FUZZY CLASSIFICATION The 'Iris'- and 'Admission'- Data Sets

Olaf Wolkenhauer

Control Systems Centre

o.wolkenhauer@umist.ac.uk

www.csc.umist.ac.uk/people/wolkenhauer.htm

Contents

44

◀

1	The Iris-Data Set	3
	1.1 Visual Representation I	4
	1.2 Visual Representation II	5
2	Orthogonal Projection	6
3	Rule-Based Fuzzy Classifier	7
	3.1 Fuzzy Decision Making	8
4	The Admission-Data Set	9
	4.1 Visual Representation	10
	4.2 Questions	11
5	Linear Discriminant Analysis	12
	5.1 Example	13
	5.2 Decision Surface	14
	5.3 Problems	15

Back

6	Fuz	zy Clustering	16
	6.1	Cluster Centres and Decision Surface	17
	6.2	Problems	18
	6.3	Normalised Data	19
	6.4	Two Fuzzy Classes: "Reject" and "Admit"	20
	6.5	Remarks	21
	6.6	Contour Plot	22

1. The Iris-Data Set

In his pioneering work on discriminant functions, Fisher presented data collected by Anderson on three species of iris flowers [3]. Let the classes be defined as :

 C_1 : Iris sestosa; C_2 : Iris versicolor; C_3 : Iris virginica. For the following four variables 150 measurements were taken :

1.1. Visual Representation I

Section 1: The Iris-Data Set

1.2. Visual Representation II

- \triangleright Left: Full data set.
- ▷ Right: Training data set and fuzzy-c-means cluster centres for w = 1.5, c = 3, stopping criteria 0.01, 11 iterations.

2. Orthogonal Projection

Orthogonal projection of cluster membership degrees and fitted piecewiselinear membership function.

3. Rule-Based Fuzzy Classifier

3.1. Fuzzy Decision Making

 \triangleright Degree of *confidence* that data vector **x** belongs to class C_i :

$$\beta_i(\mathbf{x}) \doteq \mu_{A_{i1}}(x_1) \wedge \mu_{A_{i2}}(x_2) \wedge \cdots \wedge \mu_{A_{ir}}(x_r) \; .$$

 \triangleright Allocatory rule :

$$C^* = \arg\max_i \beta_i(\mathbf{x}) \; .$$

4. The Admission-Data Set

The admission officer of a business school [3] has used an "index" of

GPA: Grade Point Average scores,GMAT: Graduate Management Aptitude Test score.

to help decide when applicants should be admitted to the school's graduate programs.

For 85 students the admission officer made a decision by classifying the applicants into three groups :

 \triangleright R: Reject.

 \triangleright A: Admit.

 \triangleright B: Borderline.

4.1. Visual Representation

4.2. Questions

- We are given a set of *labelled* training data.
 ▷ How do we 'automatically' discriminate among students?
- What about *unlabelled* training data?
 Can we cluster data into 'natural' classes?
- For reasons of fairness, a "borderline" group is created.
 ▷ Does this remove unfairness?
- What are the problems with formal methods?

Let a (general) data point be denoted by

$$\mathbf{x} = (x_1 = \text{GPA}, x_2 = \text{GMAT})$$

Given the set of training vectors $\mathbf{m}_j =, j = 1, \dots, 85$, we wish to group the data into c = 3 classes

 $\triangleright C_1$ – admit; $\triangleright C_2$ – do not admit; $\triangleright C_3$ – borderline.

Back

5. Linear Discriminant Analysis

Decision Rule: Assign **x** to the closest population, i.e. to the class C_i for which

$$-\frac{1}{2}d_{\boldsymbol{\Sigma}_{\text{pooled}}}^2(\mathbf{x},\mathbf{c}_i) + \ln p_i$$

is largest [3]. Where p_i is the prior probability of C_i and the distance of **x** to the sample mean vector \mathbf{c}_i is calculated as

$$d_{ ext{pooled}}^2ig(\mathbf{x},\mathbf{c}_1ig) = ig(\mathbf{x}-\mathbf{c}_iig)^T \mathbf{\Sigma}_{ ext{pooled}}^{-1}ig(\mathbf{x}-\mathbf{c}_iig)$$

and matrix $\pmb{\Sigma}$ is the *pooled* estimate of the covariance matrix :

$$\boldsymbol{\Sigma}_{\text{pooled}} = \frac{1}{d_1 + d_2 + \dots + d_c} \left((d_1 - 1) \boldsymbol{\Sigma}_1 + (d_2 - 1) \boldsymbol{\Sigma}_2 + \dots + (d_c - 1) \boldsymbol{\Sigma}_c \right)$$

and

- d_i : sample size,
- Σ_i : sample covariance matrix for population C_i .

5.1. Example

Let a candidate have the following scores :

$$x_1 = 3.21$$
 (GPA) $x_2 = 497$ (GMAT).

Using a statistical software package :

For $\mathbf{x} = [3.21, 497]^T$, the sample distances to population means are $d_{\text{pooled}}^2(\mathbf{x}, \mathbf{c}_1) = 2.58$ $d_{\text{pooled}}^2(\mathbf{x}, \mathbf{c}_2) = 17.10$ $d_{\text{pooled}}^2(\mathbf{x}, \mathbf{c}_3) = 2.47 \checkmark$ Since the distance to class mean \mathbf{c}_3 is smallest, the Business School applicant is assigned to C_3 , is considered a "borderline case".

5.2. Decision Surface

5.3. Problems

- ★ We do not know the prior probabilities p_i . ▷ Assume $p_1 = p_2 = \cdots = p_c = 1/c$.
- X What is a *population* of business students?
- ✗ Requires labelled training data. ✗
- $\pmb{\times}$ For borderline cases a new class is created.

The main advantage of a statistical framework is that one can prove properties of the classifier analytically.

6. Fuzzy Clustering

The fuzzy-*c*-means algorithm [2, 1] returns a partition matrix \mathbf{U} which can serve as a model for a classifier. With $u_{ij} \in \mathbf{U}$, the final cluster centres are obtained as

$$\mathbf{c}_{i} = \frac{\sum_{j=1}^{85} (u_{ij})^{w} \mathbf{m}_{j}}{\sum_{j=1}^{85} (u_{ij})^{w}} , \quad i = 1, 2, \dots, c .$$

where c defines the number of clusters searched for and w is a weighting factor that determines the "fuzziness" of the clusters.

For any new applicant with scores $\mathbf{x} = [x_1 = \text{GPA}, x_2 = \text{GMAT}]^T$, the membership in each class is calculated as

$$\mu_{C_i}(\mathbf{x}) \doteq 1 / \sum_{k=1}^{c} \left(\frac{d(\mathbf{x}, \mathbf{c}_i)}{d(\mathbf{x}, \mathbf{c}_k)} \right)^{\frac{2}{w-1}}$$

6.1. Cluster Centres and Decision Surface

Weighting, Cluster Fuzzinessw=2Number of Classesc=3Number of iterations14

6.2. Problems

- **×** Cluster centres are in the wrong place.
- ✗ The algorithm is sensitive w.r.t the scales of variables.▷ Normalise or scale data.

For c = 2 and data set (matrix) $\mathbf{M} = {\mathbf{m}_j}$

$$u_{ij} = \frac{1}{\left(\frac{d(\mathbf{m}_j, \mathbf{c}_i)}{d(\mathbf{m}_j, \mathbf{c}_1)}\right)^{\frac{2}{w-1}} + \left(\frac{d(\mathbf{m}_j, \mathbf{c}_i)}{d(\mathbf{m}_j, \mathbf{c}_2)}\right)^{\frac{2}{w-1}}}$$

With ${\bf A}$ being the unity matrix, the Euclidean norm is

$$d_{\mathbf{A}}^2(\mathbf{m}_j, \mathbf{c}_1) = \|\mathbf{m}_j - \mathbf{c}_i\|^2 = (\mathbf{m}_j - \mathbf{c}_i)^T \mathbf{A}(\mathbf{m}_j - \mathbf{c}_i)$$
.

The fuzzy-c-means algorithm uses distance measures iteratively which can lead to deceptive results if the scales of variables differ considerably.

Back

6.3. Normalised Data

w = 1.25, c = 3, 17 iterations.

Back

View

Problem

✗ What is the meaning of a fuzzy borderline-class?

6.4. Two Fuzzy Classes: "Reject" and "Admit"

 $w=1.25,\,c=2,$ normalised data.

The fuzzy-c-means algorithm, employing the Euclidean norm, searches for spherical clusters.

6.5. Remarks

For both w = 1.25 and w = 2, the cluster centres are

$$\mathbf{c}_1 = (0.9, 0.8) , \qquad \mathbf{c}_2 = (0.7, 0.6) .$$

Weighting w = 1.25 8 iterations. Weighting w = 2 7 iterations.

For the test candidate with scores, $\mathbf{x}_j = (3.21, 497)$, the degrees of membership in the classes for w = 1.25 are

$$\mu_{C_1}(\mathbf{x}) = 0.73 \quad \checkmark \qquad \mu_{C_2}(\mathbf{x}) = 0.27$$

and for w = 2,

$$\mu_{C_1}(\mathbf{x}) = 0.67 \quad \checkmark \quad \mu_{C_2}(\mathbf{x}) = 0.33$$

The weighting factor w reflects the fuzziness in the decision making (student most probably would refer to w as the (un)fairness factor).

Back

Section 6: Fuzzy Clustering

6.6. Contour Plot

Fuzzy c-means, normalised data, w = 2.

And finally...

▷ Engineers and scientists will never make as much money as MBA's (Masters of Business Administration) and business executives.

Now a rigorous mathematical proof that explains why this is true:

Postulate 1: Knowledge is power.

Postulate 2: Time is money.

As every engineer knows,

$$\frac{\text{Work}}{\text{Time}} = \text{Power} . \tag{1}$$

Section 6: Fuzzy Clustering

Since from postulate 1,

$$Knowledge = Power \tag{2}$$

and postulate 2,

$$Time = Money \tag{3}$$

inserting (2) and (3) into (1) we have

$$\frac{\text{Work}}{\text{Money}} = \text{Knowledge.}$$
(4)

Solving (4) for Money, we get

$$\frac{\text{Work}}{\text{Knowledge}} = \text{Money} \ .$$

 \triangleright as Knowledge approaches zero, Money approaches infinity regardless of the Work done. Hence,

The less you know, the more you make.

References

- Babuska, R.: Fuzzy Modelling for Control. Kluwer, 1998. See http://lcewww.et.tudelft.nl/. 16
- [2] Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, 1981. 16
- [3] Johnson, R.A. and Wichern, D.W. : Applied Multivariate Statistical Analysis. Prentice Hall, 4 ed. 1998. 3, 9, 12
- [4] Wolkenhauer, O. : Possibility Theory with Applications to Data Analysis. Research Studies Press, 1998.
- [5] Wolkenhauer, O.: Data Engineering: Data, Systems and Uncertainty. Book manuscript, 1999.
 See http://www.csc.umist.ac.uk/people/wolkenhauer.htm.

Back