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1. Learning Objectives

� Fuzzy clustering groups unlabelled data into a fixed number of
classes and hence can be used to design classifiers.

� Specific fuzzy classifiers can be shown to be formally equivalent to
optimal statistical classifiers.

� If-then rule-based fuzzy classifiers provide an intuitive framework
to interpret data.
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2. Multivariate Analysis

� Separation:

• Discriminant Analysis (exploratory...discriminants)

• Classification (rules...classifiers)

� Grouping:

• Clustering
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3. Classification, Discrimination

Assumptions:

� The data, mj ∈ R
r, are assumed to comprise c clusters.

� The number of clusters c is assumed to be known.

� A training sample of data is available from each cluster.

✘ Formulate rules for assigning new unclassified (unlabelled) ob-
servations to one of the clusters.
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� Assign to an object (described as a point x in the feature space
X1 × · · · × Xr) a class label C from the set C = {C1, . . . , Cc}.

� Assume that X1 × · · · × Xr coincides with R
r and that have

available a set of (labelled) training data M = {m1, . . . ,md},
mj = [m1j , . . . ,mrj ]

T ∈ R
r.

� Denote by bi ∈ {1, 2, . . . , r} the index of the class label among
{C1, . . . , Cc}, associated with mj .

✘ The problem is to design a classifier, i.e to specify a mapping ψ
such that each object x is associated with one class Ci :

ψ : R
r → C .
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4. Probabilistic Classifier

� Let x and C are random variables.

� Let Pr(Ci) be the prior probability for class Ci, i = 1, . . . , c.

� Denote by p(x|Ci) the class-conditional probability density func-
tion.

✘ Bayesian decision theory: design optimal classifier with a small
error, that is, assign to x a class label C∗ corresponding to the
highest posterior probability, i.e

C∗ = argmax
C

Pr(C|x) .

Where the posterior probability is calculated by

Pr(Ci|x) = Pr(Ci) p(x|Ci)
p(x)

, (1)

p(x) =
∑

k

Pr(Ck) p(x|Ck) .
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4.1. Kernel Density Estimation

� Parzen’s kernel estimator: nonparametric approximation of a
probability density function.

� Let K(x) be a kernel function (also referred to as a Parzen
window) which peaks at zero, is nonnegative, and whose integral
equals one over R

r.

� The multidimensional kernel function centered around mj ∈ R
r

can be expressed in the form

1
hr

K

(
x−mj

h

)
where h determines the window with and hence is a smoothing
parameter.
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� We can approximate the class-conditional probability density
using the sample set M by

p̂(x|Ci) =
1

dCi
hr

∑
j : bj=i

K

(
x−mj

h

)
, mj ∈M ,

where dCi
is the number of elements of M from class Ci.

� Finally, we estimate the prior probabilities in (1) by

P̂ r(Ci) =
dCi

d
.

� Inserting both approximations into (1), we obtain the following
estimate of the posterior probability :

P̂ r(Ci|x) = 1
d · hr · p(x) ·

∑
j : bj=i

K

(
x−mj

h

)
. (2)
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� Introducing an indicator function ζCi
(mj),

ζCi
(mj) =

{
1 , if bj = i, i.e., mj comes from class Ci;
0 , otherwise.

� We can rewrite (2) as

P̂ r(Ci|x) = 1
d
· a1(x) ·

d∑
j=1

ζCi
(mj)K

(
x−mj

h

)
, (3)

where factor a1(x) depends on x but not on the class label.
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� Using the multidimensional Gaussian kernel

1
hr

KG

(
x−mj

h

)
=

1

hr
√

(2π)r
√|Σ| exp

(
− 1
2h2

(
x−mj

)T
A−1

(
x−mj

))
,

(4)

where Σ is the covariance matrix.

� Using the Gaussian kernel we have for the posterior probabilities
(3)

P̂ r(Ci|x) = 1
d
· a1(x) ·

d∑
j=1

ζCi
(mj)KG

(
x−mj

h

)
. (5)
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5. Fuzzy Classifier

� Product inference engine,

� Singleton input data,

� Centre average defuzzifier : ...nonlinear mapping

f : X → Y

x �→ f(x)

where

f(x) =

nR∑
i=1

y
(i)
0 ·

r∏
k=1

µAik
(xk)

nR∑
i=1

r∏
k=1

µAik
(xk)

. (6)
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5.1. Equivalence of Fuzzy and Statistical Classifiers

� From (6), for any class Ci,

Rj : IF x1 is Aj1 AND . . . AND xr is Ajr,
THEN yj

i′ = 1 and yj
i = 0, ∀i = i′, i = 1, . . . , c, j = 1, . . . , d.

where yj
i denotes the ith component of the output vector yj ,

associated with the jth rule.

� Each Ajk is a fuzzy set with membership function

µAjk
: R → [0, 1] .

� We define

µAjk
(x) = exp

(
− (xk − mkj)

2

2h2

)
where h is a parameter and the membership functions evaluate
the similarity of any given x with mj .
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� Let the activation strength (‘firing level’) of the j-th rule is

βj(x) =
r∏

k=1

µAjk
(xk)

= exp

(
− 1
2h2

r∑
k=1

(xk − mkj)
2

)
= exp

(
(x−mj)

TΣ−1(x−mj)
)

.

Where A is an identity matrix.

� We notice that βj(x) differs from the Gaussian kernel (4) only
by a constant. We therefore write

βj(x) = a2 · K
(
x−mj

h

)
.
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� The output of the fuzzy classifier, with respect to class Ci, is
obtained as

yi =

d∑
j=1

yj
i · βj(x)

d∑
j=1

βj(x)
.. equivalent to (6)!

= a3(x) ·
d∑

j=1

yj
i · KG

(
x−mj

h

)
. (7)
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5.2. Conclusions

� Since yj
i functions as an indicator function for mj with respect

to Ci, we find that equations (7) and the posterior probability
of the statistical classifier (5) differ only by a factor which does
not depend on the class i.

� In both cases, for the fuzzy classifier and the statistical classifier
a decision is obtained by choosing the class label for which (7)
and (5) is largest.

� We conclude that a fuzzy system can be shown to be equivalent
to a probabilistic classifier (which is known to be asymptotically
optimal in the Bayesian sense).
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