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1. Learning Objectives

� Scientific theories deal with concepts, not with reality.

� System theory uses mathematical concepts to describe aspects of
the ‘real-world’.

� A formal model is a graph, i.e a subset of a product space formed
by variables characterising a system or process.

� An observable is some characteristic of a system which can, in
principle, be measured.

� A state is a specification of a system or process at a specific instant.

� A dynamic system or process is a system in which the state changes
with time.

� Differential equations are a common way to encode dynamics.

� There are many alternative and equally valid ways to represent a
system...
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2. System Analysis

� The Modelling Relation.

� Natural System: physical, biological, financial, social,...

� Variables: x1 ∈ X1, x2 ∈ X2, x3 ∈ X3 taking values from

X1 = {1, 2, 3, 4}, X2 = {1, 2, 3, 4}, X3 = {2, 8, 18, 32}

� Data: M = {mj}, j = 1, 2, . . . , d, where

m1 = (1, 1, 1), m2 = (2, 2, 8), m3 = (3, 3, 18), m4 = (4, 4, 32).

� Model: x2
3 = x2

1 + x2
2, x3 = f(x1, x2), or equivalently

F =
{
(x1, x2, x3) : x3 = f(x1, x2)

}
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2.1. Modelling

1. Select variables (attributes).

2. Specify range of variables.

3. Sample, measure data.

4. Identify model F : Induction.

5. Describe constructive formulation f(·).

� Properties: Deduction, Simulation.

� Interpretation: Phenomenology, Semantics.

� Application: Decision Making.
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How do we encode a system into a formal model...?
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2.2. Observables

Proposition 1: “The only meaningful physical events which occur
in the world are represented by the evaluation of observables on
states.”

Proposition 2: “Every observable can be regarded as a mapping
from states to real numbers.”

Definition 1 (Observables). An observable of a system is some
characteristic which can, in principle, be measured. It is defined as a
mapping from state space X to the set of real numbers :

ξj : X → R j = 1, 2, . . . , n+m + l .

Equation of state :

fi (ξ1, . . . , ξn+m+l) = 0 i = 1, 2, . . . ,m . (1)
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Example:

Let the system under consideration be a closed vessel containing an
ideal gas. Take X to be the positions and velocities of the molecules
making up the gas, and define the three observables for properties of
the gas

P (x) = pressure when in state x,

V (x) = volume when in state x,

T (x) = temperature when in state x .

Then the ideal gas law asserts the single equation of state

f(P, V, T ) = 0 specifically f(p, v, t) = pv − t .
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2.3. Uncertainty

An observable ξ on X induces an equivalence relation

Eξ(x, x′) = 1 if and only if ξ(x) = ξ(x′)

and hence equivalence classes [x]ξ for which elements in X are indis-
tinguishable w.r.t ξ :

[x]ξ =
{
x′ : ξ(x′) = ξ(x)

}
.

The set of equivalence classes on X is called quotient set and is denoted
by X/Eξ. Therefore, what we actually observe is usually not X but
the set of reduced states

X/Eξ =
{
[x]ξ

}
.

The modelling process itself can be discussed in terms of the linkage
between observables. See your lecture notes for more details.
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2.4. Parameters, Inputs, Outputs

Observables whose values remain fixed for every state x ∈ X are called
parameters, ξi(x) = θi. For l parameters we write i = n+m+ 1, n+
m + 2, . . . , n+m + l,

f (ξ1, . . . , ξn+m; θ1, θ2, . . . , θl) = 0 .

If in addition m observables ξn+1, ξn+2, . . . , ξn+m are functions of the
remaining observables ξ1, ξ2, . . . , ξn, we use the notation

u .= [ξ1, ξ2, . . . , ξn]
y .= [ξn+1, ξn+2, . . . , ξn+m]
θ

.= [θn+m+1, θn+m+2, . . . , θn+m+l]

and obtain for the equation of state,

f(u;θ) = y . (2)

We may then interpret the independent observables u, as inputs to
the system and dependent observables y as the resulting outputs.
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2.5. The Graph of a System

State equation (2) suggest a model where f(·) is a mapping relating
inputs u directly to the outputs y without considering ‘inner states’ :

f : U → Y (3)
u �→ y .

Then any specific model describes a graph F of the mapping which
represents system S :

F ⊂ U × Y (4)

Example:
Let f : X → R be defined by the set of ordered triples

(
u1, u2, f(u1, u2)

)
such that each triple is belonging to R

3, forming a surface

F =
{
(u1, u2, y) ∈ R

3 : y = f(u1, u2)
}
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3. Dynamic Systems

A dynamical system is one which changes in time.

Example: Newton’s particle mechanics.

Newton’s second law defines the force F , acting on a mass point m,
to be the rate of change of momentum m · v :

F =
d(m · v)

dt
= m · d

2x

dt2
.

where v denotes velocity (rate of change of position). With parameter
a,

F (x, v) = −a · x .

We obtain the equation of motion

m · d
2x

dt2
= −a · x .
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The equation of motion is solved for x as an explicit function of
time. Alternative formulation of two first order ODEs :

dx

dt
= v

d(m · v)
dt

= −a · x .

Knowing the displacement and moment at an instant of time suffices
to specify the state of the system hence the positions and momenta
are called state variables.

In general,

dxi

dt
= fi (x1, . . . , xr) .

�� �� � � Back View



Section 3: Dynamic Systems 15

Let ξ, ξ′ bet two observables providing measurements of the posi-
tion x and its derivative. The phase space of the system is :

ẋ

x

X/Eξ′

X/Eξ
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Matrix formulation : Let x = [x1, . . . , xr]
T ∈ R

r and write,

dx

dt

.= ẋ such that ẋ = Fx (5)

where F is a r × r matrix, F ∈ R
r×r, with constant coefficients. Let

f : R
r → R

r

x �→ f(x) = Fx .

That is, a vector x = [x1, . . . , xr]
T ∈ R

r is mapped to a vector f(x) =(
f1(x), . . . , fr(x)

) ∈ R
r with

fi(x) =
r∑

j=1

aijxj ,

where aij are the elements of the ith row of matrix F. Thus F is
a representation of the mapping f . The solution of (5), for all t, is
obtained by integrating (5). The result is a family of solution curves,
called trajectories.
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4. Summary

� Modelling:

� Variables, data, formal models.

� The modelling process itself, linkage.

� Observables, equation of state.

� System Models:

� Parameters, inputs, outputs.

� A formal system is a map, graph.

� Dynamic Systems:

� State-space representation.
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5. Further Reading

1. Wolkenhauer, O. : Data Engineering. Lecture Notes.

2. Priestley, M.B. : Spectral Analysis and Time Series.
Academic Press, 1981.

3. Ljung, L. : System Identification. Prentice Hall, 1987.

4. Gershenfeld, N. : The Nature of Mathematical Modelling.
Cambridge University Press, 1999.
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Rosen’s Modelling Relation

Phenomenal World Mathematical World

causal entailment inferential entailment

ambience the self

NATURAL
SYSTEM

FORMAL
SYSTEM

decoding

encoding

Natural Law

propositions, axioms,
production rules,

algorithms.

components, function
phenomena,
organisation.
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