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Section 1: Data and Information 3

1. Data and Information

Definition 1 (Cartesian Product (Space)). Let (x,y) be an or-
dered pair, where x € X and y € Y, the Cartesian product is defined
as the set

XxY={(z,y):zeX, yeY}. (1)

Definition 2 ((Binary) Relation). Any subset R C X x Y defines
a (binary) relation between the elements of X and Y :

R ={(z,y) € X xY: R(x,y) holds} . (2)
A relation is a multi-valued correspondence
R: XxY — {0,1}
(z,y) — R(z,y) .
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2. Comparing

Definition 3 (Equivalence). Relation R C X x X establishes a
relation among the elements of X. An equivalence relation on X is
defined by the following conditions :

E(z,z)=1 VeeX (reflexity)
E(x,2")=1 = E(z',2) =1 (symmetry)
E(z,2)=1 A E@@',2")=1 = E(z,2")=1 (transitivity) .

Example:

Consider the equivalence relation, called “equality” =.

a=a holds (reflexity)
a=b = b=a (symmetry)
a=bANb=c=>a=c (transitivity) .
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Definition 4 (Distance). The function d(-,-) defines a distance be-
tween elements of X. Let V p,q,7 € X :

d(p,q) >0 iff p#q
d(p,q) = d(q,p) symmetry .

Definition 5 (Metric). A distance is called metric iff Vp,q,7 € X
it is transitive :

d(p,7) < d(p,q) +d(q,7) 3)
q
S/ \%
called triangle inequality : N )
d(p,r)
p—mm T

Example:

d(z,2") = |z — 2’| .
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3. Order

Definition 6 (Partial Order). A partial ordering (or semi-ordering)
on X is a binary relation < on X such that the relation is

reflexive, i.e. =z <z,
anti-symmetric, i.e. z <2’ and 2’ < x implies x = 2’ ,

transitive, i.e. = =<2’ and 2’ < 2" implies z < =" .

Example:
“greater or equal” >: p>q AN g>r = p>r

“set inclusion” cC: ACB N BCC = AcCC
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.. our ‘toolset’ so far:

Concept H Formalisation Notation
Data product space XxY eq. (1)
Information relations R(-,-) eq. (2)
Aggregation union, intersection, compl. (U,n, ) -
Comparison equivalence = df. (3)
distance d(-,-) df. (4)
Order =< >, C df. (6)
Reasoning transitivity triangle inequality | eq. (3)

These concept form a basic toolset for any sci-
entific analysis of data and systems. But does

it work?
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4. Data Analysis

System Variables: p,q, 7€ X
Measurements: p=154¢=2,r=22
Error or Tolerance: e=0.6

Model, Theory or Reasoning: p=q A g=r = p=r

...putting our theory into practise :

lp—¢q=05 <e = p=gq
lg—7=02 <e = q=r
but p—r|=07 >¢ = p#r O
>> called The Poincaré paradoz.

Uncertainty is Certain!
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5. Physical Reality vs. Mathematical Model

> How can we preserve transitivity but take account of uncertainty?

From the triangle inequality (3),
dip,q) <a AN d(gr)<b = dpr)<a+b.
Since A = B implies that Pr(A) < Pr(B), we get
Pr(d(p, q) <a A d(gr) < b) < Pr(d(p, r)<a+ b)

Let T'(-) be a function such that T'(Pr(A), Pr(B)) < Pr(AAB) for any
two propositions A, B. Then with Pr(d(p,r) < a+b) = F,.(a +b),

Fpr(a+0) > T (Fpq(a), Fyr (D)) (4)

Certainty is lost — we have a choice for T'(-).
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6. Triangular Norms

The function T'(+) [1] is a mapping [0, 1] x [0, 1] — [0, 1]. For example,

Tmin(a,b) = min(a, b) (minimum operator),
Truk(a,b) = max(a +b—1,0) (Lukasiewicz norm),
Toro(a,b) =a-b

(algebraic product).

Triangular or t-norms, so called because they pre-
serve transitivity w.r.t the triangular inequality, play
an important role in fuzzy mathematics.

Let T(a,b) = a - b, then for (4),

Fpr(a+b) > Fyg(a) - Fyr(b)
or in other words

Pr(d(p, r)<a+b) > Pr(d(p, q) <a, d(g,r) < b) .
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7. Fuzzy Relations

o> Lotfi Zadeh [4] showed that any metric (in the unit interval) induces
a similarity relation from the reference set into the unit interval:

E(z,2') =1 —inf(d(z,2),1) (5)

If we are to interpret E(x,a') as the likelihood that
the distance between x and ' is zero or the similarity
of ' w.r.t x, what is the formal definition of such a
fuzzy equivalence relation called similarity relation?
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Example: Student Evaluation

Grade boundaries :
Degree > 50%

Distinction > 70%
Problem: Someone with, say 69.4%, may not achieve a distinction
while a colleague with just 0.6% more would succeed.
Let (X, d) be a metric space with X = [0,100] and the metric
d: RxR — R*
(z,2") — |z —2a'].

For any of the grade boundaries xg, the induced proximity relation
depends on z( and a ‘locality’ parameter § € (0,00) :

tao(x) =1 —min{|d - 29— - x|, 1} . (6)
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Fuzzy Partions

Figure on the left: § = 0.1 and ¢ = 50.

1 poor mar gi nal good excellent
1

35 40 45 50 55 60 65
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Definition 7 (Similarity Relation). Any fuzzy subset S of the prod-
uct space X XY defines a (binary) fuzzy relation between the elements
of X and Y.

E: XxY — [0,1]
(.y) = Ez,y).
> A similarity relation is reflexive S(x, z) = 1 and symmetric S(z,z’) =
S(a',z) but is is an equivalence relation?
From Karl Menger’s inequality [1],
Fyr(a+b) =T (Fpq(a), For (b)) (4)

we obtain a definition of transitivity for similarity relations :

E(p,r) = T (E(p,0), E(a,1))
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16

The Fuzzy Logic of Scientific Discovery

phenomena
_phenomena

the world of experience
in which we differentiate
- perception

PHILOSOPHY noumena
LU

explanatory world,
the ontological problem
- conception

pattern -— SClEE—» structure
T L

search for regularities
in space and time

describing generic
or ‘natural’ laws
e.g causation

connectives <—E(E—> inference
connectves.

disjunction union
conjunction intersection
negation complement

analysis

describing differences
between things that are similar

implication

entailment / composition

sets / relations

MATHEMATICS synthesis

finding similarities
between things that

distance order are different
COMPARING @ UNCER REASONING
‘ U
space time
similarity relations Possibility Theory
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Possibility Theory

UNCERTAINTY
CALCULI

POSSIBILITY

THEORY

STATISTICAL
OBJECTS

RULE-BASED
SYSTEMS
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