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1. Data and Information

Definition 1 (Cartesian Product (Space)). Let (x, y) be an or-
dered pair, where x ∈ X and y ∈ Y , the Cartesian product is defined
as the set

X × Y = {(x, y) : x ∈ X, y ∈ Y } . (1)

Definition 2 ((Binary) Relation). Any subset R ⊆ X×Y defines
a (binary) relation between the elements of X and Y :

R = {(x, y) ∈ X × Y : R(x, y) holds} . (2)

A relation is a multi-valued correspondence

R : X × Y → {0, 1}
(x, y) �→ R(x, y) .
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2. Comparing

Definition 3 (Equivalence). Relation R ⊆ X × X establishes a
relation among the elements of X. An equivalence relation on X is
defined by the following conditions :

E(x, x) = 1 ∀ x ∈ X (reflexity)
E(x, x′) = 1 ⇒ E(x′, x) = 1 (symmetry)

E(x, x′) = 1 ∧ E(x′, x′′) = 1 ⇒ E(x, x′′) = 1 (transitivity) .

Example:

Consider the equivalence relation, called “equality” =.

a = a holds (reflexity)
a = b ⇒ b = a (symmetry)

a = b ∧ b = c ⇒ a = c (transitivity) .
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Definition 4 (Distance). The function d(·, ·) defines a distance be-
tween elements of X. Let ∀ p, q, r ∈ X :

d(p, q) = 0 iff p = q

d(p, q) > 0 iff p �= q

d(p, q) = d(q, p) symmetry .

Definition 5 (Metric). A distance is called metric iff ∀p, q, r ∈ X
it is transitive :

d(p, r) ≤ d(p, q) + d(q, r) (3)

called triangle inequality :

q

p r

d(
p,

q)

d(q,r)

d(p,r)

Example:

d(x, x′) = |x − x′| .
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3. Order

Definition 6 (Partial Order). A partial ordering (or semi-ordering)
on X is a binary relation � on X such that the relation is

reflexive, i.e. x � x ,

anti-symmetric, i.e. x � x′ and x′ � x implies x = x′ ,

transitive, i.e. x � x′ and x′ � x′′ implies x � x′′ .

Example:

“greater or equal” ≥ : p > q ∧ q > r ⇒ p > r

“set inclusion” ⊆ : A ⊆ B ∧ B ⊆ C ⇒ A ⊆ C
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.. our ‘toolset’ so far:

Concept Formalisation Notation

Data product space X × Y eq. (1)

Information relations R(·, ·) eq. (2)

Aggregation union, intersection, compl. (∪,∩, c) -

Comparison equivalence = df. (3)

distance d(·, ·) df. (4)

Order � ≥ , ⊆ df. (6)

Reasoning transitivity triangle inequality eq. (3)

These concept form a basic toolset for any sci-
entific analysis of data and systems. But does
it work?
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4. Data Analysis

System Variables: p, q, r ∈ X

Measurements: p = 1.5, q = 2, r = 2.2

Error or Tolerance: ε = 0.6

Model, Theory or Reasoning: p = q ∧ q = r ⇒ p = r

...putting our theory into practise :

|p − q| = 0.5 < ε ⇒ p = q

|q − r| = 0.2 < ε ⇒ q = r

but |p − r| = 0.7 > ε ⇒ p �= r ✘

� called The Poincaré paradox.

Uncertainty is Certain!
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5. Physical Reality vs. Mathematical Model

� How can we preserve transitivity but take account of uncertainty?

From the triangle inequality (3),

d(p, q) < a ∧ d(q, r) < b ⇒ d(p, r) < a+ b .

Since A ⇒ B implies that Pr(A) ≤ Pr(B), we get

Pr
(
d(p, q) < a ∧ d(q, r) < b

) ≤ Pr
(
d(p, r) < a+ b

)
Let T (·) be a function such that T (Pr(A), P r(B)) ≤ Pr(A∧B) for any
two propositions A,B. Then with Pr

(
d(p, r) < a+ b

)
= Fpr(a+ b),

Fpr(a+ b) ≥ T (Fpq(a), Fqr(b)) (4)

Certainty is lost – we have a choice for T (·).
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6. Triangular Norms

The function T (·) [1] is a mapping [0, 1]× [0, 1]→ [0, 1]. For example,

Tmin(a, b) = min(a, b) (minimum operator),
TLuk(a, b) = max(a+ b − 1, 0) (Lukasiewicz norm),
Tpro(a, b) = a · b (algebraic product).

Triangular or t-norms, so called because they pre-
serve transitivity w.r.t the triangular inequality, play
an important role in fuzzy mathematics.

Let T (a, b) = a · b, then for (4),
Fpr(a+ b) ≥ Fpq(a) · Fqr(b)

or in other words

Pr
(
d(p, r) < a+ b) ≥ Pr

(
d(p, q

)
< a, d(q, r) < b

)
.

�� �� � � Back View



Section 7: Fuzzy Relations 12

7. Fuzzy Relations

� Lotfi Zadeh [4] showed that any metric (in the unit interval) induces
a similarity relation from the reference set into the unit interval:

Ẽ(x, x′) = 1− inf(d(x, x′), 1
)

(5)

If we are to interpret Ẽ(x, x′) as the likelihood that
the distance between x and x′ is zero or the similarity
of x′ w.r.t x, what is the formal definition of such a
fuzzy equivalence relation called similarity relation?
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Example: Student Evaluation

Grade boundaries :
Degree ≥ 50%

Distinction ≥ 70%

Problem: Someone with, say 69.4%, may not achieve a distinction
while a colleague with just 0.6% more would succeed.

Let (X, d) be a metric space with X = [0, 100] and the metric

d : R × R → R
+

(x, x′) �→ |x − x′| .

For any of the grade boundaries x0, the induced proximity relation
depends on x0 and a ‘locality’ parameter δ ∈ (0,∞) :

µx0(x) = 1−min{|δ · x0 − δ · x|, 1} . (6)
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Fuzzy Partions

Figure on the left: δ = 0.1 and x0 = 50.
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Definition 7 (Similarity Relation). Any fuzzy subset S of the prod-
uct space X×Y defines a (binary) fuzzy relation between the elements
of X and Y .

Ẽ : X × Y → [0, 1]

(x, y) �→ Ẽ(x, y) .

� A similarity relation is reflexive S(x, x) = 1 and symmetric S(x, x′) =
S(x′, x) but is is an equivalence relation?

From Karl Menger’s inequality [1],

Fpr(a+ b) ≥ T (Fpq(a), Fqr(b)) (4)

we obtain a definition of transitivity for similarity relations :

Ẽ(p, r) ≥ T
(
Ẽ(p, q), Ẽ(q, r)

)
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The Fuzzy Logic of Scientific Discovery

between things that are similar

analysis

search for regularities

connectives

in space and time

pattern

describing differences

describing generic
or ‘natural’ laws
e.g causation

structure

phenomena

the world of experience
in which we differentiate
- perception

COMPARING

the ontological problem
- conception

noumena

explanatory world,
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