rate’ (k)| < 1.

> We can conclude that the larger (absolute values of) error (rate)
values, the larger is the difference between the outputs of the
two controllers.

> The nonlinearity of the fuzzy PI-controller can therefore be used
to improve the control performance in comparison to a nonfuzzy
and linear PI-controller.
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Section 4: Example: First-Order System with Dead-Time 30

4.6. First-Order Delayed Process

> Comparison: Fuzzy PI-controller with Zadeh logic and nonlinear
defuzzification vs linear PI-controller.

> Static proportional gain K,  and the static integral gain K;_ of
the fuzzy controller were set equal the proportional and integral
gains K, = 2.38 and K; = 4.43 of the conventional PI-controller.

> The process plant is taken to be a first order system with time
delay and transfer function ;

Y 1
(s) 028

U(s) s+1
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Step responses...

45

35

25

Output

15

0.5

0 1 2 3 4 5 6 7 8 9
time (sec)
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Phase plane and trajectory...

error(nT)

0.8

0.6

0.4

0.2

0.75

0.5

0.25

rate(nT)
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Section 5: Example: Coupled Tanks

5. Example: Coupled Tanks

> The control input is the pump drive voltage.

> The sensed output is the water depth in tank 2.

—\\Qi
Discharge coefficient = C,

! Q, |M Q,

| Drain tap
Cross-sectional area=a,

—_— Y — -
Tank 1 Inter-tank hole Tank 2
Volume of fluid = V; Cross-sectiondl area=a,,  Volumeof fluid=V,

Cross-sectional area= A Discharge coefficient = C;  Cross-sectiondl area= A

2
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Section 5: Example: Coupled Tanks

5.1. Design of a fluid level proportional controller

>

34

Plot the root locus of the open loop transfer function G,(2),
select the gain K, that gives a closed loop damping factor of

9 =0.7.

> Read off the c.l. natural frequency w,.

> The closed loop transfer function is :

where :

The steady state error can be calculated using :

€ss = [Ur(z) — Vd, (z)]z—d =wvy(1) [1 - Hv(z)]zal

Where v,.(1) is the steady state reference input.
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Section 5: Example: Coupled Tanks 35

5.2. Design of a proportional plus integral controller

>

Set the integral action time constant to a reasonable value (in
this case T; = 50s).

Plot the root locus of the open loop system in cascade with the
compensator 1+ % —=7, and select the gain k that gives a closed
loop damping factor of ¥ = 0.7.

The proportional and integral gains K, and K; can be com-
puted by comparing coefficients of the compensator transfer
functions:

K(l—l—ﬁ)zlﬁ,-ﬁ-(;{—ii) (27)

The value of w,, can be read off the root locus plot.
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Section 5: Example: Coupled Tanks 36

> Writing the open loop system in series with a proportional plus
integral action compensator as G.(s), where :

9p9d
Guls) = K(sT; +1) et )
¢ ST’l T1T252 + (Tl + Tg) Cl 1

> The closed loop transfer function is :

Kgpga
—=P22 T 4+ 1
Hy(s) = k2

T Tos3 + Ty (Ty + 1) 82 + T (1 it Kgpgdz) N Kgpgdz
(29)
> Assuming :

Ty >0; To>0; g,>0; g4, >0; koa>0; T;>0; K>0
(30)
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Section 5: Example: Coupled Tanks 37

The closed loop system is stable for :

K
) > TlTQ% (31)

Kgpgd2
K 2

T; (11 + T3) (1 +
2

> Hence the closed loop system can become unstable for suffi-
ciently large gain if :
T
L o 112
T+ 1T
and the gain required to make the closed loop system unstable
is :

(32)

Ko T(Ti+T)
9p9a, ThTo —T; (Th + T3)

(33)

> The closed loop system under proportional plus integral con-
trol has three poles, and one zero. Using the design procedure
outlined above, two of the poles will be complex conjugate (at
¥ = 0.7), the remaining pole and zero are negative real.
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Section 5: Example: Coupled Tanks 38

5.3. Design of a fuzzy-Pl-controller.

>

K,G,
The constants ==+ and

fall within the interval [—1,-+1].

K,Ge

are set to make the output to

> Choose fuzzy sets for the input and output as in figure 1.

> For example, G, = 0.02, G,, = 1, and G, = 15.

> Fix the number of (triangular, fully overlapping) fuzzy sets par-

titioning the input spaces.

On the basis of the phase-plane characteristic and/or trajec-
tory decide upon the fuzzy logic employed. This will decide the
overall gain structure of the phase-plane.

Adjust input-output gains to have trajectories of the system to
fall within the [—1,1] range.

Change positions of principal values for input fuzzy sets to fine-
tune gain structure in the quadrants of the phase-plane.
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Section 5: Example: Coupled Tanks 39

Simulink block diagram :

1 | ) ] ToWorkspaces
i
Discrete Gr= uod Rate
Filterl Kp/(0.5*Gu)
b 1/2.37
= > 119 293524111 534t
SFunciion o 0
Integrator Hold Coupled tanks
—> [
Ge= uod Error
oy ey To Work
Kil(0.5°Gu) 0 Workspace2
To Workspaced
FC aput
E— 112.37 Mux Output_H2
St 1149.20352+111 8345+1 o To Workspacel
Zero-order
ot Coupled s
—
%}—» ) oupuHz
i Disarete-Time
egratory
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Section 5: Example: Coupled Tanks 40

Step responses: non-fuzzy Pl-controller, K; = 0.15, K,
(dashed line) and its fuzzy equivalent :

7.5,

1.4

12 A

0 I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
time (sec)
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