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Section 1: Approximate Reasoning 4

1. Approximate Reasoning
Let proposition take the form
“x is A7

with fuzzy variable x taking values in X and A modelled by a fuzzy
set defined on the universe of discourse X by membership function
w: X —[0,1].

A compound statement,
“xis AAND y is B”
is a fuzzy set AN B in X x Y with

pans(,y) =T (pa(x), ne(y))
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Section 1: Approximate Reasoning 5

For the sake of simplicity we consider a single rule of type
IF xis A, THEN y is B
which can be regarded as a fuzzy relation
R: XxY — [0,1]
(z,y) — R(z,y)

where R(x,y) is interpreted as the strength of relation between x and
y. Viewed as a fuzzy set, with

pr(z,y) = R(z,y)

denoting the degree of membership in the (fuzzy) subset R, ur(z,y)
is computed by means of a fuzzy implication.

<4< | d 2 | » Back View



Section 1: Approximate Reasoning 6

1.1. Modus Ponens

The (generalised) modus ponens provides a mechanism for inference :

Implication: IF x is A, THEN y is B.
Premise: x is A’
Conclusion: y is B’

In terms of fuzzy relations the output fuzzy set B’ is obtained as the
relational sup-t composition, B’ = A’ o R.

The computation of the conclusion pp/(y) is realised on the basis
of what is called the compositional rule of inference.
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1.2. Compositional Rule of Inference

i

Given pas(x), and pur(z,y), pp (y) is found by generalising the ‘crisp
rule (from functions to relations..)

IF x =a AND y = f(x), THEN y = f(a)
The inference can be described in three steps :
1. Extension of A’ to X x Y, i.e par_,(x,y) = pa ().
2. Intersection of A’qy with R, i.e
pareanr(@,y) = T(pa g (2,9), ur(2,y) ¥ (2,y)
3. Projection of A/¢;i "R onY, i.e
ppr(y) = sup MAgxtmR(x,y)
zeX

= slelgT(MAgxt (z,9), pr(z,y)) (1)
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1.3. Fuzzy Implication Operators
> Dienes-Rescher implication:
pr(z,y) = max(1 — pa(z), up(y)) -

> Zadeh implication:

pr(2,y) = max (min(pa(z), pp(y)), 1 — pa(z)) -

> Lukasiewicz implication:
pr(z,y) = min(1,1 — pa(z) + pp(y))
> Gadel implication:

1 if x) < ,
pr(T,y) = { pale) < unly)
pp(y) otherwise.
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> Minimum implication:
pr(r,y) = min(pa(z), up(y)) (6)
> Product implication:

pr(2,y) = pa(r) - ps(y) (7)
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2. Composition-Based Inference

The way rules are combined, depends on the interpretation for what
a set of rules should mean. If rules are viewed as independent con-
ditional statements, then a reasonable mechanism for aggregating ngr
individual rules R; (fuzzy relations) is the union :

nR
R=|]J R
=1

= S(,URl (Xv y)’ Y 24 (X’ y)) : (8)

On the other hand, if rules are seen as strongly coupled conditional
statements, their combination should employ an intersection opera-
tor :

3
ey

R R;

@
Il
—

=

tr(%,9)s - s prn (X)) 9)
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2.1. The Algorithm
For the ng fuzzy if-then rules of the conjunctive linguistic model

R; : IF xyis A;71 AND x5 is A;s...AND z, is A;-, THEN y is B;

Step 1: Determine the fuzzy set membership functions

l‘LAiIX"'XAir,»(:L‘17 s 7.'L'T) = T(,U/An (.’I}]_)7 s aIU/A”v(xr)) .

(10)
Step 2: ug,(x,y),i=1,...,ng, is calculated according to any fuzzy
implication (2)-(7).
Step 3: pr(x,y) is determined according to (8) or (9).
Step 4: Finally, for an input A’, the output B’ is
() = sup T (par (), pr(x.9)) (11)
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3. Individual-Rule Based Inference

Given input fuzzy set A’ in X, the fuzzy set B; in Y is given by the
generalised modus ponens (1), i.e

N’Bg (y) = SH‘I;(T(,U,A/ (X)Mu‘Ri, (X,y)) i = 13 <o 5 MR (12)
xE

The output of the fuzzy inference engine from the union

up(y) = S(ps (), - 1 (y)) (13)
or intersection

s (y) =T (s () 1 (y)) (14)
of the individual output fuzzy sets Bj,... , B..
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3.1. The Algorithm
Step 1: Determine the fuzzy set membership functions

:u‘Ailx"'XAir(x17 cee 7IT) = T(,U,A“(I’l), cee a,u'qur(xT’)) .
(10)

Step 2: Equation (10) is viewed as the fuzzy set 4 in the fuzzy im-
plications (2)-(7) and pg,(x,y), i = 1,... ,ng, is calculated
according to any of the implications.

Step 3: For a given input fuzzy set A’ in X, determine the output
fuzzy set B} in Y for each rule R; according to the generalised
modus ponens (1), i.e

pp(y) = sup T (par(x), pr, (%,y)) (12)
xeX

fori=1,... ,ng.
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Step 4: The output of the fuzzy inference engine is obtained from
either the union

e (y) =S (s (¥); - s 1 (y)) (13)
or intersection

ns(y) = T(MB; ), y B!, (y)) (14)
of the individual output fuzzy sets B, ..., Bl.
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3.2. Example: Individual-Rule Based Inference

> Minimum inference.
> Singleton input.

> Union intersection.

Z P T()
Ri:WParis 7~ N AND 25 is A |minfs w(®)
-1 07 +1 :
1 N
zq )
o Be B .. . Bs
6 . N ..
w\®). 5, THEN......... Zf : v for all R;,... A\\\\\\
6) ¥
Yo y/
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3.3. Minimum Inference Engine

Individual-rule based inference.

Union combination (13).

>

>

> Fuzzy implication (6).

> Max. for all the ¢-conorm operators.
>

Using (6) and the min for for all ¢-norm operators.

We obtain from (12) and (13) :

129:4 (y) = ,_{nax {Sup min(,uA/(x), HA; ($1)7 LR /"LAir(xT)? B, (y))
=1,...,"r | xe€X
(15)
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3.4. Product Inference Engine

Individual-rule based inference.

Union combination (13).

>

>

> Fuzzy implication (7).

> Max. for all the ¢-conorm operators.
>

Using (7) and the algebraic product for all t-norm operators

We obtain from (12) and (13) :

i (y) = _max {Sup (uAf () - [T s () - s, (y)>} (16)

MR xeX k=1
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3.5. Singleton Inputs

Let the fuzzy set A’ is a singleton, that is, if we consider ‘crisp’ input
data,

e !
(%) = { (1) ft}):erw?se, (17)
where x’ is some point in X. Substituting (17) in
e (15) (Minimum Inference Engine) and
e (16) (Product Inference Engines),

we find that the maximum

sup
xeX

is achieved at
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Section 3: Individual-Rule Based Inference 20
Hence, the Minimum Inference Engine (15) reduces to,
122:% (y) = i:P%XnR {min(l’(‘Ail ('rll)a sy HA, (x/r)a KUB; (y))} (18)

and the Product Inference Engine (16) reduces to

pp(y) = _max {H uAik(xk)-uBi(y)} (19)

=1,....,nRr Pt}

O A disadvantage of the minimum and product inference engines
is that

> for some x € X, pa,r(zy) is very small,

> then pp/(y) obtained from (15) and (16) will be very small.
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3.6. Dienes-Rescher Inference Engine

> Using individual-rule based inference.
> Intersection combination (14).

> Implication (2).

> Using the min ¢-norm in (14) and (10).
We obtain from (12) :

pp (y) = min {sup min |14 (x),
i=1,...,nR xeX

. (20)
max(l - kzrgl’l.l.l 70(MAI-,€ (xk))’MBl (y))]}

i)
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3.7. Zadeh Inference Engine

> Using individual-rule based inference.
> Intersection combination (14).

> Implication (3).

> Using t-norm min in (14) and (10).

We obtain from (12) :

() = _yuin, {sup i ),
i=1,...,nr | xeXx

min{pa, (21), ..., pa,, (@), 15, (Y)],
1-— k:n?in (,UA“C (Mc)))] } (21)

yeersT
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3.8. Lukasiewicz Inference Engine
> Using individual-rule based inference.
> Intersection combination (14).
> Implication (4).
> Using the min ¢-norm in (14) and (10).
We obtain from (12) :

pp(y) = min {sup min[,uA,(x),
i=1,....nr LxecXx

min(1,1~ min (ua,, (@) + s, (y))]}

yeeesT

=  min {sup min |14 (x),
i=1,....,nr LxecX

-, min (ua, (20)) +ps, (y)] }
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3.9. Singleton Input

If the fuzzy set A’ is a singleton, substituting (17) into the equations
of the inference engines (20)-(22), the sup,cx is obtained at x = x/,
leading to the following singleton input inference engines :

> From the Dienes-Rescher Inference Engine (20) :

p(y) = _min  {max[1 - kzrg{iy,r(uAik(xk)),uBi(y)}}

i=1,... ,nRr
> From the Zadeh Inference Engine (21) :

p(y) = _min {max[min(pa, (1), ...,
i=1,...,ng

Has (@) 15, (y)), 1 = min (jra (27))] }

)

> From the Lukasiewicz Inference Engine (22) :

pp(y) = min {171—k_rglin (uAik(xé)HuBi(y)}

i=1,...,nR =1,...,r
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4. Fuzzy Systems as Nonlinear Mappings
Linguistic model:

Rz' : IF T is A“ AND i) is Aig ...AND Ty is AiT7 THEN Yy is B,L'

Let the input data be crisp, i.e substituting (17) into the product
inference engine (16), we have

pp(y) = max {H faq, () 'ﬂBi(y)} : (23)

i1=1,...,nRp
’ k=1
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4.1. Defuzzification

>

A defuzzifier is a mapping from the fuzzy set B’ in Y to a point
/.
y' inY.

To obtain a single-valued numerical output from the inference
engines, one has to somehow capture the information given in
wp(y) by a single number.

The centre of gravity defuzzifier determines vy’ as the centre of
the area under the membership function ppg: (y) :

-y s (y) -y dy

Jy s (y) dy (24)

The main problem with this defuzzifier is the calculation of the
integral for irregular shapes of pp/ (y).
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Section 4: Fuzzy Systems as Nonlinear Mappings 27

> Since the fuzzy set B’ is the union or intersection of ng fuzzy
sets, the weighted average of the centres of the ng fuzzy sets
provides a reasonable approximation of (24).

> Let y(()i) be the centre of the i fuzzy set and w® be its height,
the center average defuzzifier calculates y' as

Z y(l) (i)
y = R— : (25)
> w
=1
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4.2. Product Inference Engine with Singleton Input Data

> Use the centre average defuzzifier (25).

28

> The centre of the fuzzy set pa,, (2}) - pB,(y) determines the

centre of B;, denoted . in (25).

> The height of the i*® fuzzy set in (23) is

H KA xk) NB H KA l'k
k=1

and equals w(® in (25).
[0 This reduces the fuzzy system to
2,0 T /
Z Yo - H KA (xk)
i=1 k=1

/

r

% H KA, (.’E%)

i=1k=1
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Section 4: Fuzzy Systems as Nonlinear Mappings 29

or in general, we find that the fuzzy system is a nonlinear
mapping

f: X — Y
x = f(x)

where x € X C R” maps to f(x) € Y C R, a weighted average of the
consequent fuzzy sets :

i
H KA (xk)

).
k=1
T

ST s, ()

i=1k=1

S
flx) ==

(26)
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Similar to (26), we obtain for a fuzzy system, with

e minimum inference engine (15),
e singleton input (17) and

e centre average defuzzifier (25),

Z y mlnuA (k)
f(x)="—

o

T’

k /“LAuc (xk)

&
Il
_
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5. Comparison of Inference Engines

Xa

R; : IF x1 is A;1 AND z2 is A;o, THEN y is B;
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32

Figure 1: Gaussian and trapecoidal input fuzzy sets.
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Figure 2: Gaussian and trapecoidal outputs sets B;.
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Figure 4: Minimimum inference with Gaussian and trapecoidal sets.
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Figure 5: Contourplots for minimum inference (left) vs product inference
(right).
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Figure 6: Minimum inference with input fuzzy partition that does not have
fully overlapping fuzzy sets.

<4< | d 2 | > Back View



Section 5: Comparison of Inference Engines 38

Figure 7: Product inference with non-overlapping input fuzzy partition.

<4< | d 2 | > Back View



Section 5: Comparison of Inference Engines 39

References

[1] Kruse, R., Gebhardt, J. and Klawonn, F. : Foundations of Fuzzy
Systems. Wiley, 1994.

[2] Wang, L.-X. : A Course in Fuzzy Systems and Control.
Prentice Hall, 1997.

<4< | d 2 | » Back View



	Table of Contents
	1 Approximate Reasoning
	1.1 Modus Ponens
	1.2 Compositional Rule of Inference
	1.3 Fuzzy Implication Operators

	2 Composition-Based Inference
	2.1 The Algorithm

	3 Individual-Rule Based Inference
	3.1 The Algorithm
	3.2 Example: Individual-Rule Based Inference
	3.3 Minimum Inference Engine
	3.4 Product Inference Engine
	3.5 Singleton Inputs
	3.6 Dienes-Rescher Inference Engine
	3.7 Zadeh Inference Engine
	3.8 Lukasiewicz Inference Engine
	3.9 Singleton Input

	4 Fuzzy Systems as Nonlinear Mappings
	4.1 Defuzzification
	4.2 Product Inference Engine with Singleton Input Data

	5 Comparison of Inference Engines

