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Section 1: The Iris-Data Set 4

1. The Iris-Data Set

In his pioneering work on discriminant functions, Fisher presented
data collected by Anderson on three species of iris flowers [3]. Let the
classes be defined as :

C1 : Iris sestosa; C2 : Iris versicolor; C3 : Iris virginica.

For the following four variables 150 measurements were taken :

� Sepal length sl
� Sepal width sw
� Petal length pl
� Petal width pw
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1.1. Visual Representation I
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1.2. Visual Representation II

� Left: Full data set.

� Right: Training data set and fuzzy-c-means cluster centres for
w = 1.5, c = 3, stopping criteria 0.01, 11 iterations.

2 3 4

Sepal Width

0

2

4
6

Petal Length

0

1

2

Petal Width

1 2 3 4 5 6 7
Petal Length

0.5

1

1.5

2

2.5

3

P
e
t
a
l
 
W
i
d
t
h

11
11

1

11
1 11
1

1

1

1

11

1

1111

1

1
11

2
2 2

2

2

2

2

2

2
2

2

2

2

2
2

2
2

2

2

2

2

2

2

2
2

3

3

3

3

3
3

3
33

3

3
3

3
3

3
3

3

3
3

3

3

3 3

3

3

�� �� � � Back View



Section 2: Orthogonal Projection 7

2. Orthogonal Projection

Orthogonal projection of cluster membership degrees and fitted piecewise-
linear membership function.
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3. Rule-Based Fuzzy Classifier
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Section 3: Rule-Based Fuzzy Classifier 9

3.1. Fuzzy Decision Making

� Degree of confidence that data vector x belongs to class Ci :

βi(x)
.= µAi1(x1) ∧ µAi2(x2) ∧ · · · ∧ µAir

(xr) .

� Allocatory rule :

C∗ = argmax
i

βi(x) .
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4. The Admission-Data Set

The admission officer of a business school [3] has used an “index” of

GPA: Grade Point Average scores,
GMAT: Graduate Management Aptitude Test score.

to help decide when applicants should be admitted to the school’s
graduate programs.

For 85 students the admission officer made a decision by classifying
the applicants into three groups :

� R: Reject.

� A: Admit.

� B: Borderline.

�� �� � � Back View



Section 4: The Admission-Data Set 11

4.1. Visual Representation
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4.2. Questions

• We are given a set of labelled training data.
� How do we ‘automatically’ discriminate among students?

• What about unlabelled training data?
� Can we cluster data into ‘natural’ classes?

• For reasons of fairness, a “borderline” group is created.
� Does this remove unfairness?

• What are the problems with formal methods?

Let a (general) data point be denoted by

x = (x1 = GPA, x2 = GMAT)

Given the set of training vectors mj =, j = 1, . . . , 85, we wish to
group the data into c = 3 classes

� C1 – admit; � C2 – do not admit; � C3 – borderline.
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5. Linear Discriminant Analysis

Decision Rule: Assign x to the closest population, i.e. to the class
Ci for which

−1
2
d2
Σpooled

(x, ci) + ln pi

is largest [3]. Where pi is the prior probability of Ci and the distance
of x to the sample mean vector ci is calculated as

d2
pooled

(
x, c1

)
=

(
x− ci

)T
Σ−1

pooled

(
x− ci

)
and matrix Σ is the pooled estimate of the covariance matrix :

Σpooled = 1
d1+d2+···+dc

(
(d1 − 1)Σ1 + (d2 − 1)Σ2 + · · ·+ (dc − 1)Σc

)
and

di : sample size,
Σi : sample covariance matrix for population Ci.
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5.1. Example

Let a candidate have the following scores :

x1 = 3.21 (GPA) x2 = 497 (GMAT) .

Using a statistical software package :

d1 = 31 d2 = 28 d3 = 26

c1 =
[
3.40
561.23

]
c2 =

[
2.48
447.07

]
c3 =

[
2.99
446.23

]

c =
[
2.97
488.45

]
Σpooled =

[
0.0361 −2.0188
−2.0188 3655.9011

]

For x = [3.21, 497]T , the sample distances to population means are

d2
pooled

(
x, c1

)
= 2.58 d2

pooled

(
x, c2

)
= 17.10 d2

pooled

(
x, c3

)
= 2.47 ✔

Since the distance to class mean c3 is smallest, the Business School
applicant is assigned to C3, is considered a “borderline case”.
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5.2. Decision Surface
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5.3. Problems

✘ We do not know the prior probabilities pi.
� Assume p1 = p2 = · · · = pc = 1/c.

✘ What is a population of business students?

✘ Requires labelled training data.

✘ For borderline cases a new class is created.

The main advantage of a statistical framework is that
one can prove properties of the classifier analytically.
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6. Fuzzy Clustering

The fuzzy-c-means algorithm [2, 1] returns a partition matrixU which
can serve as a model for a classifier. With uij ∈ U, the final cluster
centres are obtained as

ci =

85∑
j=1

(uij)
w mj

85∑
j=1

(uij)
w

, i = 1, 2, . . . , c .

where c defines the number of clusters searched for and w is a weight-
ing factor that determines the “fuzziness” of the clusters.

For any new applicant with scores x = [x1 = GPA, x2 = GMAT]T ,
the membership in each class is calculated as

µCi
(x) .= 1 /

c∑
k=1

(
d(x, ci)
d(x, ck)

) 2
w−1
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6.1. Cluster Centres and Decision Surface

Weighting, Cluster Fuzziness w = 2
Number of Classes c = 3
Number of iterations 14
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6.2. Problems

✘ Cluster centres are in the wrong place.

✘ The algorithm is sensitive w.r.t the scales of variables.
� Normalise or scale data.

For c = 2 and data set (matrix) M = {mj}

uij =
1(

d(mj ,ci)
d(mj ,c1)

) 2
w−1

+
(

d(mj ,ci)
d(mj ,c2)

) 2
w−1

With A being the unity matrix, the Euclidean norm is

d2
A(mj , c1) = ‖mj − ci‖2 = (mj − ci)

TA(mj − ci) .

The fuzzy-c-means algorithm uses distance measures
iteratively which can lead to deceptive results if the
scales of variables differ considerably.
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6.3. Normalised Data

w = 1.25, c = 3, 17 iterations.
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✘ What is the meaning of a fuzzy borderline-class?
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6.4. Two Fuzzy Classes: “Reject” and “Admit”

w = 1.25, c = 2, normalised data.
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The fuzzy-c-means algorithm, employing the Eu-
clidean norm, searches for spherical clusters.
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6.5. Remarks

For both w = 1.25 and w = 2, the cluster centres are

c1 = (0.9, 0.8) , c2 = (0.7, 0.6) .

Weighting w = 1.25 8 iterations.
Weighting w = 2 7 iterations.

For the test candidate with scores, xj = (3.21, 497), the degrees of
membership in the classes for w = 1.25 are

µC1(x) = 0.73 ✔ µC2(x) = 0.27

and for w = 2,

µC1(x) = 0.67 ✔ µC2(x) = 0.33 .

The weighting factor w reflects the fuzziness in the
decision making (student most probably would refer
to w as the (un)fairness factor).
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6.6. Contour Plot

Fuzzy c-means, normalised data, w = 2.
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And finally...

� Engineers and scientists will never make as much money as MBA’s
(Masters of Business Administration) and business executives.

Now a rigorous mathematical proof that explains why this is true:

Postulate 1: Knowledge is power.

Postulate 2: Time is money.

As every engineer knows,

Work
Time

= Power . (1)
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Since from postulate 1,

Knowledge = Power (2)

and postulate 2,

Time = Money (3)

inserting (2) and (3) into (1) we have

Work
Money

= Knowledge. (4)

Solving (4) for Money, we get

Work
Knowledge

= Money .

� as Knowledge approaches zero, Money approaches infinity regard-
less of the Work done. Hence,

The less you know, the more you make.
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