FUZZY VS STATISTICAL CLASSIFIERS BAYESIAN CLASSIFIER, SINGLETON FUZZY MODEL

Olaf Wolkenhauer

Control Systems Centre

o.wolkenhauer@umist.ac.uk

www.csc.umist.ac.uk/people/wolkenhauer.htm

Contents

1	Learning Objectives	3
2	Multivariate Analysis	4
3	Classification, Discrimination	5
4	Probabilistic Classifier 4.1 Kernel Density Estimation	7 8
5	Fuzzy Classifier 5.1 Equivalence of Fuzzy and Statistical Classifiers	12 13

1. Learning Objectives

- □ Fuzzy clustering groups unlabelled data into a fixed number of classes and hence can be used to design classifiers.
- □ Specific fuzzy classifiers can be shown to be formally equivalent to optimal statistical classifiers.
- □ If-then rule-based fuzzy classifiers provide an intuitive framework to interpret data.

2. Multivariate Analysis

\triangleright Separation:

- Discriminant Analysis (exploratory...discriminants)
- Classification (rules...classifiers)
- ▷ Grouping:
 - Clustering

3. Classification, Discrimination

Assumptions:

- ▷ The data, $\mathbf{m}_j \in \mathbb{R}^r$, are assumed to comprise *c* clusters.
- \triangleright The number of clusters c is assumed to be known.
- ▷ A training sample of data is available from each cluster.

✗ Formulate rules for assigning new unclassified (unlabelled) observations to one of the clusters.

Section 3: Classification, Discrimination

- ▷ Assign to an object (described as a point **x** in the feature space $X_1 \times \cdots \times X_r$) a class label C from the set $C = \{C_1, \ldots, C_c\}$.
- ▷ Assume that $X_1 \times \cdots \times X_r$ coincides with \mathbb{R}^r and that have available a set of (labelled) training data $\mathbf{M} = {\mathbf{m}_1, \dots, \mathbf{m}_d},$ $\mathbf{m}_j = [m_{1j}, \dots, m_{rj}]^T \in \mathbb{R}^r.$
- ▷ Denote by $b_i \in \{1, 2, ..., r\}$ the index of the class label among $\{C_1, ..., C_c\}$, associated with \mathbf{m}_j .

X The problem is to design a classifier, i.e to specify a mapping ψ such that each object **x** is associated with one class C_i :

$$\psi : \mathbb{R}^r \to \mathcal{C}$$
.

4. Probabilistic Classifier

- \triangleright Let **x** and *C* are random variables.
- \triangleright Let $Pr(C_i)$ be the prior probability for class C_i , $i = 1, \ldots, c$.
- ▷ Denote by $p(\mathbf{x}|C_i)$ the class-conditional probability density function.
- **X** Bayesian decision theory: design optimal classifier with a small error, that is, assign to \mathbf{x} a class label C^* corresponding to the highest posterior probability, i.e

$$C^* = \arg \max_C Pr(C|\mathbf{x}) .$$

Where the posterior probability is calculated by

$$Pr(C_i|\mathbf{x}) = \frac{Pr(C_i) \ p(\mathbf{x}|C_i)}{p(\mathbf{x})} , \qquad (1)$$
$$p(\mathbf{x}) = \sum_k Pr(C_k) \ p(\mathbf{x}|C_k) .$$

4.1. Kernel Density Estimation

- ▷ Parzen's kernel estimator: nonparametric approximation of a probability density function.
- ▷ Let $K(\mathbf{x})$ be a *kernel function* (also referred to as a *Parzen window*) which peaks at zero, is nonnegative, and whose integral equals one over \mathbb{R}^r .
- ▷ The multidimensional kernel function centered around $\mathbf{m}_j \in \mathbb{R}^r$ can be expressed in the form

$$\frac{1}{h^r} K\left(\frac{\mathbf{x} - \mathbf{m}_j}{h}\right)$$

where h determines the window with and hence is a *smoothing* parameter.

Section 4: Probabilistic Classifier

▷ We can approximate the class-conditional probability density using the sample set M by

$$\hat{p}(\mathbf{x}|C_i) = \frac{1}{d_{C_i}h^r} \sum_{j: \ b_j=i} K\left(\frac{\mathbf{x} - \mathbf{m}_j}{h}\right) , \qquad \mathbf{m}_j \in \mathbf{M} ,$$

where d_{C_i} is the number of elements of **M** from class C_i .

 \triangleright Finally, we estimate the prior probabilities in (1) by

$$\widehat{Pr}(C_i) = \frac{d_{C_i}}{d}$$

▷ Inserting both approximations into (1), we obtain the following estimate of the posterior probability :

$$\widehat{Pr}(C_i|\mathbf{x}) = \frac{1}{d \cdot h^r \cdot p(\mathbf{x})} \cdot \sum_{j: \ b_j = i} K\left(\frac{\mathbf{x} - \mathbf{m}_j}{h}\right) \ . \tag{2}$$

Section 4: Probabilistic Classifier

 \triangleright Introducing an indicator function $\zeta_{C_i}(\mathbf{m}_j)$,

$$\zeta_{C_i}(\mathbf{m}_j) = \begin{cases} 1 \ , & \text{if } b_j = i, \text{ i.e., } \mathbf{m}_j \text{ comes from class } C_i; \\ 0 \ , & \text{otherwise.} \end{cases}$$

 \triangleright We can rewrite (2) as

$$\widehat{Pr}(C_i|\mathbf{x}) = \frac{1}{d} \cdot a_1(\mathbf{x}) \cdot \sum_{j=1}^d \zeta_{C_i}(\mathbf{m}_j) K\left(\frac{\mathbf{x} - \mathbf{m}_j}{h}\right) , \quad (3)$$

where factor $a_1(\mathbf{x})$ depends on \mathbf{x} but not on the class label.

Section 4: Probabilistic Classifier

▷ Using the multidimensional Gaussian kernel

$$\frac{1}{h^r} K_G\left(\frac{\mathbf{x} - \mathbf{m}_j}{h}\right) = \frac{1}{h^r \sqrt{(2\pi)^r} \sqrt{|\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2h^2} (\mathbf{x} - \mathbf{m}_j)^T \mathbf{A}^{-1} (\mathbf{x} - \mathbf{m}_j)\right) , \qquad (4)$$

where Σ is the covariance matrix.

Using the Gaussian kernel we have for the posterior probabilities
 (3)

$$\widehat{Pr}(C_i|\mathbf{x}) = \frac{1}{d} \cdot a_1(\mathbf{x}) \cdot \sum_{j=1}^d \zeta_{C_i}(\mathbf{m}_j) K_G\left(\frac{\mathbf{x} - \mathbf{m}_j}{h}\right) .$$
(5)

5. Fuzzy Classifier

- \triangleright Product inference engine,
- $\triangleright~$ Singleton input data,
- ▷ Centre average defuzzifier : ...nonlinear mapping

$$\begin{array}{rcccc} f : X & \to & Y \\ \mathbf{x} & \mapsto & f(\mathbf{x}) \end{array}$$

where

$$f(\mathbf{x}) = \frac{\sum_{i=1}^{n_R} y_0^{(i)} \cdot \prod_{k=1}^r \mu_{A_{ik}}(x_k)}{\sum_{i=1}^{n_R} \prod_{k=1}^r \mu_{A_{ik}}(x_k)} .$$
 (6)

5.1. Equivalence of Fuzzy and Statistical Classifiers

▷ From (6), for any class
$$C_i$$
,
 R_j : IF x_1 is A_{j1} AND ... AND x_r is A_{jr} ,
THEN $y_{i'}^j = 1$ and $y_i^j = 0$, $\forall i \neq i'$, $i = 1, ..., c$, $j = 1, ..., d$.

where y_i^j denotes the *i*th component of the output vector \mathbf{y}_j , associated with the *j*th rule.

 \triangleright Each A_{jk} is a fuzzy set with membership function

$$\mu_{A_{jk}} \colon \mathbb{R} \to [0,1] \; .$$

 \triangleright We define

$$\mu_{A_{jk}}(\mathbf{x}) = \exp\left(-\frac{(x_k - m_{kj})^2}{2h^2}\right)$$

where h is a parameter and the membership functions evaluate the similarity of any given **x** with \mathbf{m}_{j} .

Section 5: Fuzzy Classifier

 \triangleright Let the activation strength ('firing level') of the *j*-th rule is

$$\beta_j(\mathbf{x}) = \prod_{k=1}^r \ \mu_{A_{jk}}(x_k)$$
$$= \exp\left(-\frac{1}{2h^2} \sum_{k=1}^r (x_k - m_{kj})^2\right)$$
$$= \exp\left((\mathbf{x} - \mathbf{m}_j)^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{m}_j)\right)$$

Where **A** is an identity matrix.

▷ We notice that $\beta_j(\mathbf{x})$ differs from the Gaussian kernel (4) only by a constant. We therefore write

$$\beta_j(\mathbf{x}) = a_2 \cdot K\left(\frac{\mathbf{x} - \mathbf{m}_j}{h}\right)$$

•

Section 5: Fuzzy Classifier

 \triangleright The output of the fuzzy classifier, with respect to class C_i , is obtained as

$$y^{i} = \frac{\sum_{j=1}^{d} y_{i}^{j} \cdot \beta_{j}(\mathbf{x})}{\sum_{j=1}^{d} \beta_{j}(\mathbf{x})} \qquad \dots \text{ equivalent to } (6)!$$
$$= a_{3}(\mathbf{x}) \cdot \sum_{j=1}^{d} y_{i}^{j} \cdot K_{G}\left(\frac{\mathbf{x} - \mathbf{m}_{j}}{h}\right) \qquad (7)$$

5.2. Conclusions

- ▷ Since y_i^j functions as an indicator function for \mathbf{m}_j with respect to C_i , we find that equations (7) and the posterior probability of the statistical classifier (5) differ only by a factor which does not depend on the class i.
- \triangleright In both cases, for the fuzzy classifier and the statistical classifier a decision is obtained by choosing the class label for which (7) and (5) is largest.
- ▷ We conclude that a fuzzy system can be shown to be equivalent to a probabilistic classifier (which is known to be asymptotically optimal in the Bayesian sense).

References

- Bishop, C.M. : Neural Networks for Pattern Recognition. Clarendon Press, 1996.
- [2] Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, 1981.
- [3] Bezdek, J.C and Pal, S.K. (eds.) : Fuzzy Models for Pattern Recognition. IEEE Press, 1992.
- [4] Fukunaga, K. : Introduction to Statistical Pattern Recognition. 2nd. ed., Academic Press, 1990.
- [5] Höppner, F. et.al. : Fuzzy Cluster Analysis. Wiley, 1999.
- [6] Johnson, R.A. and Wichern, D.W. : Applied Multivariate Statistical Analysis. 4th ed., Prentice Hall, 1998.
- [7] Kuncheva, L. : On the equivalence between fuzzy and statistical

classifiers. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems. Vol. 4, No. 3 (1996), pp. 245–253.

- [8] Pal, S.K. and Mitra, S.: Neuro-Fuzzy Pattern Recognition. Wiley, 1999.
- [9] Ripley, B.D. : Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

