SYSTEM ANALYSIS DATA, SYSTEMS, MODELLING

Olaf Wolkenhauer

Control Systems Centre

o.wolkenhauer@umist.ac.uk

www.csc.umist.ac.uk/people/wolkenhauer.htm

Contents

1	Learning Objectives	3
2	System Analysis	4
	2.1 Modelling \ldots	5
	2.2 Observables \ldots	7
	2.3 Uncertainty	9
	2.4 Parameters, Inputs, Outputs	10
	2.5 The Graph of a System	11
3	Dynamic Systems	13
4	Summary	17
5	Further Reading	18

 $\mathbf{2}$

1. Learning Objectives

- □ Scientific theories deal with concepts, not with reality.
- □ System theory uses mathematical concepts to describe aspects of the 'real-world'.
- □ A formal model is a graph, i.e a subset of a product space formed by variables characterising a system or process.
- □ An observable is some characteristic of a system which can, in principle, be measured.
- $\hfill\square$ A state is a specification of a system or process at a specific instant.
- □ A dynamic system or process is a system in which the state changes with time.
- Differential equations are a common way to encode dynamics.
- □ There are many alternative and equally valid ways to represent a system...

2. System Analysis

- \triangleright The Modelling Relation.
- ▷ Natural System: physical, biological, financial, social,...

▶ Variables: $x_1 \in X_1, x_2 \in X_2, x_3 \in X_3$ taking values from $X_1 = \{1, 2, 3, 4\}, X_2 = \{1, 2, 3, 4\}, X_3 = \{2, 8, 18, 32\}$ ▶ Data: $\mathbf{M} = \{\mathbf{m}_j\}, j = 1, 2, ..., d$, where

 $\mathbf{m}_1 = (1, 1, 1), \ \mathbf{m}_2 = (2, 2, 8), \ \mathbf{m}_3 = (3, 3, 18), \ \mathbf{m}_4 = (4, 4, 32).$

▷ Model: $x_3^2 = x_1^2 + x_2^2$, $x_3 = f(x_1, x_2)$, or equivalently

$$F = \left\{ (x_1, x_2, x_3) : x_3 = f(x_1, x_2) \right\}$$

2.1. Modelling

- 1. Select variables (attributes).
- 2. Specify range of variables.
- 3. Sample, measure data.
- 4. Identify model F: Induction.
- 5. Describe constructive formulation $f(\cdot)$.
- \triangleright Properties: *Deduction*, Simulation.
- ▷ Interpretation: Phenomenology, Semantics.
- ▷ Application: Decision Making.

How do we *encode* a system into a *formal model*...?

2.2. Observables

- **Proposition 1:** "The only meaningful physical events which occur in the world are represented by the evaluation of observables on states."
- **Proposition 2:** "Every observable can be regarded as a mapping from states to real numbers."

Definition 1 (Observables). An *observable* of a system is some characteristic which can, in principle, be measured. It is defined as a mapping from state space X to the set of real numbers :

$$\xi_j \colon X \to \mathbb{R}$$
 $j = 1, 2, \dots, n + m + l$.

Equation of state :

$$f_i(\xi_1, \dots, \xi_{n+m+l}) = 0$$
 $i = 1, 2, \dots, m$. (1)

Example:

Let the system under consideration be a closed vessel containing an ideal gas. Take X to be the positions and velocities of the molecules making up the gas, and define the three observables for properties of the gas

$$P(x) =$$
 pressure when in state x ,
 $V(x) =$ volume when in state x ,
 $T(x) =$ temperature when in state x

.

Then the ideal gas law asserts the single equation of state

f(P, V, T) = 0 specifically f(p, v, t) = pv - t.

2.3. Uncertainty

An observable ξ on X induces an *equivalence relation*

$$E_{\xi}(x, x') = 1$$
 if and only if $\xi(x) = \xi(x')$

and hence $equivalence\ classes\ [x]_{\xi}$ for which elements in X are indistinguishable w.r.t ξ :

$$[x]_{\xi} = \left\{ x' \ : \ \xi(x') = \xi(x) \right\} \, .$$

The set of equivalence classes on X is called *quotient set* and is denoted by X/E_{ξ} . Therefore, what we actually observe is usually not X but the set of *reduced states*

$$X/E_{\xi} = \{ [x]_{\xi} \} .$$

The modelling process itself can be discussed in terms of the *linkage* between observables. See your lecture notes for more details.

2.4. Parameters, Inputs, Outputs

Observables whose values remain fixed for every state $x \in X$ are called *parameters*, $\xi_i(x) = \theta_i$. For l parameters we write $i = n + m + 1, n + m + 2, \ldots, n + m + l$,

$$f(\xi_1,\ldots,\xi_{n+m};\ \theta_1,\theta_2,\ldots,\theta_l)=0$$
.

If in addition *m* observables $\xi_{n+1}, \xi_{n+2}, \ldots, \xi_{n+m}$ are functions of the remaining observables $\xi_1, \xi_2, \ldots, \xi_n$, we use the notation

$$\mathbf{u} \doteq [\xi_1, \xi_2, \dots, \xi_n]$$

$$\mathbf{y} \doteq [\xi_{n+1}, \xi_{n+2}, \dots, \xi_{n+m}]$$

$$\boldsymbol{\theta} \doteq [\theta_{n+m+1}, \theta_{n+m+2}, \dots, \theta_{n+m+l}]$$

and obtain for the equation of state,

$$f(\mathbf{u};\boldsymbol{\theta}) = \mathbf{y} \ . \tag{2}$$

We may then interpret the independent observables \mathbf{u} , as *inputs* to the system and dependent observables \mathbf{y} as the resulting *outputs*.

2.5. The Graph of a System

State equation (2) suggest a model where $f(\cdot)$ is a mapping relating inputs **u** directly to the outputs **y** without considering 'inner states' :

$$\begin{array}{rccc} f : U & \to & Y \\ \mathbf{u} & \mapsto & \mathbf{y} \ . \end{array}$$
 (3)

Then any specific model describes a graph F of the mapping which represents system \mathfrak{S} :

$$F \subset U \times Y \tag{4}$$

Example:

Let $f: X \to \mathbb{R}$ be defined by the set of ordered triples $(u_1, u_2, f(u_1, u_2))$ such that each triple is belonging to \mathbb{R}^3 , forming a surface

$$F = \left\{ (u_1, u_2, y) \in \mathbb{R}^3 \colon y = f(u_1, u_2) \right\}$$

3. Dynamic Systems

A *dynamical system* is one which changes in time.

Example: Newton's particle mechanics.

Newton's second law *defines* the force F, acting on a mass point m, to be the rate of change of momentum $m \cdot v$:

$$F = \frac{\mathrm{d}(m \cdot v)}{\mathrm{d}t} = m \cdot \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} \,.$$

where v denotes velocity (rate of change of position). With parameter a,

$$F(x,v) = -a \cdot x \; .$$

We obtain the equation of motion

$$m \cdot \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -a \cdot x \; .$$

Section 3: Dynamic Systems

The equation of motion is solved for x as an explicit function of time. Alternative formulation of two first order ODEs :

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v$$
$$\frac{\mathrm{d}(m \cdot v)}{\mathrm{d}t} = -a \cdot x \; .$$

Knowing the displacement and moment at an instant of time suffices to specify the *state* of the system hence the positions and momenta are called *state variables*.

In general,

$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = f_i\left(x_1, \dots, x_r\right) \; .$$

Section 3: Dynamic Systems

Let ξ, ξ' bet two observables providing measurements of the position x and its derivative. The *phase space* of the system is :

Section 3: Dynamic Systems

Matrix formulation : Let $\mathbf{x} = [x_1, \ldots, x_r]^T \in \mathbb{R}^r$ and write,

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} \doteq \dot{\mathbf{x}} \quad \text{such that} \quad \dot{\mathbf{x}} = \mathbf{F}\mathbf{x} \tag{5}$$

where **F** is a $r \times r$ matrix, $\mathbf{F} \in \mathbb{R}^{r \times r}$, with constant coefficients. Let

$$f: \ \mathbb{R}^r \ \to \ \mathbb{R}^r$$
$$\mathbf{x} \ \mapsto \ f(\mathbf{x}) = \mathbf{F}\mathbf{x}$$

That is, a vector $\mathbf{x} = [x_1, \dots, x_r]^T \in \mathbb{R}^r$ is mapped to a vector $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_r(\mathbf{x})) \in \mathbb{R}^r$ with

$$f_i(\mathbf{x}) = \sum_{j=1}^r a_{ij} x_j \; ,$$

where a_{ij} are the elements of the *i*th row of matrix **F**. Thus **F** is a representation of the mapping f. The solution of (5), for all t, is obtained by integrating (5). The result is a family of solution curves, called *trajectories*.

4. Summary

 \Box Modelling:

 $\,\triangleright\,$ Variables, data, formal models.

 $\triangleright~$ The modelling process itself, linkage.

 $\triangleright\,$ Observables, equation of state.

 \Box System Models:

 $\triangleright~$ Parameters, inputs, outputs.

 $\,\triangleright\,$ A formal system is a map, graph.

□ Dynamic Systems:

 \triangleright State-space representation.

5. Further Reading

- 1. Wolkenhauer, O. : Data Engineering. Lecture Notes.
- 2. Priestley, M.B. : Spectral Analysis and Time Series. Academic Press, 1981.
- 3. Ljung, L. : System Identification. Prentice Hall, 1987.
- Gershenfeld, N. : The Nature of Mathematical Modelling. Cambridge University Press, 1999.

Rosen's Modelling Relation

