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1. Learning Objectives

O Fuzzy clustering groups unlabelled data into a fixed number of
classes and hence can be used to design classifiers.

[J Specific fuzzy classifiers can be shown to be formally equivalent to
optimal statistical classifiers.

O If-then rule-based fuzzy classifiers provide an intuitive framework
to interpret data.
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2. Multivariate Analysis

> Separation:

e Discriminant Analysis (exploratory...discriminants)

e Classification (rules...classifiers)
> Grouping:

e Clustering
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3. Classification, Discrimination

Assumptions:
> The data, m; € R", are assumed to comprise c clusters.
> The number of clusters ¢ is assumed to be known.

> A training sample of data is available from each cluster.

O Formulate rules for assigning new unclassified (unlabelled) ob-
servations to one of the clusters.

<4< | d 2 | » Back View



Section 3: Classification, Discrimination 6

>> Assign to an object (described as a point x in the feature space
X1 x -+ x X,) a class label C from the set C = {Cy,...,C.}.

> Assume that X; x --- x X, coincides with R” and that have
available a set of (labelled) training data M = {my,... ,mg},
m; = [mlj, e ,mrj]T e R".

> Denote by b; € {1,2,...,r} the index of the class label among
{C1,...,C.}, associated with m,.

[0 The problem is to design a classifier, i.e to specify a mapping v
such that each object x is associated with one class Cj :

v RT—=C.
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4. Probabilistic Classifier
> Let x and C are random variables.
> Let Pr(C;) be the prior probability for class C;, i =1,... ;¢

> Denote by p(x|C;) the class-conditional probability density func-
tion.

[0 Bayesian decision theory: design optimal classifier with a small
error, that is, assign to x a class label C* corresponding to the
highest posterior probability, i.e

Cc* = arg max Pr(C|x) .

Where the posterior probability is calculated by

Pr(C;) p(x[Ci)
p(X) ’ M

ZPT p(x|C) .

Pr(Gilx) =
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4.1. Kernel Density Estimation

> Parzen’s kernel estimator: nonparametric approximation of a
probability density function.

> Let K(x) be a kernel function (also referred to as a Parzen
window) which peaks at zero, is nonnegative, and whose integral
equals one over R”.

> The multidimensional kernel function centered around m; € R"
can be expressed in the form

1 X —m;
K=
e ()

where h determines the window with and hence is a smoothing
parameter.
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> We can approximate the class-conditional probability density
using the sample set M by

S 2 R (5

]b—z

p(x|C;) ) , m; e M,

where d¢; is the number of elements of M from class C;.

> Finally, we estimate the prior probabilities in (1) by

dc,

P’I“(C) yi

> Inserting both approximations into (1), we obtain the following
estimate of the posterior probabﬂity :
™). ©

PHON) = s 3 K (X5

j:bj=i
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> Introducing an indicator function (¢, (m;),

1, ifb; =14, ie., m; comes from class Cj;

Coi(my) = {

0, otherwise.

> We can rewrite (2) as

1 X — my

. d
PHGH) = Y Gelmr (S @)

where factor a;(x) depends on x but not on the class label.
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> Using the multidimensional Gaussian kernel
1 X—m;
- K J ) —
i ( h )
1 T, _1
(x—my)" A7 (x —my) ),

1
ey (o

where X is the covariance matrix.

(4)

> Using the Gaussian kernel we have for the posterior probabilities

(3)

d
PHG) = Y Gelme (™) 6
j=1
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5. Fuzzy Classifier
> Product inference engine,

> Singleton input data,

> Centre average defuzzifier : ...nonlinear mapping
f: X — Y
x = f(x)
where

.Ti y(()l) ) ﬁ MAik(xk)
fx) = = : (6)
Z H KA (xk?)

i=1k=1
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5.1. Equivalence of Fuzzy and Statistical Classifiers
> From (6), for any class C;,

R; :TF z1 is Aj; AND ... AND z, is Aj,.,
THEN ¢/, =landy/ =0,Vi#4,i=1,...,¢,j=1,... ,d.

where yg denotes the " component of the output vector Y
associated with the j* rule.

> Each Aji is a fuzzy set with membership function

pay R— [0,1] .
> We define
(21 — muy)”
:LLAjk(X) = exp (2]12]

where h is a parameter and the membership functions evaluate
the similarity of any given x with m;.
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> Let the activation strength (‘firing level’) of the j-th rule is

Bi(x) =[] ra,. (@)
k=1

Where A is an identity matrix.

> We notice that §;(x) differs from the Gaussian kernel (4) only
by a constant. We therefore write

B0 =an I (X5
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> The output of the fuzzy classifier, with respect to class Cj, is
obtained as

Yy = y equivalent to (6)!
Z Bj(x)
j=1
= az(x) ; y! - Kg <X hm3> (7)
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5.2. Conclusions

i~ Since y! functions as an indicator function for m; with respect
to C;, we find that equations (7) and the posterior probability
of the statistical classifier (5) differ only by a factor which does
not depend on the class 1.

> In both cases, for the fuzzy classifier and the statistical classifier
a decision is obtained by choosing the class label for which (7)
and (5) is largest.

> We conclude that a fuzzy system can be shown to be equivalent
to a probabilistic classifier (which is known to be asymptotically
optimal in the Bayesian sense).
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