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Section 1: Approximate Reasoning 4

1. Approximate Reasoning

Let proposition take the form

“x is A”

with fuzzy variable x taking values in X and A modelled by a fuzzy
set defined on the universe of discourse X by membership function
µ : X → [0, 1].

A compound statement,

“x is A AND y is B”

is a fuzzy set A ∩ B in X × Y with

µA∩B(x, y) = T
(
µA(x), µB(y)

)
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Section 1: Approximate Reasoning 5

For the sake of simplicity we consider a single rule of type

IF x is A, THEN y is B

which can be regarded as a fuzzy relation

R : X × Y → [0, 1]
(x, y) �→ R(x, y)

where R(x, y) is interpreted as the strength of relation between x and
y. Viewed as a fuzzy set, with

µR(x, y) .= R(x, y)

denoting the degree of membership in the (fuzzy) subset R, µR(x, y)
is computed by means of a fuzzy implication.
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1.1. Modus Ponens

The (generalised) modus ponens provides a mechanism for inference :

Implication: IF x is A, THEN y is B.
Premise: x is A′.

Conclusion: y is B′.

In terms of fuzzy relations the output fuzzy set B′ is obtained as the
relational sup-t composition, B′ = A′ ◦ R.

The computation of the conclusion µB′(y) is realised on the basis
of what is called the compositional rule of inference.
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1.2. Compositional Rule of Inference

Given µA′(x), and µR(x, y), µB′(y) is found by generalising the ‘crisp’
rule (from functions to relations..)

IF x = a AND y = f(x), THEN y = f(a)

The inference can be described in three steps :

1. Extension of A′ to X × Y , i.e µA′ext(x, y) = µA′(x).

2. Intersection of A′
ext with R, i.e

µA′ext∩R(x, y) = T
(
µA′ext(x, y), µR(x, y)

) ∀ (x, y)

3. Projection of A′
ext ∩ R on Y , i.e

µB′(y) = sup
x∈X

µA′
ext∩R(x, y)

= sup
x∈X

T
(
µA′

ext
(x, y), µR(x, y)

)
(1)
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1.3. Fuzzy Implication Operators

� Dienes-Rescher implication:

µR(x, y) = max
(
1− µA(x), µB(y)

)
. (2)

� Zadeh implication:

µR(x, y) = max
(
min

(
µA(x), µB(y)

)
, 1− µA(x)

)
. (3)

� Lukasiewicz implication:

µR(x, y) = min
(
1, 1− µA(x) + µB(y)

)
(4)

� Gödel implication:

µR(x, y) =

{
1 if µA(x) ≤ µB(y),
µB(y) otherwise.

(5)
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� Minimum implication:

µR(x, y) = min
(
µA(x), µB(y)

)
(6)

� Product implication:

µR(x, y) = µA(x) · µB(y) (7)
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2. Composition-Based Inference

The way rules are combined, depends on the interpretation for what
a set of rules should mean. If rules are viewed as independent con-
ditional statements, then a reasonable mechanism for aggregating nR

individual rules Ri (fuzzy relations) is the union :

R
.=

nR⋃
i=1

Ri

= S
(
µR1(x, y), . . . , µRn

R
(x, y)

)
. (8)

On the other hand, if rules are seen as strongly coupled conditional
statements, their combination should employ an intersection opera-
tor :

R
.=

nR⋂
i=1

Ri

= T
(
µR1(x, y), . . . , µRn

R
(x, y)

)
. (9)
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2.1. The Algorithm

For the nR fuzzy if-then rules of the conjunctive linguistic model

Ri : IF x1 is Ai1 AND x2 is Ai2 . . .AND xr is Air, THEN y is Bi

Step 1: Determine the fuzzy set membership functions

µAi1×···×Air
(x1, . . . , xr)

.= T
(
µAi1(x1), . . . , µAir

(xr)
)

.
(10)

Step 2: µRi
(x, y), i = 1, . . . , nR, is calculated according to any fuzzy

implication (2)-(7).

Step 3: µR(x, y) is determined according to (8) or (9).

Step 4: Finally, for an input A′, the output B′ is

µB′(y) = sup
x∈X

T
(
µA′(x), µR(x, y)

)
. (11)
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3. Individual-Rule Based Inference

Given input fuzzy set A′ in X, the fuzzy set B′
i in Y is given by the

generalised modus ponens (1), i.e

µB′
i
(y) = sup

x∈X
T

(
µA′(x), µRi

(x, y)
)

i = 1, . . . , nR (12)

The output of the fuzzy inference engine from the union

µB′(y) = S
(
µB′

1
(y), . . . , µB′

r
(y)

)
(13)

or intersection

µB′(y) = T
(
µB′

1
(y), . . . , µB′

r
(y)

)
(14)

of the individual output fuzzy sets B′
1, . . . , B′

r.
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3.1. The Algorithm

Step 1: Determine the fuzzy set membership functions

µAi1×···×Air
(x1, . . . , xr)

.= T
(
µAi1(x1), . . . , µAir

(xr)
)

.
(10)

Step 2: Equation (10) is viewed as the fuzzy set µA in the fuzzy im-
plications (2)-(7) and µRi

(x, y), i = 1, . . . , nR, is calculated
according to any of the implications.

Step 3: For a given input fuzzy set A′ in X, determine the output
fuzzy set B′

i in Y for each rule Ri according to the generalised
modus ponens (1), i.e

µB′
i
(y) = sup

x∈X
T

(
µA′(x), µRi

(x, y)
)

(12)

for i = 1, . . . , nR.
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Step 4: The output of the fuzzy inference engine is obtained from
either the union

µB′(y) = S
(
µB′

1
(y), . . . , µB′

r
(y)

)
(13)

or intersection

µB′(y) = T
(
µB′

1
(y), . . . , µB′

r
(y)

)
(14)

of the individual output fuzzy sets B′
1, . . . , B′

r.
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3.2. Example: Individual-Rule Based Inference

� Minimum inference.

� Singleton input.

� Union intersection.

Ri : IF x1 is

Z

−1 0 +1

AND x2 is

P

−1 0 +1

x′
1 x′

2

min

T (·)
w(6)

w(6) THEN
Y

B6

y
(6)
0

for all Ri,...
Y

B6

y′

B′
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3.3. Minimum Inference Engine

� Individual-rule based inference.

� Union combination (13).

� Fuzzy implication (6).

� Max. for all the t-conorm operators.

� Using (6) and the min for for all t-norm operators.

We obtain from (12) and (13) :

µB′(y) = max
i=1,... ,nR

{
sup
x∈X

min
(
µA′(x), µAi1(x1), . . . , µAir

(xr), µBi
(y)

)}
(15)
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3.4. Product Inference Engine

� Individual-rule based inference.

� Union combination (13).

� Fuzzy implication (7).

� Max. for all the t-conorm operators.

� Using (7) and the algebraic product for all t-norm operators

We obtain from (12) and (13) :

µB′(y) = max
i=1,... ,nR

{
sup
x∈X

(
µA′(x) ·

r∏
k=1

µAik
(xk) · µBi

(y)

)}
(16)
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3.5. Singleton Inputs

Let the fuzzy set A′ is a singleton, that is, if we consider ‘crisp’ input
data,

µA′(x) =

{
1 if x = x′

0 otherwise,
(17)

where x′ is some point in X. Substituting (17) in

• (15) (Minimum Inference Engine) and

• (16) (Product Inference Engines),
we find that the maximum

sup
x∈X

is achieved at

x = x′ .
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Hence, the Minimum Inference Engine (15) reduces to,

µB′(y) = max
i=1,... ,nR

{
min

(
µAi1(x

′
1), . . . , µAir

(x′
r), µBi

(y)
)}

(18)

and the Product Inference Engine (16) reduces to

µB′(y) = max
i=1,... ,nR

{
r∏

k=1

µAik
(x′

k) · µBi
(y)

}
(19)

✘ A disadvantage of the minimum and product inference engines
is that

� for some x ∈ X, µAik(xk) is very small,

� then µB′(y) obtained from (15) and (16) will be very small.
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3.6. Dienes-Rescher Inference Engine

� Using individual-rule based inference.

� Intersection combination (14).

� Implication (2).

� Using the min t-norm in (14) and (10).

We obtain from (12) :

µB′(y) = min
i=1,... ,nR

{
sup
x∈X

min
[
µA′(x),

max
(
1− min

k=1,... ,r

(
µAik

(xk)
)
, µBi

(y)
)]} (20)
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3.7. Zadeh Inference Engine

� Using individual-rule based inference.

� Intersection combination (14).

� Implication (3).

� Using t-norm min in (14) and (10).

We obtain from (12) :

µB′(y) = min
i=1,... ,nR

{
sup
x∈X

min
[
µA′(x),max

(
min

[
µAi1(x1), . . . , µAir

(xr), µBi
(y)

]
,

1− min
k=1,... ,r

(
µAik

(xk)
))]}

(21)
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3.8. Lukasiewicz Inference Engine

� Using individual-rule based inference.

� Intersection combination (14).

� Implication (4).

� Using the min t-norm in (14) and (10).

We obtain from (12) :

µB′(y) = min
i=1,... ,nR

{
sup
x∈X

min
[
µA′(x),

min
(
1, 1− min

k=1,... ,r

(
µAik

(xk)
)
+ µBi

(y)
)]}

= min
i=1,... ,nR

{
sup
x∈X

min
[
µA′(x),

1− min
k=1,... ,r

(
µAik

(xk)
)
+ µBi

(y)
]}

(22)
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3.9. Singleton Input

If the fuzzy set A′ is a singleton, substituting (17) into the equations
of the inference engines (20)-(22), the supx∈X is obtained at x = x′,
leading to the following singleton input inference engines :

� From the Dienes-Rescher Inference Engine (20) :

µB′(y) = min
i=1,... ,nR

{
max

[
1− min

k=1,... ,r

(
µAik

(x′
k)

)
, µBi

(y)
]}

� From the Zadeh Inference Engine (21) :

µB′(y) = min
i=1,... ,nR

{
max

[
min

(
µAi1(x

′
1), . . . ,

µAir
(x′

r), µBi
(y)

)
, 1− min

k=1,... ,r

(
µAik

(x′
i)

)]}

� From the Lukasiewicz Inference Engine (22) :

µB′(y) = min
i=1,... ,nR

{
1, 1− min

k=1,... ,r

(
µAik

(x′
i)

)
+ µBi

(y)
}
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4. Fuzzy Systems as Nonlinear Mappings

Linguistic model:

Ri : IF x1 is Ai1 AND x2 is Ai2 . . .AND xr is Air, THEN y is Bi

Let the input data be crisp, i.e substituting (17) into the product
inference engine (16), we have

µB′(y) = max
i=1,...,nR

{
r∏

k=1

µAik
(x′

k) · µBi
(y)

}
. (23)
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4.1. Defuzzification

� A defuzzifier is a mapping from the fuzzy set B′ in Y to a point
y′ in Y .

� To obtain a single-valued numerical output from the inference
engines, one has to somehow capture the information given in
µB′(y) by a single number.

� The centre of gravity defuzzifier determines y′ as the centre of
the area under the membership function µB′(y) :

y′ .=

∫
Y

µB′(y) · y dy∫
Y

µB′(y) dy
(24)

✘ The main problem with this defuzzifier is the calculation of the
integral for irregular shapes of µB′(y).
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� Since the fuzzy set B′ is the union or intersection of nR fuzzy
sets, the weighted average of the centres of the nR fuzzy sets
provides a reasonable approximation of (24).

� Let y
(i)
0 be the centre of the ith fuzzy set and w(i) be its height,

the center average defuzzifier calculates y′ as

y′ .=

nR∑
i=1

y
(i)
0 · w(i)

nR∑
i=1

w(i)

. (25)
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4.2. Product Inference Engine with Singleton Input Data

� Use the centre average defuzzifier (25).

� The centre of the fuzzy set µAik
(x′

k) · µBi
(y) determines the

centre of Bi, denoted y
(i)
0 in (25).

� The height of the ith fuzzy set in (23) is
r∏

k=1

µAik
(x′

k) · µBi
(y(i)

0 ) =
r∏

k=1

µAik
(x′

k)

and equals w(i) in (25).

✘ This reduces the fuzzy system to

y′ =

nR∑
i=1

y
(i)
0 ·

r∏
k=1

µAik
(x′

k)

nR∑
i=1

r∏
k=1

µAik
(x′

k)

�� �� � � Back View



Section 4: Fuzzy Systems as Nonlinear Mappings 29

... or in general, we find that the fuzzy system is a nonlinear
mapping

f : X → Y

x �→ f(x)

where x ∈ X ⊂ R
r maps to f(x) ∈ Y ⊂ R, a weighted average of the

consequent fuzzy sets :

f(x) =

nR∑
i=1

y
(i)
0 ·

r∏
k=1

µAik
(xk)

nR∑
i=1

r∏
k=1

µAik
(xk)

. (26)
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Similar to (26), we obtain for a fuzzy system, with

• minimum inference engine (15),

• singleton input (17) and
• centre average defuzzifier (25),

f(x) =

nR∑
i=1

y
(i)
0 ·

r
min
k=1

µAik
(xk)

nR∑
i=1

r
min
k=1

µAik
(xk)

. (27)
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5. Comparison of Inference Engines

N Z P

N

Z

P

x1

x2

X2

X1

Bi

Ri : IF x1 is Ai1 AND x2 is Ai2, THEN y is Bi
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Figure 1: Gaussian and trapecoidal input fuzzy sets.
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Figure 2: Gaussian and trapecoidal outputs sets Bi.
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Figure 3: Product inference with Gaussian and trapecoidal sets.
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Figure 4: Minimimum inference with Gaussian and trapecoidal sets.
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Figure 5: Contourplots for minimum inference (left) vs product inference
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Figure 6: Minimum inference with input fuzzy partition that does not have
fully overlapping fuzzy sets.
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Figure 7: Product inference with non-overlapping input fuzzy partition.
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