FUZZY INFERENCE ENGINES Composition and Individual-Rule Based Composition, Non-Linear Mappings

Olaf Wolkenhauer

Control Systems Centre

o.wolkenhauer@umist.ac.uk

www.csc.umist.ac.uk/people/wolkenhauer.htm

Contents

44

◀

1	Ap	proximate Reasoning	4	
	1.1	Modus Ponens	6	
	1.2	Compositional Rule of Inference	7	
	1.3	Fuzzy Implication Operators	9	
2	Composition-Based Inference			
	2.1	The Algorithm	12	
3	Ind	ividual-Rule Based Inference	13	
	3.1	The Algorithm	14	
	3.2	Example: Individual-Rule Based Inference	16	
	3.3	Minimum Inference Engine	17	
	3.4	Product Inference Engine	18	
	3.5	Singleton Inputs	19	
	3.6	Dienes-Rescher Inference Engine	21	
	3.7	Zadeh Inference Engine	22	

Back

View

	3.8Lukasiewicz Inference Engine3.9Singleton Input	
4	Fuzzy Systems as Nonlinear Mappings4.1 Defuzzification4.2 Product Inference Engine with Singleton Input Data	
5	Comparison of Inference Engines	31

Comparison of Inference Engines

1. Approximate Reasoning

Let *proposition* take the form

"x is A"

with *fuzzy variable* **x** taking values in X and A modelled by a fuzzy set defined on the *universe of discourse* X by *membership function* $\mu: X \to [0, 1].$

A compound statement,

" \mathbf{x} is A AND \mathbf{y} is B"

is a *fuzzy set* $A \cap B$ in $X \times Y$ with

$$\mu_{A\cap B}(x,y) = T\big(\mu_A(x),\mu_B(y)\big)$$

For the sake of simplicity we consider a single rule of type

IF \mathbf{x} is A, THEN \mathbf{y} is B

which can be regarded as a *fuzzy relation*

$$egin{array}{rcl} R: & X imes Y &
ightarrow & [0,1] \ & (x,y) & \mapsto & R(x,y) \end{array}$$

where R(x, y) is interpreted as the strength of relation between x and y. Viewed as a fuzzy set, with

$$\mu_R(x,y) \doteq R(x,y)$$

denoting the degree of membership in the (fuzzy) subset R, $\mu_R(x, y)$ is computed by means of a *fuzzy implication*.

1.1. Modus Ponens

The (generalised) *modus ponens* provides a mechanism for inference :

Implication:	IF \mathbf{x} is A , THEN \mathbf{y} is B .
Premise:	\mathbf{x} is A' .

Conclusion:

 \mathbf{y} is B'.

In terms of fuzzy relations the output fuzzy set B' is obtained as the relational sup-t composition, $B' = A' \circ R$.

The computation of the conclusion $\mu_{B'}(y)$ is realised on the basis of what is called the *compositional rule of inference*.

1.2. Compositional Rule of Inference

Given $\mu_{A'}(x)$, and $\mu_R(x, y)$, $\mu_{B'}(y)$ is found by generalising the 'crisp' rule (from functions to relations..)

IF
$$\mathbf{x} = a$$
 AND $\mathbf{y} = f(\mathbf{x})$, THEN $y = f(a)$

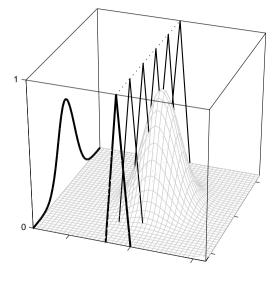
The inference can be described in three steps :

- 1. Extension of A' to $X \times Y$, i.e $\mu_{A'_{ext}}(x, y) = \mu_{A'}(x)$.
- 2. Intersection of A'_{ext} with R, i.e

$$\mu_{A'_{\text{ext}}\cap R}(x,y) = T\big(\mu_{A'_{\text{ext}}}(x,y),\mu_R(x,y)\big) \qquad \forall \ (x,y)$$

3. Projection of $A'_{ext} \cap R$ on Y, i.e

$$\mu_{B'}(y) = \sup_{x \in X} \mu_{A'_{ext} \cap R}(x, y) = \sup_{x \in X} T(\mu_{A'_{ext}}(x, y), \ \mu_R(x, y))$$
(1)



1.3. Fuzzy Implication Operators

▷ Dienes-Rescher implication:

$$\mu_R(x, y) = \max(1 - \mu_A(x), \mu_B(y)) .$$
 (2)

▷ Zadeh implication:

$$\mu_R(x,y) = \max\left(\min(\mu_A(x),\mu_B(y)), 1 - \mu_A(x)\right) .$$
 (3)

 \triangleright Lukasiewicz implication:

$$\mu_R(x, y) = \min(1, 1 - \mu_A(x) + \mu_B(y))$$
(4)

▷ Gödel implication:

$$\mu_R(x,y) = \begin{cases} 1 & \text{if } \mu_A(x) \le \mu_B(y), \\ \mu_B(y) & \text{otherwise.} \end{cases}$$
(5)

Section 1: Approximate Reasoning

▷ Minimum implication:

$$\mu_R(x,y) = \min(\mu_A(x),\mu_B(y)) \tag{6}$$

▷ *Product implication:*

$$\mu_R(x,y) = \mu_A(x) \cdot \mu_B(y) \tag{7}$$

2. Composition-Based Inference

The way rules are combined, depends on the interpretation for what a set of rules should mean. If rules are viewed as *independent conditional statements*, then a reasonable mechanism for aggregating n_R individual rules R_i (fuzzy relations) is the union :

$$R \doteq \bigcup_{i=1}^{n_R} R_i$$

= $S(\mu_{R^1}(\mathbf{x}, y), \dots, \mu_{R^n_R}(\mathbf{x}, y))$. (8)

On the other hand, if rules are seen as *strongly coupled conditional statements*, their combination should employ an intersection operator :

$$R \doteq \bigcap_{i=1}^{n_R} R_i$$

= $T(\mu_{R^1}(\mathbf{x}, y), \dots, \mu_{R^n_R}(\mathbf{x}, y))$. (9)

2.1. The Algorithm

For the n_R fuzzy if-then rules of the *conjunctive linguistic model* R_i : IF x_1 is A_{i1} AND x_2 is A_{i2} ...AND x_r is A_{ir} , THEN y is B_i

Step 1: Determine the fuzzy set membership functions

$$\mu_{A_{i1} \times \dots \times A_{ir}}(x_1, \dots, x_r) \doteq T(\mu_{A_{i1}}(x_1), \dots, \mu_{A_{ir}}(x_r)) .$$
(10)

Step 2: $\mu_{R_i}(\mathbf{x}, y), i = 1, \dots, n_R$, is calculated according to any fuzzy implication (2)-(7).

Step 3: $\mu_R(\mathbf{x}, y)$ is determined according to (8) or (9).

Step 4: Finally, for an input A', the output B' is

$$\mu_{B'}(y) = \sup_{\mathbf{x} \in X} T\big(\mu_{A'}(\mathbf{x}), \mu_R(\mathbf{x}, y)\big) .$$
(11)

3. Individual-Rule Based Inference

Given input fuzzy set A' in X, the fuzzy set B'_i in Y is given by the generalised modus ponens (1), i.e

$$\mu_{B_i'}(y) = \sup_{\mathbf{x} \in X} T\left(\mu_{A'}(\mathbf{x}), \mu_{R_i}(\mathbf{x}, y)\right) \qquad i = 1, \dots, n_R \qquad (12)$$

The output of the fuzzy inference engine from the union

$$\mu_{B'}(y) = S\big(\mu_{B'_1}(y), \dots, \mu_{B'_r}(y)\big)$$
(13)

or intersection

$$\mu_{B'}(y) = T\big(\mu_{B'_1}(y), \dots, \mu_{B'_r}(y)\big) \tag{14}$$

of the individual output fuzzy sets B'_1, \ldots, B'_r .

3.1. The Algorithm

Step 1: Determine the fuzzy set membership functions

$$\mu_{A_{i1} \times \dots \times A_{ir}}(x_1, \dots, x_r) \doteq T(\mu_{A_{i1}}(x_1), \dots, \mu_{A_{ir}}(x_r)) .$$
(10)

- **Step 2**: Equation (10) is viewed as the fuzzy set μ_A in the fuzzy implications (2)-(7) and $\mu_{R_i}(\mathbf{x}, y)$, $i = 1, ..., n_R$, is calculated according to any of the implications.
- **Step 3:** For a given input fuzzy set A' in X, determine the output fuzzy set B'_i in Y for each rule R_i according to the generalised modus ponens (1), i.e

$$\mu_{B'_i}(y) = \sup_{\mathbf{x} \in X} T\big(\mu_{A'}(\mathbf{x}), \mu_{R_i}(\mathbf{x}, y)\big)$$
(12)

for $i = 1, ..., n_R$.

Step 4: The output of the fuzzy inference engine is obtained from either the union

$$\mu_{B'}(y) = S\big(\mu_{B'_1}(y), \dots, \mu_{B'_r}(y)\big) \tag{13}$$

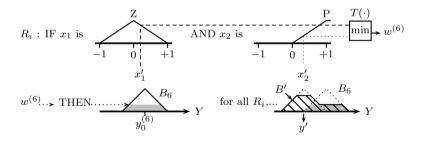
or intersection

$$\mu_{B'}(y) = T\left(\mu_{B'_1}(y), \dots, \mu_{B'_r}(y)\right)$$
(14)

of the individual output fuzzy sets B'_1, \ldots, B'_r .

3.2. Example: Individual-Rule Based Inference

- \triangleright Minimum inference.
- \triangleright Singleton input.
- \triangleright Union intersection.



3.3. Minimum Inference Engine

 $\triangleright~$ Individual-rule based inference.

\triangleright Union combination (13).

- \triangleright Fuzzy implication (6).
- $\triangleright\,$ Max. for all the *t*-conorm operators.
- \triangleright Using (6) and the min for for all *t*-norm operators.

We obtain from (12) and (13) :

$$\mu_{B'}(y) = \max_{i=1,\dots,n_R} \left\{ \sup_{\mathbf{x}\in X} \min(\mu_{A'}(\mathbf{x}), \mu_{A_{i1}}(x_1), \dots, \mu_{A_{ir}}(x_r), \mu_{B_i}(y)) \right\}$$
(15)

3.4. Product Inference Engine

- $\triangleright~$ Individual-rule based inference.
- \triangleright Union combination (13).
- \triangleright Fuzzy implication (7).
- $\triangleright\,$ Max. for all the *t*-conorm operators.
- \triangleright Using (7) and the algebraic product for all *t*-norm operators

We obtain from (12) and (13):

$$\mu_{B'}(y) = \max_{i=1,\dots,n_R} \left\{ \sup_{\mathbf{x}\in X} \left(\mu_{A'}(\mathbf{x}) \cdot \prod_{k=1}^r \mu_{A_{ik}}(x_k) \cdot \mu_{B_i}(y) \right) \right\}$$
(16)

3.5. Singleton Inputs

Let the fuzzy set A' is a *singleton*, that is, if we consider 'crisp' input data,

$$\mu_{A'}(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} = \mathbf{x}' \\ 0 & \text{otherwise,} \end{cases}$$
(17)

where \mathbf{x}' is some point in X. Substituting (17) in

- (15) (Minimum Inference Engine) and
- (16) (Product Inference Engines),

we find that the maximum

 $\sup_{\mathbf{x}\in X}$

is achieved at

$$\mathbf{x} = \mathbf{x}'$$
.

Section 3: Individual-Rule Based Inference

Hence, the *Minimum Inference Engine* (15) reduces to,

$$\mu_{B'}(y) = \max_{i=1,\dots,n_R} \left\{ \min \left(\mu_{A_{i1}}(x_1'),\dots,\mu_{A_{ir}}(x_r'),\mu_{B_i}(y) \right) \right\}$$
(18)

and the *Product Inference Engine* (16) reduces to

$$\mu_{B'}(y) = \max_{i=1,\dots,n_R} \left\{ \prod_{k=1}^r \ \mu_{A_{ik}}(x'_k) \cdot \mu_{B_i}(y) \right\}$$
(19)

 \bigstar A disadvantage of the minimum and product inference engines is that

 \triangleright for some $\mathbf{x} \in X$, $\mu_{A_ik}(x_k)$ is very small,

 \triangleright then $\mu_{B'}(y)$ obtained from (15) and (16) will be very small.

3.6. Dienes-Rescher Inference Engine

▷ Using individual-rule based inference.

\triangleright Intersection combination (14).

- \triangleright Implication (2).
- \triangleright Using the min *t*-norm in (14) and (10).
- We obtain from (12):

$$\mu_{B'}(y) = \min_{i=1,\dots,n_R} \left\{ \sup_{\mathbf{x}\in X} \min\left[\mu_{A'}(\mathbf{x}), \\ \max\left(1 - \min_{k=1,\dots,r} \left(\mu_{A_{ik}}(x_k)\right), \mu_{B_i}(y)\right)\right] \right\}$$
(20)

3.7. Zadeh Inference Engine

▷ Using individual-rule based inference.

\triangleright Intersection combination (14).

- \triangleright Implication (3).
- \triangleright Using *t*-norm min in (14) and (10).
- We obtain from (12):

$$\mu_{B'}(y) = \min_{i=1,\dots,n_R} \left\{ \sup_{\mathbf{x}\in X} \min[\mu_{A'}(\mathbf{x}), \max(\min[\mu_{A_{i1}}(x_1),\dots,\mu_{A_{ir}}(x_r),\mu_{B_i}(y)], \\ 1 - \min_{k=1,\dots,r}(\mu_{A_{ik}}(x_k))) \right\}$$
(21)

3.8. Lukasiewicz Inference Engine

▷ Using individual-rule based inference.

\triangleright Intersection combination (14).

- \triangleright Implication (4).
- \triangleright Using the min *t*-norm in (14) and (10).
- We obtain from (12):

$$\mu_{B'}(y) = \min_{i=1,...,n_R} \left\{ \sup_{\mathbf{x}\in X} \min[\mu_{A'}(\mathbf{x}), \\ \min(1, 1 - \min_{k=1,...,r}(\mu_{A_{ik}}(x_k)) + \mu_{B_i}(y))] \right\}$$
$$= \min_{i=1,...,n_R} \left\{ \sup_{\mathbf{x}\in X} \min[\mu_{A'}(\mathbf{x}), \\ 1 - \min_{k=1,...,r}(\mu_{A_{ik}}(x_k)) + \mu_{B_i}(y)] \right\}$$
(22)

3.9. Singleton Input

If the fuzzy set A' is a singleton, substituting (17) into the equations of the inference engines (20)-(22), the $\sup_{\mathbf{x}\in X}$ is obtained at $\mathbf{x} = \mathbf{x}'$, leading to the following singleton input inference engines :

 \triangleright From the Dienes-Rescher Inference Engine (20) :

$$\mu_{B'}(y) = \min_{i=1,\dots,n_R} \left\{ \max\left[1 - \min_{k=1,\dots,r} \left(\mu_{A_{ik}}(x'_k)\right), \mu_{B_i}(y)\right] \right\}$$

 \triangleright From the Zadeh Inference Engine (21) :

$$\mu_{B'}(y) = \min_{i=1,\dots,n_R} \left\{ \max\left[\min\left(\mu_{A_{i1}}(x'_1),\dots,\mu_{A_{ir}}(x'_r),\mu_{B_i}(y)\right), 1 - \min_{k=1,\dots,r}\left(\mu_{A_{ik}}(x'_i)\right)\right] \right\}$$

 \triangleright From the Lukasiewicz Inference Engine (22) :

$$\mu_{B'}(y) = \min_{i=1,\dots,n_R} \left\{ 1, 1 - \min_{k=1,\dots,r} \left(\mu_{A_{ik}}(x'_i) \right) + \mu_{B_i}(y) \right\}$$

4. Fuzzy Systems as Nonlinear Mappings

Linguistic model:

 R_i : IF x_1 is A_{i1} AND x_2 is A_{i2} ...AND x_r is A_{ir} , THEN y is B_i

Let the input data be crisp, i.e substituting (17) into the product inference engine (16), we have

$$\mu_{B'}(y) = \max_{i=1,\dots,n_R} \left\{ \prod_{k=1}^r \ \mu_{A_{ik}}(x'_k) \cdot \mu_{B_i}(y) \right\} \ . \tag{23}$$

4.1. Defuzzification

- ▷ A *defuzzifier* is a mapping from the fuzzy set B' in Y to a point y' in Y.
- ▷ To obtain a single-valued numerical output from the inference engines, one has to somehow capture the information given in $\mu_{B'}(y)$ by a single number.
- ▷ The centre of gravity defuzzifier determines y' as the centre of the area under the membership function $\mu_{B'}(y)$:

$$y' \doteq \frac{\int_Y \mu_{B'}(y) \cdot y \, \mathrm{d}y}{\int_Y \mu_{B'}(y) \, \mathrm{d}y} \tag{24}$$

★ The main problem with this defuzzifier is the calculation of the integral for irregular shapes of $\mu_{B'}(y)$.

Section 4: Fuzzy Systems as Nonlinear Mappings

- ▷ Since the fuzzy set B' is the union or intersection of n_R fuzzy sets, the weighted average of the centres of the n_R fuzzy sets provides a reasonable approximation of (24).
- ▷ Let $y_0^{(i)}$ be the centre of the *i*th fuzzy set and $w^{(i)}$ be its height, the *center average defuzzifier* calculates y' as

$$y' \doteq \frac{\sum_{i=1}^{n_R} y_0^{(i)} \cdot w^{(i)}}{\sum_{i=1}^{n_R} w^{(i)}} .$$
(25)

4.2. Product Inference Engine with Singleton Input Data

- \triangleright Use the centre average defuzzifier (25).
- ▷ The centre of the fuzzy set $\mu_{A_{ik}}(x'_k) \cdot \mu_{B_i}(y)$ determines the centre of B_i , denoted $y_0^{(i)}$ in (25).
- ▷ The height of the i^{th} fuzzy set in (23) is

$$\prod_{k=1}^{r} \mu_{A_{ik}}(x'_k) \cdot \mu_{B_i}(y_0^{(i)}) = \prod_{k=1}^{r} \mu_{A_{ik}}(x'_k)$$

and equals $w^{(i)}$ in (25).

✗ This reduces the fuzzy system to

$$y' = \frac{\sum_{i=1}^{n_R} y_0^{(i)} \cdot \prod_{k=1}^{r} \mu_{A_{ik}}(x'_k)}{\sum_{i=1}^{n_R} \prod_{k=1}^{r} \mu_{A_{ik}}(x'_k)}$$

Section 4: Fuzzy Systems as Nonlinear Mappings

Ĵ

... or in general, we find that the fuzzy system is a nonlinear mapping

$$f : X \to Y$$

 $\mathbf{x} \mapsto f(\mathbf{x})$

where $\mathbf{x} \in X \subset \mathbb{R}^r$ maps to $f(\mathbf{x}) \in Y \subset \mathbb{R}$, a weighted average of the consequent fuzzy sets :

$$f(\mathbf{x}) = \frac{\sum_{i=1}^{n_R} y_0^{(i)} \cdot \prod_{k=1}^r \mu_{A_{ik}}(x_k)}{\sum_{i=1}^{n_R} \prod_{k=1}^r \mu_{A_{ik}}(x_k)} .$$
 (26)

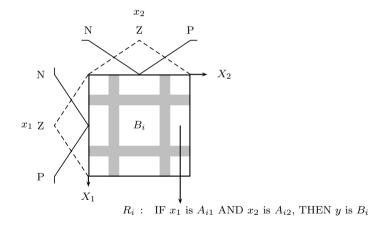
Section 4: Fuzzy Systems as Nonlinear Mappings

Similar to (26), we obtain for a fuzzy system, with

- minimum inference engine (15),
- singleton input (17) and
- centre average defuzzifier (25),

$$f(\mathbf{x}) = \frac{\sum_{i=1}^{n_R} y_0^{(i)} \cdot \prod_{k=1}^{r} \mu_{A_{ik}}(x_k)}{\sum_{i=1}^{n_R} \prod_{k=1}^{r} \mu_{A_{ik}}(x_k)} .$$
 (27)

5. Comparison of Inference Engines



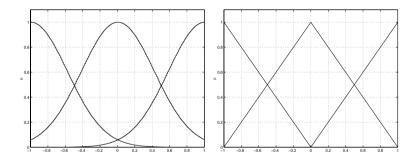


Figure 1: Gaussian and trapecoidal input fuzzy sets.

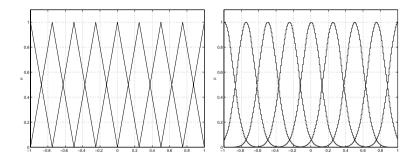


Figure 2: Gaussian and trapecoidal outputs sets B_i .

Section 5: Comparison of Inference Engines

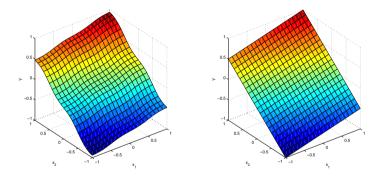


Figure 3: Product inference with Gaussian and trapecoidal sets.

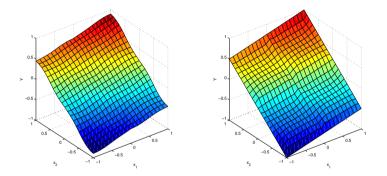


Figure 4: Minimimum inference with Gaussian and trapecoidal sets.

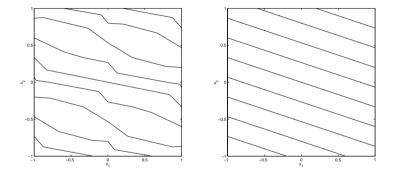


Figure 5: Contourplots for minimum inference (left) vs product inference (right).

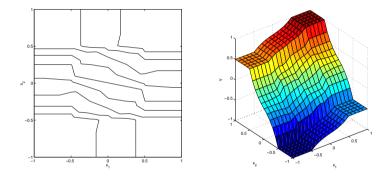


Figure 6: Minimum inference with input fuzzy partition that does not have fully overlapping fuzzy sets.

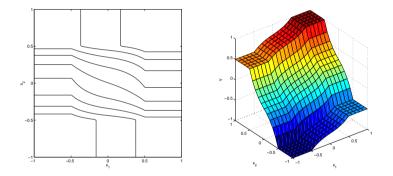


Figure 7: Product inference with non-overlapping input fuzzy partition.

References

- Kruse, R., Gebhardt, J. and Klawonn, F. : Foundations of Fuzzy Systems. Wiley, 1994.
- [2] Wang, L.-X. : A Course in Fuzzy Systems and Control. Prentice Hall, 1997.

