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1 Introduction

In this course module we explore how mathematics supports the analysis
of experimental data using techniques, developed in the area of statis-
tics. The reason why statistical techniques are required is simply that
most biological measurements usually contain non-biological variation.
The purpose of statistics is then to allow reasoning in the presence of
uncertainty. For most statistics courses in the life sciences there is not
enough time to fully cover the material which is necessary and useful
for your degree, projects, and career. I therefore strongly recommend
the purchase a more comprehensive treatment of statistics. Section 13
provides you with a list of recommended books.

We use the term variable to refer to the quantity or object that Variables and observations
is being observed or measured. The term observation, observed value
or value for short, is used for the result of the measurement. We use
the terms observation and measurement interchangeably. Examples for
typical variables, are measures such as ‘weight’, ‘length’, or the ‘count’,
say the number of colonies on a Petri dish. If the value of a variable is
subject to uncertainty, then the variable is called a random variable.

There are different types of data: categorical data, for example a Types of data
colour or type of object observed; discrete data are numbers that can
form a list:

1, 2, 3, 4, 5, . . .

0, 0.2, 0.4, 0.6, 0.8, . . .

Continuous data are ‘real numbers’, numerical values such as height,
weight, and time. Because we usually take measurements with devices
that have limited accuracy, continuous values are usually recorded as
discrete values. For example, the length may only be recorded to the
nearest millimeter.

Number Sample A Sample B
1 123 54
2 56 202
3 1283 232
4 31 90
5 329 982
...

...
...

Time [h] Measurement
1 34
2 35
3 67
4 84
5 25
...

...

The two tables above illustrate two different kinds of analysis. The
table on the left gathers data from repeated experiments. Let us assume
that the rows are replicate observations while the columns (Sample
A and B) are two different experiments. Sample A and B may there-
fore represent a repeated experiment under different conditions. For
example, sample A could be our reference sample, say “without treat-
ment” and sample B is used to see whether any biological changes have
occurred from the treatment. For the table on the left, the order of
the rows doesn’t matter. For each sample, the values in the rows are
repeated observations (or repeated measurements).
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The reason to take repeated measurements is simply because we ex-
pect some uncertainty through variation. In other words, the reason to
use statistical techniques is that in addition to biological variation (which
we investigate) and non-biological variation such as measurement errors
and other, often technical problems during the experiment. Repeating a
measurement of the same variable, under the same condition, we would
expect the values to be the same; in practice they are not, and an im-
portant task is to identify typical values and to quantify the variability
of the data.

In the table on the right, the order of the rows matters and there are
no replicate observations, the left column denotes time and the data are
referred to as a time series. In studying data from time course experi-
ments we typically want to answer questions about the trend.
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Figure 1.1: Typical graphs used to visualise data: histogram (left)
and time-series (right).

The graphs in Figure 1.1 are typical visualisations of the two kinds of
data shown in the tables above. The histogram on the left is used for data
of the kind in the left table, while the time-series plot is a visualisation of
the kind of data listed in the table on the right. Large tables of numbers
are not very revealing and diagrams play therefore an important role in
detecting patterns. For the picture on the left, typical characteristics we
are going to look for in such data sets are the variability (spread) of
the data and whether they cluster around a particular point (central
tendency).

2 Visualising and Organising Data

The data we deal with are often repeated observations of the same vari-
able. For example, we count the number of colonies on 24 plates:

0, 3, 1, 2, 4, 0, 6, 2, 1, 1, 0, 6
1, 2, 2, 6, 0, 2, 1, 3, 3, 2, 1, 1

We refer to the data in this table as raw data since they have not been
re-organised or summarised in any way. The tally chart is a simple Tally chart
summary, counting for each possible outcome the frequency of that
outcome.
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PRACTICE. Complete the tally chart for the data in the table above:

score tallies
0 ||||
1
2
3
4
5
6

The tally count in each row gives the frequency of that outcome. A
table which summarises the frequencies is called frequency distribu-
tion and is simply obtained by turning the tally count into a number.
A frequency distribution for categorical data can be visualised by a bar
chart. Take for example the colour of a colony on a Petri dish and let us Bar chart
classify any particular colony into either ‘blue’, ‘white’, or ‘brown’. Given
the following frequency distribution, the bar chart is shown in Figure 2.1.
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Figure 2.1: Left: Bar chart of counts of colonies on a Petri dish for
different colours. Notice that in a bar chart the columns are sepa-
rated. Right: Pie chart as an alternative representation of the same
information.

Note: It is important to make the meaning of charts and plots clear
by labelling the axes.

For the next example we consider the measurement of the length of
some 100 objects. The difference between the largest value and smallest
value in a sample is called the range of the data set. When summarising Range
a large number of continuous data, it is often useful to group the range
of measurements into classes, and to determine the number of objects
belonging to each class (the class frequency). Table 2.1 summarises the
data in a format which is called frequency distribution. Figure 2.2,
visualises the information in Table 2.1. Bar charts are not appropriate
for data with grouped frequencies for ranges of values. What is shown
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Figure 2.2: Frequency histogram for the data in Table 2.1. Notice the
difference between a bar chart and a histogram.

in Figure 2.2, is called a frequency histogram and is one of the most Histograms
important graphs for us. The importance difference to the bar chart is
that the width of the bars matters. The key feature of a histogram is
that

the area is proportional to the class frequency.

If, as is the case in Figure 2.2, the class width are equal, the area is not
only proportional to the frequency but also the height is proportional to
the frequency.

Table 2.1: Frequency distribution for length measurement of 100 ob-
jects, recorded to the nearest millimeter.

Class interval Number of objects
60 - 62 5
63 - 65 18
66 - 68 42
69 - 71 27
72 - 74 8

The relative frequency of a class is the frequency of the class di-
vided by the total frequency (the total number of objects measured).
(The relative frequency is often expressed as a percentage (“out of hun-
dred”).) The graph visualising the relative frequency of occurrences of
values in a sample is referred to as the relative-frequency histogram.
There are at least two reasons to use a relative-frequency distribution:
percentages are very intuitive and secondly the relative-frequency distri-
bution allows us to compare two samples with each having a different
total number of objects.

Notice that for the histogram above, the class intervals have equal
length (3 mm) and partition the range of values into equally sized groups.
For the class (interval) 63−65, the values 63 and 65 are called class lim-
its. If values are measured to the nearest millimeter, the class interval
60−62 includes all measurements from 59.5mm to 62.5mm. These num-
bers are called class boundaries.

6



Table 2.2: Recorded weights, measured to the nearest gram of 100
1kg objects.

1038 1018 1016 1017 1010 1019 1013 1012 1020 1021
1021 1011 1019 1021 1013 1000 1020 1026 1018 1003
1020 1014 1019 1005 1020 1023 1015 1007 1014 1012
1024 1019 1013 1015 1022 1016 1031 1020 1010 999
1005 1016 1019 1017 1029 1018 1020 1023 1014 1022
1020 1018 1020 1000 1020 1033 1010 1013 1030 1005
1013 1019 1021 1016 1012 1017 999 1021 1014 1009
1035 1001 1040 1011 1026 1005 1019 1018 1009 1022
1027 1016 1026 1006 1013 1018 1032 1019 1029 1020
1021 1036 1017 1025 1022 998 1021 1008 1003 1015

The class mark is the midpoint of the class interval and is obtained
by adding the lower and upper class limit and dividing by two. As you
can imagine for some data sets, equal class sizes are not appropriate and
the best number of class intervals is often not obvious. Therefore, while
the histogram can reveal some basic characteristics of the data, which
are usually not obvious from the table of measurements, there is also a
‘loss’ of information for values within class intervals.

PRACTICE. For the raw data in Table 2.2,

1. Determine the range.

2. Construct an un-grouped frequency distribution table:

weight [g] tally count frequency
998 | 1
999 || 2
1000 || 2

...
...

...

3. Construct a grouped frequency distribution table using a class width
of 5g:

class interval class boundary class mark frequency
998 - 1002 997.5 - 1002.5 1000 6
1003 - 1007 1002.5 - 1007.5 1005 8

...
...

...
...

4. Construct a grouped frequency distribution table using a class width
of 10g

5. Draw a relative frequency histogram for the data (class width 10g).

An alternative way to represent the information of the frequency dis-
tribution is to answer the question “what proportion of the data have
values less than x?”. Such a diagram is referred to as the cumulative
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frequency distribution and relative cumulative frequency distribution. Cumulative distribution
The term cumulative distribution function (cdf) is used in general to
describe a cumulative distribution and is denoted F (x). Consider the raw
data in Table 2.3, Figure 2.3 shows the cumulative frequency diagram.
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Figure 2.3: Cumulative frequency distribution for the data in Table
2.3. Notice that for any x ≥ 19.8 the relative cumulative frequency
equals the total number of observations (14).

PRACTICE. For the raw data given in Table 2.3:

1. Determine the cumulative frequency at the following points:

x < 10.2 x < 11.2 x < 12.2 x < 13.2 x < 14.2 x < 15.2
x < 16.2 x < 17.2 x < 18.2 x < 19.2 x < 20.2

2. Calculate the relative cumulative frequency in percent.

3. Draw the the relative cumulative frequency distribution.

4. Determine in a table the relative frequencies for the following class
intervals:

x < 10.2 10.2 ≤ x < 11.2 11.2 ≤ x < 12.2
12.2 ≤ x < 13.2 13.2 ≤ x < 14.2 14.2 ≤ x < 15.2
15.2 ≤ x < 16.2 16.2 ≤ x < 17.2 17.2 ≤ x < 18.2
18.2 ≤ x < 19.2 19.2 ≤ x < 20.2

5. Draw the relative frequency histogram.

Note: The symbol ≤ means “less or equal”, while < means “less than”.

Table 2.3: Raw data set. See also Figure 2.3.
12.7, 14.5, 15.4, 11.8, 19.8, 12.7, 11.5
10.2, 12.7, 10.7, 14.0, 13.1, 13.8, 16.1
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Remark: In practice one would rarely draw histograms and distribution
functions by hand. Since there are various interpretations of histograms
and distribution functions, it is therefore important to check the scale
of the ordinate axis and to provide a clear label. When using a software
tool, such as Minitab, MS Excel, or Matlab, it is important that you
try to understand what is plotted and not just accept the result only
because it looks similar to what you expected.

3 Descriptive Statistics

Descriptive statistics help us to summarise information burried in the
data and quantifies some of the properties of the diagrams we have used
before. The purpose is therefore to extract essential information from the
raw data, not in a diagram but in form of numbers. For reasons that will
become clear later, we refer to a given set of data, as the sample. We first Sample
consider two descriptive statistics of a sample: a measure of central
tendency (‘measure of location’) and a measure of variability (‘mea-
sure of spread’), see Figure 2.2. The former comes in three variations:
the sample mode, sample median, and the sample mean.
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Figure 3.1: A skewed distribution. The dotted line denotes the mode,
the solid line the median, and the dashed line the mean.

The sample mode of discrete data is the most frequent value. For Mode
the data in Table 2.2, the mode is therefore 1040. The mode is found
in the histogram from the highest bar. This is a simple measure but
may not be unique as there may be more than one bar with the same
frequency. In this case, the histogram has more than one peak. For two
such outcomes we speak of a bimodal distribution or in general from a
multimodal distribution.

The sample median describes the ‘middle’ of the data set and splits Median
therefore the sample into two halves. For the following sample (arranged
in the order of magnitude!):

1, 4, 6, 8, 9, 11, 17

The median value is 8. For an even number of observations we find two
middle values and by definition, we calculate the median as their average.
For example, for the following sample

1, 4, 6, 8, 9, 11, 17, 20
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the median value is (8 + 9)/2 = 8.5.
The sample mean is usually calculated as the average of the values Sample mean X̄

in the sample and is therefore often called the arithmetic mean. For
unimodal distributions, the sample mean gives us a measure of central
tendency, a value around which the other values tend to cluster. Let us
denote the sample by X, with individual observations denoted xi. For
the sample above, we therefore have

X = {1, 4, 6, 8, 9, 11, 17, 20}
where index i, ranges from i = 1, . . . , n and n = 8, denotes the sample
size. For example x3 = 6. The curly brackets {} are used to denote an Sample size n
(unordered) list. The sample mean is commonly denoted with a bar over
the symbol used to denote the sample, X̄, and is calculated as

X̄ =
x1 + x2 + · · ·+ xn

n
=

n∑
i=1

xi

n
(3.1)

The sample mean for the sample X = {1, 4, 6, 8, 9, 11, 17, 20} is

X̄ =
1 + 4 + 6 + 8 + 9 + 11 + 17 + 20

n
=

76

8
= 9.5

If the distinct values x1, x2, . . . , xm occur f1, f2, . . . , fm times, respec-
tively, the sample mean can also be calculated by the following formula:

X̄ =
f1x1 + f2x2 + · · ·+ fmxm

f1 + f2 + · · ·+ fm
=

m∑
i=1

fixi

m∑
i=1

fi

=

m∑
i=1

fixi

n
. (3.2)

Note the difference in the subscripts n respectively m and that the xi

correspond to class marks. For example, if 5, 8, 6, and 2 occur with
frequencies 3, 2, 4, and 1 respectively, the sample mean is

X̄ =
3 · 5 + 2 · 8 + 4 · 6 + 1 · 2

3 + 2 + 4 + 1
=

15 + 16 + 24 + 2

10
= 5.7

Note that if the distribution function is symmetric and unimodal, the
mode, mean and median coincide (Create an example that proves this!).
The mean is the most frequently used statistic for a central tendency in
samples but is also more affected by outliers than is the median. An
outlier is an abnormal, erroneous, or mistaken value. Such extreme Outliers
values can distort the calculation of the centre of the distribution.

Next, we come to a measures of dispersion or spread in the data.
The previously introduced range gives a basic idea of the spread but is Range
only determined by the extreme values in the sample. The variability of
the data corresponds in the histogram to its width around the centre. A
natural measure of the spread is therefore provided by the sum of squares
of the deviations from the mean:

n∑
i=1

(
xi − X̄

)2
=
(
x1 − X̄

)2
+ · · ·+ (xn − X̄

)2
10



We square the differences to avoid negative differences which could distort
the measure (Why or how?). This is a measure of variation but is very
much dependent on the sample size n. To calculate the variation within
a sample, the average squared deviation from the mean, denoted σ2

n, is
called the sample variance: Sample Variance

σ2
n =

1

n

n∑
i=1

(
xi − X̄

)2
(3.3)

This is not the only possible measure of variance, and in fact there are
good reasons to use a slight variation of (3.3), called unbiased estimate
of the population variance, denoted s2:

s2 = σ2
n−1 =

1

n − 1

n∑
i=1

(
xi − X̄

)2
(3.4)

The only difference to (3.3) is that we divide by n − 1 instead of n,
and for a large n the difference seems irrelevant. However, once we
have introduced the concept of a population, it turns out that equation
(3.3) would provide an accurate measure only of the variability in the
sample but is a biased estimate of the population variance. Note that
the subscript n in equation (3.3) is important to clarify that this is an
estimate based on n values. As we will find later, there is a difference
between “the mean value” (of a population) and “the sample mean”
(Which mean we mean by talking about “the mean”, will usually be
clear from the context).

Calculating the variance without using a software tool or calculator
with statistical functions, formulas (3.3) and (3.4) are awkward. How-
ever, we can simplify the calculation as follows. Since

∑(
xi − X̄

)2
=
∑

x2
i −

(
∑

xi)
2

n
,

hence:

σ2
n =

∑
x2

i

n
− (
∑

xi)
2

n2
,

which leads to the more convenient, equivalent formula:

s2 = σ2
n−1 =

1

n − 1


 n∑

i=1

x2
i −

1

n

(
n∑

i=1

xi

)2

 =

n

n − 1
σ2

n (3.5)

A ‘problem’ with the equations for variance above is that they report
the variability not in the same units of the data but squared. To obtain
a measure of variation in the same units of the data one takes the square
root of the variance, leading to what is called the sample standard
deviation: Standard deviation

σn =

√√√√√ n∑
i=1

x2
i

n
−

(
n∑

i=1

xi

)2

n2
(3.6)
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PRACTICE. 1. For the following sample (set of raw data)

X = {3.9, 23.3, 4, 7.6, 25.2, 17, 22, 21.2}

Determine the sample mean, the sample standard deviation and the
unbiased estimate of the population variance.

2. For the data in Table 2.3 calculate the sample mean (Solution: 13.5)
and the unbiased estimate of the population standard deviation (So-
lution: 2.377). Note: do not use the statistical functions of your
calculator.

When data are summarised by a frequency distribution, i.e., in the
form “value xi occurs with frequency fi”, we can use different equations.
Let m denote the number of distinct values of x in the sample, the for-
mulas for the sample variances become:

σ2
n =

1

n


 m∑

i=1

fix
2
i −

1

n

(
m∑

i=1

fixi

)2



s2 =
1

n − 1


 m∑

i=1

fix
2
i −

1

n

(
m∑

i=1

fixi

)2



where n is the total number of frequencies, the sample size n =
∑m

i=1 fi.
Take care of the difference between n and m. As before, the standard
deviation is simply obtained by taking the square root of the variance.
These formulas can also be used for class frequencies (cf. Table 2.1). In
this situation, xi denotes the class mark and since we replace the data in
any particular class (or bin of the histogram) by the class mark, we have
to remember that this is only an approximate calculation.

−3 −2 −1 0 1 2 3
0

10

20

30

40

50

x

fr
eq

ue
nc

y

 n=500. Mean =0.0346. S.D.=0.982

−3 −2 −1 0 1 2 3
0

10

20

30

40

50

x

fr
eq

ue
nc

y

 n=500. Mean =−0.0243. S.D.=0.514

Figure 3.2: Frequency histograms for two samples with different stan-
dard deviations. The sample means are nearly the same while the data
in the histogram on the left have a greater spread (greater standard
deviation). Most software programms will adjust the scale for the axes
automatically. Always check the scales as otherwise the comparison
of distributions can be misleading.
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PRACTICE. Try the following exercises using the equations above and
without using statistical functions of your calculator. Next, try the same
exercise again using the statistical mode of your calculator. Note that
you will need to do many more exercises to become confident with the
formulas and to remember how to use the calculator. (More exercises
can be found in Section 10)

1. For the data in Table 2.1, determine the sample variance.

2. For the data in the table below, determine the sample mean and
sample standard deviation:

class mark 70 74 78 82 86
frequency 4 9 16 28 45

Note: There are a number of other concepts, we have not dealt with but
which you can find explained in the literature:

1. Weighted Arithmetic Mean: As (3.1) but each value is weighted for
its relevance or importance.

2. Harmonic Mean, Geometric Mean: The geometric mean is used
when data are generated by an exponential law. The harmonic
mean is the appropriate average to use when we are dealing with
rates and prices.

3. Quartiles, Deciles, and Percentiles: Like the median splits the data
into halves, these divide the data in different parts. So called Box-
Whisker diagrams (“box-plots”) are frequently used compare dis-
tributions.

4. Moments, Skewness, and Kurtosis: In our examples we have some-
how implicitly assumed that the distributions are uni-modal and
symmetric. These measures give additional information about the
shape and appearance of the distribution.

Remark: A note of caution is due with regard to notation. Although
there are few commonly used symbols to denote statistical measures,
their use varies from book to book.

4 The Normal Distribution

In the previous section we considered a sample of data. The values in
a sample were obtained by repeated experiments, observations, or mea-
surements. We collected more than one value because we expected some
variation in the data and we determined some characteristic value (the
sample mean) and the variation around this typical value (the sample
standard deviation). As the term suggests, a sample itself is character-
istic of something more general - the population. By testing a sample Population
of cultures from E. coli we wish our results to apply to E. coli cultures
in general. The concepts of sampling a population is most intuitive in
the context of polls before an election. To infer what the population is
going to vote, a selected group (sample) of voters is studied. Drawing
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conclusions about the population from the analysis of a sample, is re-
ferred to as inductive statistics or inferential statistics. Because these Inferential statistics
conclusions cannot be absolute certain, conclusions are stated in terms
of probabilities.

For the sample to be representative we have to take great care. It is
very important to state what population is meant and how the sampling
was conducted. As you can imagine, the sampling process is often the
basis for the misuse of statistics.
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Figure 4.1: Frequency histogram of the time intervals between erup-
tions of the Old Faithful geyser.

Bell-shaped frequency histograms for continuous variables, like those
in Figure 3.2, are very common in all areas of science, engineering, eco-
nomics, ... and quite independent of the kind of experiments conducted.
A histogram will usually help us to decide whether this is indeed the case
and to prove the point that this is not always the case, consider Figure
4.1. The frequency histogram shows the recorded time intervals between
eruptions of the ‘Old Faithful’ geyser in Yellowstone National Park in
Wyoming, USA. The distribution is clearly bi-modal.

In Figure 4.2 in the top left figure we show the relative frequency his-
togram of Figure 3.2 (left). In upper right figure, we changed the vertical
scale to relative frequency density so that the total area sum of all Density functions
areas of the bars equals 1. This is done by dividing the relative frequency
by the class width (0.5 in the figure). The two lower distributions shown
in Figure 4.2, demonstrate what happens to the relative frequency den-
sity of a continuous random variable as the sample size increases. While
the area remains fixed to one, the relative frequency density function ap-
proaches gradually a curve, called probability density function, and
denoted p(x).

For many random variables, the probability density function is a spe-
cific bell-shaped curve, called the normal distribution or Gaussian
distribution. This is the most common and most useful distribution, Normal distribution
which we assume to represent the probability law of our population. It
is defined by the equation

p(x) =
1

σ
√

2π
e

−(x − µ)2

2σ2 (4.1)
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Figure 4.2: Top Left: Relative frequency histogram of Figure 3.2
(left). Top Right: Relative frequency density. Bottom Left and Right:
as n increases the relative frequency density approaches an exponen-
tial distribution which does not change as n increases.

where µ denotes the population mean, and σ2 is the population vari- Population mean µ
ance. The constants π = 3.14159 . . . and e = 2.71828 . . . make an equally Population variance σ
impressive appearance in statistics as they do in mathematics.

If we assume our population follows the Gaussian distribution, the
sample statistics, X̄ (3.1), and s2 (3.4) are considered to be estimates of
the real µ and σ2 respectively. In biological experiments we often repeat Estimates of µ and σ.
measurements (replicate measurements) and then average the sample
to obtain a more accurate value. To guess how many replicates we may
need, in Figure 4.3 we have randomly selected 50 values from a process
that follows a normal distribution with zero mean and unit variance.
The histogram is shown on the left. We then took 2, 3, . . . , 50 values
to calculate the sample mean. Since the population mean is zero, the
sample mean calculated by equation (3.1) should be around zero. As
the graph on the right shows, only for more than 30 replicates we get
reliable estimates of the real mean value. The sample mean is therefore
dependent on the sample size n and subject to variations. This problem
is further discussed in Section 5.

The simplest of the normal distributions is the standard normal
distribution. It has zero mean and unit variance. As shown in Figure
4.4, the area plus/minus one standard deviations from the mean captures
68.27% of the area. Since the total area equals 1, we can say that, the
probability that an observation is found in the interval [−σ, σ] is 0.68.
In general, for any interval [a, b] in X, the probability P (a < x < b) is
calculated by the area under the curve. It is useful to remember some of
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Figure 4.3: Estimation of the mean value for increasing sample sizes
(from 2 to 50). The data were randomly sampled from a standard
normal distribution with zero mean and unit variance.
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Figure 4.4: Standard normal distribution with zero mean and unit
variance. The values for x are in standard units z.

the typical values for the normal distribution:

50% of the observations fall between µ ± 0.674σ.

95% of the observations fall between µ ± 1.960σ.

99% of the observations fall between µ ± 2.576σ.

It is often convenient to ‘translate’ an arbitrary Gaussian distribution
to standard units by subtracting the mean and dividing by the standard
deviation Standard units

z =
x − µ

σ
. (4.2)

Equation (4.1) is then replaced by the so called standard form:

p(z) =
1√
2π

e
−z2

2 , (4.3)

where the constant 1/(
√

2π) ensures that the area under the curve is
equal to unity. Since we can easily translate forth and back between the
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actual distribution in question and the standard form, statistical tables
and software programmes will usually only provide information about z-
values. The main reason to use tables is however that formula (4.3) is too z-values
complicated to integrate the area under the curve. Statistical tables are
therefore used to help calculate the probability of observations falling
into certain regions. Statistical tables vary considerably from book to
book and you should make sure that you are familiar with the table used
in your examination.

PRACTICE. Try answering the following questions from the curve in
Figure 4.4:

1. What percentage of the observations will be at least one but less
than two standard deviations below the mean?

2. What percentage of the observations will be more than two standard
deviations away from the mean?

3. Mark the plus/minus 3 standard deviation region; about what per-
centage of the observations would fall within three standard devia-
tions of the mean?

Virtually all tables quote probabilities corresponding to one tail of
the distribution only. This will be either

a) the area between the mean and a positive z-value,

b) the area between positive z-value and infinity.

Case b) gives the standard normal, cumulative probability in the right-
hand tail. In other words, for a given value z0, the table provides infor-
mation about the area that corresponds to the probability P (z ≥ z0).
This situation is for example the case for tables in [1] where areas in the
tail of the normal distribution are tabulated as 1 − Φ(z), and Φ(z) is
the cumulative distribution function of a standardized Normal variable
z. Thus 1 − Φ(z) = 1/(

√
2π)

∫∞
z

e−z2/2dx is the probability that a stan-
dardized Normal variable z selected at random will be greater than the
value z0 (= (x − µ)/σ).

Example: Suppose we assume a normal distribution for an experi-
ment with µ = 9.5 and standard deviation σ = 1.4. We wish to determine
the probability of observations greater than 12. Using the information in
Table 4.1, we first must standardize the score x = 12 from equation (4.2)

z =
x − µ

σ

=
12.0 − 9.5

1.4
=

2.5

1.4
= 1.79

Using a statistical table we obtain

P (x > 12) = P (z > 1.79) = .037 ≈ 4%

Can you see how one can determine the probability for any interval [a, b]
from the same table?
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Figure 4.5: Standard normal distribution. The values of the shaded
area are listed in Table 4.1.

Table 4.1: Extract of a statistical table for the the standard normal,
cumulative probability in the right-hand tail (see Figure 4.5). The
column on the left defines the given value z0 and the columns to the
right give the probability P (z ≥ z0) for 0, 1, . . . , 9 decimal places.

z0 next decimal place of z0

0 1 2 · · · 6 7 8 9
0 .500 .496 .492 · · · .476 .472 .468 .464
...

0.3 .382 .378 .374 · · · .359 .356 .352 .348
...

1.7 .045 .044 .043 · · · .039 .038 .038 .037
...

...

PRACTICE. Answer the following questions using Table 4.1.

1. Assuming a normal distribution with µ = 9.5 and standard devia-
tion σ = 1.4, determine the probability of observations being greater
than 10.

2. As before but determine the probability of observations being greater
than −12.

3. Calculate the probability of values falling in between 10 and 12.

Note: There are a number of important concepts we have not dealt
with and you are encouraged to study one of the books recommended in
Section 13. In particular the following two distributions are important:

1. Binomial Distribution: For a fixed number of independent trials, in
which each trial has only two possible outcomes. The probabilities
for the two possible outcomes are the same in each trial.

2. Poisson Distribution: To describe temporal or spatial processes the
Poisson distribution is often a good model. Both, the bionomial
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and the Poisson distributions are discrete distributions, while the
Normal distribution is continuous.

5 Sampling Errors

In the previous section we introduced the Normal distribution as a model
for a population. Given a sample of data it is natural to think of the
sample mean X̄ as an estimate of the population mean µ and the sample
variance s2 as an estimate of the population variance σ2. However, if
we were to repeat taking samples from the same population, we would
find that the sample mean itself is subject to variations as illustrated in
Figure 4.3. Comparing samples by comparing the sample means requires
therefore careful consideration of the uncertainty involved in such deci-
sions. Tests, comparing samples are introduced in the next section and
in this section we are going to estimate the error that can occur as a
result of the variability of samples.

If we were able to take an infinite number of samples from a popula-
tion with mean µ and standard deviation σ, the sample means X̄ would
also be normally distributed, with mean µ and standard error SE. The Standard error
standard error is calculated as

SE =
σ√
n

. (5.1)

Note the dependency of the standard error on the sample size. The bigger
the sample size n, the smaller the standard error and the better is our
estimate.

Like for the standard deviation of the population model, 95% of the
samples would have a sample mean within 1.96 times the standard error;
99% of the sample means would fall within 2.58 times the standard error,
and 99.9% within 3.29 times the standard error. The 95%, 99%, and
99.9% limits can be used to describe the quality of our estimate and are
referred to as confidence intervals. Confidence intervals

Unfortunately, there is a problem with the calculation of the SE using
equation (5.1): we do not know σ! However, we have an estimate of the
standard deviation in form of s and we can estimate the standard error
therefore as follows:

SE =
s√
n

. (5.2)

Because the standard error is only estimated, the sample mean, X̄ will
have a distribution with a wider spread than the normal distribution.
In fact, it will follow a distribution, known as the t-distribution. The t-distribution
shape of this distribution will naturally depend on the sample size n.
Actually one says, it is dependent on the “degrees of freedom”, which Degrees of freedom
is in this case equal to (n − 1). Figure 5.1, illustrates the difference
between the Normal distribution and the t-distribution.

Confidence limits for the sample mean can be calculated using a
table of critical values of the t-statistic. The critical t value t(n−1)(5%) Critical values
is the number of (estimated) standard errors SE away from the estimate
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Figure 5.1: Left: The distribution of sample means is much narrower
than the distribution of the population. Right: The distribution of
sample means X̄ follows the t-distribution. This distribution is de-
pendent on the sample size n (expressed as the ‘degrees of freedom’
(n − 1). The greater the degrees of freedom, the narrower the distri-
bution becomes and the closer the t-distribution approaches a Normal
distribution.

of population mean X̄, within which the real population mean µ will be
found 95 times out of hundred (... with probability 0.95). Why this is
called a critical value will become clearer in the next section on testing
differences. The 95% limits define the 95% confidence interval (95% CI),
which we calculate as follows

95% CI(mean) = X̄ ± (t(n−1)(5%) × SE
)

(5.3)

where (n − 1) is the number of degrees of freedom. Similar one can
determine the 99% and 99.9% confidence intervals for the mean by sub-
stituting the critical t values for 1% and 0.1% into equation (5.3), respec-
tively. Table 5.1 shows an extract from a table with critical values for
the t-statistic.

Table 5.1: Critical values of t at the 5%, 1%, and 0.1% significance
levels. Reject the null hypothesis if the absolute value of t is larger
than the tabulated value at the chosen significance level (and w.r.t.
the number of degrees of freedom).

d.f. (n − 1) Significance level
5% 1% 0.1%

1 12.706 63.657 636.619
...

...
...

5 2.571 4.032 6.859
...

...
...

9 2.262 3.250 4.781
10 2.228 3.169 4.587

...
...

...
20 2.086 2.845 3.850

...
...

...
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Example: For a given sample mean X̄ = 0.785, sample standard
deviation s = 0.2251, and n = 11, we calculate the 99%CI as follows:

99% CI(mean) = X̄ ± (t(n−1)(1%) × SE
)

For the standard error SE = s√
n

= 0.2251
11

= 0.0678 and 10 degrees of

freedom, we obtain from Table 5.1, t10(1%) = 3.169. We therefore have

99% CI(mean) = 0.785 ± (3.169 × 0.0678) = [0.57, 1] .

The 99% confidence interval is therefore [0.57, 1].

Note: One must be careful interpreting the meaning of the confidence
limits of a statistic. When we set the lower/upper limits ±(t(n−1)(1%)×
SE) to a statistic, we imply that the probability of this interval covering
the mean is 0.99 or, what is the same, we argue that on average, 99 out of
100, confidence intervals similarly obtained would cover the mean. Note
that this is different from saying that there is a probability of 0.99 that
the true mean is contained within any particular observed confidence
limits.

α 

tα, ν 

Figure 5.2: Illustration of the values listed in Table 5.2.

Note: Statistical tables published in books differ. For example, in [1],
the same information has to be extracted from a table listing the per-
centage points of the t-distribution for one tail only. In this case, the 5%
significance level corresponds to the 100α percentage point and is found
in the column for α = 0.025. Similar the 1% and 0.1% significance levels
are found in the columns for α = 0.005 and α = 0.0005, respectively.
Table 5.2 shows an extract. See also Figure 5.2.

PRACTICE. Try the following problems.

1. Using Table 5.1, we wish to compare two samples, both of which
have a sample mean equal to 4.7 and sample variance 0.0507.

(a) For a sample of 11 observations, estimate the standard error
and calculate the 95% confidence limits on the mean.

(b) For n = 21, estimate the standard error and calculate the 95%
and 99% confidence limits for the mean. What is the effect of
an increased sample size?

2. Using the following random sample, construct the 95% confidence
interval for the sample mean.
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Table 5.2: Percentage points of the t distribution [1]. The table gives
the value of tα,ν - the 100% percentage point of the t distribution for
ν degrees of freedom as shown in Figure 5.2. The tabulation is for
one tail only, i.e., for positive values of t. For |t| the column headings
for α must be doubled.

α → 0.10 0.05 0.025 0.01 0.005 0.001 0.0005
...

...
ν = 9 1.383 1.833 2.262 2.821 3.250 4.297 4.781
ν = 10 1.372 1.812 2,228 2.764 3.169 4.144 4.587

...
...

ν = 19 1.328 1.729 2.093 2.539 2.861 3.579 3.883
...

...

49 83 58 65 68 60 76 86 74 53
71 74 65 72 64 42 62 62 58 82
78 64 55 87 56 50 71 58 57 75
58 86 64 56 45 73 54 86 70 73

[Solution: 66.0 ± 3.8]

Remark: Comparing two samples by comparing their mean and stan-
dard variation, it is important to state the confidence interval, (espe-
cially if the sample sizes varied). In graphical representations this is
often shown using error bars.

6 Testing for Differences: The t-Test

With the material of the previous sections we have now available some of
the tools that are necessary for the most frequent application of statistics
in biology: testing a hypothesis related to a sample of data. The purpose
of statistical hypothesis testing is to establish significance tests helping Hypothesis testing
us in decision making and quantifying the uncertainty in this process. For
example, taking two separate samples, we wish to compare the average
values and test whether they are different. From the previous section, we
know that sample means itself vary and a numerical difference between
two sample means does not necessarily mean that this corresponds to a
difference in the population means. The difference between two sample
means may happen by chance. Figure 6.1, illustrates the probability of
getting a sample mean that is one standard error SE greater or smaller
than the expected value µ.

In the following we consider three tests for different scenarios: testing
the difference between a sample and an expected value, testing the dif-
ference between two samples from the same population, and testing the
difference between two samples from two populations. Since the test we
consider here involve inferences about population parameters, they are
also referred to as parametric tests. The t-tests are valid for relatively Parametric tests
small samples (n < 30).
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Figure 6.1: The distribution of sample means. The shaded area cor-
responds to the probability of getting a sample mean that is one stan-
dard error SE greater or smaller than the expected value µ.

The one-sample t-test

Given some expected value, which may be assumed, we here test
whether a sample taken from a population is different to the expected
value. The one-sample t-test determines how many standard errors the
sample mean is away from the expected value: The further the sample
mean is away, the less likely it is that the mean and expected value are
the same.

Before using a test, statisticians define a null-hypothesis, H0, stat- Null-hypothesis H0

ing the opposite of what you are testing. If you are testing for a difference,
the null-hypothesis states that there is no difference. For the one-sample
t-test, the null-hypothesis is that the mean of the population is not dif-
ferent from the expected value. The test will give us a probability to
either accept or reject the null-hypothesis.

The next step is to calculate the test statistic t, which defines the
number of standard errors the sample mean is away from the expected
value, the latter of which is denoted by the letter E:

t =
sample mean − expected value

standard error of mean
=

X̄ − E

SE
. (6.1)

Once the t statistic is calculated, we can compare its absolute value,
written |t|, with the critical value of the t statistic for (n − 1) degrees
of freedom, at the 5% level, i.e., t(n−1)(5%), obtained from a statistical
table, such as Table 5.1. The decision is made as follows:

✘ If |t| is greater than the critical value, the test concludes that the
mean is significantly different from the expected value: you must
reject the null hypothesis.

✔ If |t| is less than the critical value, the mean is not significantly
different from the expected value and there is therefore no evidence
to reject the null hypothesis.

Using a statistical software package, you will also be able to obtain the
probability P that the absolute value of t would be this high or greater
if the null hypothesis were true. Note that the smaller the value of |t|,
the greater the value of P . This probability P is called the significance
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probability. In many textbooks this is also referred to as the P -value or Significance probability
“achieved significance level”. In general, the P -value is the probability P -value
of observing the given sample result under the assumption that the null-
hypothesis is true. Using some statistical programme, you can make your
decisions depending on the significance probability instead of using the
table:

✘ If P < 0.5, the null hypothesis should be rejected.

✔ If P ≥ 0.5, there is no evidence to reject the null hypothesis.

Finally, you can calculate the 95% confidence limits for the difference
by using the following equation:

95% CI(difference) = X̄ − E ± (t(n−1)(5%) × SE
)

. (6.2)

Example: Ten independent observations are taken from a normal
distribution with mean µ. The sample variance is s2 = 40 and the
sample mean is X̄ = 16. We wish to test whether the sample mean
is significantly different from the expected value. The hypotheses are
therefore

• Null hypothesis: µ = 20

• Alternative hypothesis: µ �= 20.

The standard error of the sample mean is

SE =
s√
n

=
6.325

3.162
= 2 .

The t-statistic is

t =
16 − 20

2
= −2 .

In other words, the sample mean is −2 standard errors away from the
expected value. From Table 5.2, for a 1% significance level we look at the
column for α = 0.005 and row ν = 9, to obtain tα,ν = t0.005,9(1%) = 3.25.
Since |t| is much less than the critical value, we have no evidence to reject
the null hypothesis and conclude that the sample mean is not significantly
different from the expected value.

The 99% confidence interval for the difference is calculated as

99% CI(difference) = 16− 20± (3.25 · 2) = −4± 6.5 = [−10.5, 2.5] .

In other words, 99% of all observed differences would be expected to lie in
this interval. Note that the sample mean obtained here does not fall into
this range and that this conclusion is quite independent of the decision
to accept or reject the null hypothesis.

Example: The mean time taken for a plant to die when treated with
a solution is known to be 12 days. When the solution dose was twice as
much in a sample of ten plants, the survival times were 10, 10.7, 12.4,
12.2, 9.8, 9.9, 10.4, 10.8, 10.1, 11.2.
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If the survival times are following a Normal distribution, test whether
the results suggest that the increased solution dosage does lead to a
decreased survival time. If we denote the mean survival time for double
the dose with µ, then the null hypothesis H0 is µ = 12 and the alternative
hypothesis H1 is µ < 12 (Note the difference to the previous example!):

H0 : µ = 12

H1 : µ < 12 .

Choosing a 1% significance level, we are going to look for critical region
in one tail of the t-distribution (because of H1). The 1% significance level
means that we are looking for an area in the left tail of the t-distribution
which has probability 0.01 (a one-sided hypothesis test). The sample
mean

X̄ =
1

10
·

10∑
i=1

xi = 10.75

The sample variance

s2 =
1

9

10∑
i=1

x2
i −10X̄2 =

1163.39 − 1155.625

9
= 0.863 and s = 0.93 .

The value of the t-statistic will be

t =
10.75 − 12

0.93/
√

10
=

−1.25

0.29
= −4.31 .

From Table 5.2, for ν = 9, (the table provides values for positive ts), the
critical region in the left tail of the t-distribution is for values of t smaller
than −2.821. Since the value t = −4.31 is much further to the left in the
critical region, H0 is rejected. In other words, doubling the dose reduces
the survival time of the plants.

Note: The choice of the null hypothesis should be made before the
data are being analysed as otherwise one might introduce a bias into the
analysis. We speak of a one-sided hypothesis if we test for a statistic
being greater or smaller than a value (e.g. µ > 0.3) and a hypothesis is
called two-sided if we test whether the statistic is different to a value
(e.g. µ �= 0.3).

Remark: You should read the following definitions carefully and try to
remember them. The P-value is the probability of the observed data (or
data showing a considerable departure from the null hypothesis) when
the null hypothesis is true. The P -value is not the probability of the
null hypothesis nor is it the probability that the data have arisen by
chance. The significance level is the level of probability at which it
is agreed that the null hypothesis will be rejected. Conventionally this
value is set to 0.05. A significance test is then a statistical procedure
that when applied to a set of data results in a P -value relative to some
hypothesis.
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PRACTICE. Using following data set [7],

4.5 5.2 4.9 4.3 4.6 4.8 4.6 4.9
4.5 5.0 4.8 4.6 4.6 4.7 4.5 4.7

1. estimate the population mean and variance.

2. decide whether the sample mean is significantly different from a
population with a mean value of 4.5.

3. use a statistical software package, such as MS Excel to calculate the
P -value (significance probability).

4. use Table 5.1 to obtain the critical value of t at the 5% significance
level.

5. calculate the 95% confidence limits for the difference.

The paired t-test

With the paired t-test we compare the means from two samples obtained
from what we consider to be a single population. For example, you may
take two samples at different times from the same culture (colony, or Petri
dish). Other typical experiments for which this test is used include “be-
fore/after” or “treated/untreated” descriptions of the experiment. Let
XA and XB denote the two samples, d is the difference, XA −XB, of the
two samples, and d̄ is the average, 1/n

∑
d, of the differences. As with

the one-sample t-test, the steps to follow are:

Step 1: The null-hypothesis is that the mean difference, d̄ is not differ-
ent from zero.

Step 2: The test statistic t is the number of standard errors the differ-
ence is away from zero:

t =
mean difference

standard error of difference
=

d̄

SEd

where

SEd =
sd√
n

.

Step 3: Calculate the significance probability P that the absolute value
of the test statistic would be equal or greater than t if the null
hypothesis were true. Using a statistical table, compare the value
|t| calculated above with the critical value of the t statistic for
(n − 1) degrees of freedom and at the 5% level, i.e., t(n−1)(5%).
The bigger the value of |t|, the smaller the value of P .

Step 4: Hypothesis testing:

✘ If |t| is greater than the critical value, the null hypothesis is
rejected: The mean difference is significantly different from
zero.
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✔ If |t| is less than the critical value, then there is no evidence
to reject the null hypothesis.

Using a statistical software package,

✘ If P < α = 0.05, reject the null hypothesis.

✔ If P ≥ α = 0.05, there is no evidence to reject the null hy-
pothesis, the mean difference is not significantly different from
zero.

Step 5: Calculate the 95% confidence limits for the mean difference as

95% CI(difference) = d̄ ± (t(n−1)(5%) × SEd

)
.

Since the decision whether to accept or reject a hypothesis is made
on the basis of data that are randomly selected, an incorrect decision is
possible. If we reject the null hypothesis H0 when it is true, this is called
a Type I error. Similarly, if we accept H0 when it is false, we commit Type I error
a Type II error. By choosing α (usually 1% or 5%) we fix the Type I Type II error
error to some acceptable low level. If the P -value is less than the chosen
Type I error, the null hypothesis is rejected.

The two-sample t-test

The purpose of this test is to decide whether the means of two samples
obtained from two populations are different from each other. We assume
that both samples are independent of each other. For example, this
test does not apply to samples taken from the same culture.

Both sample means will have a distribution associated with it, and
as illustrated in Figure 6.2, the test effectively tests the overlap between
the distributions of the two sample means. Here we consider only the
case, when it is reasonable to assume that the two populations have
the same variance. (Most software packages will have available tests
for populations with different variances.)

Step 1: The null-hypothesis is that the mean of the differences is not
different from zero. In other words, the two groups A and B from
which the samples were obtained have the same mean.

Step 2: The test statistic t is given by the following formula:

t =
mean difference

standard error of difference
=

X̄A − X̄B

SEd

The standard error of the difference SEd is more difficult to cal-
culate because this would involve comparing each member of the
first population with each member of the second. Assuming that
the variance of both populations is the same, we can estimate SEd

using the following equation:

SEd =

√(
SEA

)2
+
(
SEB

)2
,

where SEA and SEB are the standard errors of the two populations.
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Figure 6.2: In the two-sample t-test, we wish to decide whether the
means of two samples, obtained from two populations are different. In
other words, we wish to quantify the overlap between the distributions
of the sample means.

Step 3: Calculate the significance probability P that the absolute value
of the test statistic would be equal to or greater than t if the null
hypothesis were true. There are nA + nB − 2 degrees of freedom,
where nA and nB are the sample sizes of groups A and B.

Step 4: Using a statistical software package,

✘ If P < 0.05, reject the null hypothesis, the sample means are
significantly different from each other.

✔ If P ≥ 0.05, there is no evidence to reject the null hypothesis,
the two sample means are not significantly different from each
other.

Step 5: The 95% confidence interval for the mean difference is given by

95% CI(difference) = X̄A − X̄B ± (t(nA+nB−2)(5%) × SEd

)
.

Example: We obtain two independent samples XA, XB and we wish
to calculate the 95% confidence interval for the difference of the two
group means:

XA = {64, 66, 89, 77}, XB = {56, 71, 53} .

We calculate X̄A = 296/4 = 74 and X̄B = 180/3 = 60, sA = 11.5181 and
sB = 9.643; SEA = 5.7591, SEB = 5.5678; SEd = 8.01. Thus,

95% CI(difference) = 74 − 60 ± (2.571 · 8.01) = 14 ± 21 .

Example: In an experiment we are comparing an organism for which
the cells were generated by two independent methods (A and B). At a
certain stage of the development the length is measured. The data are
summarised in Table 6.1. If the lengths are following a Normal distribu-
tion, we wish to test whether they are significantly different for the two
groups. The hypotheses are:

H0 : µA = µB

H1 : µA �= µB .
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Table 6.1: Experimental data set.
Origin length (mm) ± s (mm)
A 87.04 ± 7.15
B 77.77 ± 4.70

We have Ā = 87.04, B̄ = 77.77, sA = 7.15, sB = 4.70 and thus

SE
2

A =
s2

A

nA
= 2.56, SE

2

B =
s2

B

nB
= 1.10, SEd =

√
SE

2

A + SE
2

B = 1.91

and therefore

t =
Ā − B̄

SEd

= 4.84 .

Choosing a 1% significance level, we find that for ν = 38 most tables will
not list the desired values. We can however interpolate (from tables like
Table 5.2 [1]) such that if values are given for say ν = 30 and ν = 40, this
gives us a range for the t-statistic to lie between approximately −2.72
and 2.72 for H0 to be accepted. Since 4.84 is considerably larger than
2.72, the null hypothesis is rejected.

The calculation of the t-statistic for the two-sample t-test can be
done in different ways and textbooks will sometimes provide the following
description of Step 2: If the null hypothesis is correct, the following t-
statistic has a Student’s t-distribution with ν = nA + nB − 2 degrees of
freedom:

t =
X̄A − X̄B

sp ·
√

1
nA

+ 1
nB

where sp =

√
(nA − 1)s2

A + (nB − 1)s2
B

nA + nB − 2

Apart from the different calculation there is no change, i.e., using a statis-
tical table for the t-distribution, we would check whether the calculated
t-statistic falls into the critical region.

Equation using sp is based on the idea, that since we assume that
both samples have the same variance, we can ‘pool’ them:

s2
p =

∑
(nA − 1)2 +

∑
(nB − 1)2

(nB − 1) + (nB − 1)
.

Since

s2
A =

∑
(XA − X̄A)

2

nA − 1
and s2

B =

∑
(XB − X̄B)

2

nB − 1
,

we have

s2
p =

(nA − 1)s2
A + (nB − 1)s2

B

nA + nB − 2
or sp =

√
(nA − 1)s2

A + (nB − 1)s2
B

nA + nB − 2
.

As an exercise you should compare the two different strategies and com-
pare the difference.
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Note: If you want to compare the means of more than two groups, you
cannot use the t-test. For this case, a more sophisticated test, called
ANOVA test (analysis of variance) is available. We have also not con-
sidered experiments associated with distributions others than the Normal
distribution. Statistical t-tests are valid for small sample sizes (say n less
than 30). For larger samples z-tests should be used.

Remark: One usually doesn’t learn about the origins of a mathematical
concept although in statistics it is often rather interesting to know how
the various, often alternative, techniques have developed. The following
story about the t distribution and test is frequently told. William Sealy
Gosset (1876 - 1937) studied chemistry at Oxford University and later
worked for the Guinness brewery. Investigating the relationship between
the final product and the raw materials, he developed the statistics we
have discussed here. The company did not allow publications of this
nature and he choose a pseudo name ‘student’. Many textbooks will
still refer to the distribution as the ‘students t distribution. Why he
choose to call it a ‘t’-test when he was working with beer is unknown...

7 Categorical Data: The Chi-Square Test

The chi-squared (χ2) test is used to determine whether there are differ-
ences between real and expected frequencies in one set of categories, or
associations between two sets of categories. Also, in previous sections we
have assumed that a particular type of distribution is appropriate for the
the data. We then estimated parameters of this distribution and tested
hypotheses about parameters.

Categorical data are data that are not numbers but measurements
assigned to categories. Examples of character states are the colour Character states
of objects, conditions like dead/alive or healthy/diseased. Data with
equal character states form categories. Categorical data is quantified by
the frequency with which each category was observed. Similar to the
t-tests, we can as the following questions:

� Are observed frequencies in a single group different from expected
values?

� Are observed frequencies in two or more groups different from each
other?

To answer these questions we have two tests available: the χ2 test for
differences and the χ2 test for association.

Chi square test for differences

The purpose of this test is to decide whether observed frequencies are
different from expected values. The χ2 statistic calculated here is a mea-
sure of this difference. The null hypothesis is that the frequencies of the
different categories in the population are equal to the expected frequen-
cies. Critical values or percentage points of the χ2 distribution can be
found in tables of the same nature as Tables 5.1, 5.2.
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The χ2 statistic is calculated by the expression

χ2 =
∑ (O − E)2

E
,

where O is the observed frequency and E is the expected frequency for
each character state (category). The larger the difference between the
frequencies, the larger the value of χ2 and the less likely it is that observed
and expected frequencies are different just by chance. Different samples
will give different observed frequencies and hence different values for χ2.
Thus χ2 has a probability distribution which is illustrated in Figure 7.1.
(Actually, there is a small difference between the expression (7.2) and
the distribution in Figure 7.1, but since I referred to Figure 7.1 as an
illustration this may not be a problem.).
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Figure 7.1: Chi square, χ2 distribution with different degrees of free-
dom. In practise one would not use such graph but tables to obtain
values required for calculations.

The probability P of obtaining χ2 values equal or greater than the
observed values if the null hypothesis were true can be obtained from
tables which list the critical value that χ2 must exceed at (N −1) degrees
of freedom, where N is the number of groups, for the probability to be
less than 5%.

Note: The distribution of χ2 is depends on the number of degrees
of freedom - the bigger the sample you take, the more likely you will be
to detect any differences. Note that therefore the two tests we introduce
here are only valid if all expected values are larger than 5.

Chi square test for association

With this test we wish to decide whether the character frequencies of two
ore more groups are different from each other. In other words, we test
whether character states are associated in some way. The test investigates
whether the distribution is different from what it would be if the character
states were distributed randomly among the population.

The null hypothesis is that there is no difference between the frequen-
cies of the groups, hence no association between the character states.
Before we can calculate the χ2 statistic we must calculate the expected
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values for each character state if there had been no association. To do Contingency table
this we arrange the data in a contingency table:

Character a Character b Total
Group A frequency frequency
Group B frequency frequency
Total

The expected number E (frequency) if there had been no association
between the character states in the two groups is given by

E =
column total × row total

grand total
(7.1)

The grand total is the sum of the two row totals. The significance prob-
ability is obtained from a statistical table as the critical value that χ2

must exceed at (R − 1) × (C − 1) degrees of freedom, where R is the
number of rows in the table above and C is the number of columns, for
the probability to be less than 5%. If χ2 is greater than the critical value,
the null hypothesis is rejected - there is a significant associations between
the characters.

PRACTICE. Through experiments on two groups we found that in group
A, out of 30 objects, 18 had character state a and 12 had character state
b, while of the 60 objects in group B, 12 had character state a and for
48 objects we observed character state b. Test whether character state a
is significantly different in the groups. Using a software package such as
Minitab, MS Excel, Matlab or Mathematica,

1. formulate the null hypothesis.

2. calculate the test statistic.

3. determine the P -value.

4. decide whether to reject the null hypothesis.

Chi-square test for goodness of fit

The χ2 test can also be used to determine how well theoretical distribu-
tions (such as the Normal distribution) fit empirical distributions (i.e.,
those obtained from sample data). As in previous sections, a measure for
the goodness of fit of the model can be established with the following
statistic:

χ2 =

m∑
i=1

(Oi − Ei)
2

Ei
, (7.2)

where m denotes the number of different outcomes. Significantly large
values of χ2 suggest a lack of fit. We are now going to see how the chi-
square statistic can be used to test whether a frequency histogram fits
the normal distribution.
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Fitting a normal curve to the data of Table 2.1, we first calculate
standard units for the class boundaries, z = (x− X̄)/s. The areas under
the normal curve can be obtained from tables (e.g. Table 4.1). From this
we find the areas under the normal curve between successive values of z as
shown in column 5 of Table 7.1. These are obtained by substracting the
successive areas in column 4 when the corresponding z’s have the same
sign, and adding them when the z’s have opposite sign. Multiplying the
entries in column 5 (rel. freq.) by the total frequency (n = 100) gives
us the expected frequencies, as shown in column 6. To determine the
goodness of fit, we calculate

χ2 =
(5 − 4.13)2

4.13
+

(18 − 20.68)2

20.68
+

(42 − 38.92)2

38.92

+
(27 − 27.71)2

27.71
+

(8 − 7.43)2

7.43
= 0.059

Since the number of parameters used in estimating the expected frequen-
cies is 2, we have ν = 5− 1− 2 = 2 degrees of freedom. From a table we
find χ2

.95 = 5.99. Thus we can conclude that the fit of the data is good.

Table 7.1: Fitting a normal curve to the data in Table 4.1 and test-
ing the fit of the frequency histogram in Figure 2.2 to the normal
distribution [5].

class
limits

class
boundaries

z for class
limits

area under
normal curve
from 0 to z

area for
each class

expected
frequency

observed
frequency

60-62 59.5 -2.72 0.4967 0.0413 4.13, or 4 5
63-65 62.5 -1.70 0.4554 0.2068 20.68, or 21 18
66-68 65.5 -0.67 0.2486 0.3892 38.92, or 39 42
69-71 68.5 0.36 0.1406 0.2771 27.71, or 28 27
72-74 71.5 1.39 0.4177 0.0743 7.43, or 7 8

74.5 2.41 0.4920

Note: In this section, we introduced only the most basic concepts for
categorical data. Books in the reference list (Section 13, page 39) will
provide more details on the rationale behind the tests and will help you in
selecting an appropriate test for a problem at hand. Another important
issue, which we haven’t dealt with, is the design of experiments.

8 Finding Associations: Correlation

... have a look at the references given in Section 13.

9 Modelling Relationships: Linear Regression

... have a look at the references given in Section 13.
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10 More Exercises

Exercises for Section 2

The following sample consists of 12 temperature measurements taken
every two hours: −2,−3,−3,−2, 0, 4, 5, 6, 6, 6, 3, 1. Calculate

1. The temperature average of the day, i.e., the sample mean X̄. Do
three calculations:

(a) Using equation (3.1).

(b) Using equation (3.2).

(c) Using the statistical function of your calculator.

2. The sample variance σ2
n, the sample standard deviation σn, and the

unbiased estimate of the population variance s2:

(a) Using equations (3.3) and (3.4).

(b) Using equation (3.5).

(c) Using the statistical functions of your calculator.

50, 35, 19, 27, 44, 70, 60, 28, 61, 41, 50, 56
61, 52, 62, 66, 70, 52, 81, 43, 63, 52, 71, 51
60, 35, 49, 57, 44, 30, 60, 28, 61, 44, 55, 36
51, 62, 42, 66, 70, 42, 61, 43, 63, 52, 71, 51
50, 75, 44, 65, 44, 70, 60, 67, 65, 44, 55, 57

Table 10.1: Exam results for 60 students.

Table 10 lists the exam results for 60 students. For the given data set,

1. Calculate the range of the scores.

2. Construct the tally chart for the following score intervals

score tallies
0 − 9 ||||

10 − 19
20 − 29
30 − 39
40 − 49
50 − 59
60 − 69
70 − 79
80 − 89
90 − 100

3. Determine the relative frequency distribution for the intervals spec-
ified above.

4. Visualise the relative frequency distribution with a relative fre-
quency histogram.

5. Calculate and draw the cumulative frequency distribution.
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Exercises for Section 3

For the data in Table 10,

1. Calculate the mean, the median, the mode and the standard devi-
ation using your calculator or a software package.

2. Mark the calculated statistics in the relative frequency histogram
calculated previously.

3. The nth percentile is the score that leaves n% of the data to the left.
Calculate the 10th, 30th, 60th, and 90th percentiles. Hint: Sort the
data from the smallest to the largest value. Mark the percentiles
in the relative frequency histogram.

Exercises for Section 4

1. For the distribution of the scores of Table 10 answer the following
questions,

(a) is the distribution unimodal?

(b) is the distribution symmetric about the mean?

(c) calculate the percentage of observations falling between X̄ +
0.674s

(d) calculate the percentage of observations falling between X̄ +
1.96s

(e) calculate the percentage of observations falling between X̄ +
2.576s

2. Do you think that the scores of Table 10 are “normally distributed”
(follow a normal or Gaussian distribution)?

3. Are the scores in Table 10.2 “more” normally distributed than those
in Table 10?

53, 63, 52, 63, 61, 69, 60, 53, 56, 59, 62, 61
55, 58, 60, 60, 51, 59, 59, 65, 61, 59, 67, 71
60, 59, 69, 55, 44, 60, 59, 57, 58, 69, 56, 74
60, 57, 60, 60, 54, 46, 54, 59, 66, 63, 54, 64
58, 61, 68, 61, 52, 58, 62, 63, 66, 73, 57, 63

Table 10.2: Data set.

Exercises for Section 5

You read in a scientific report that the average age of death for women
in your country is 73.2 years. To find out whether the average age of
death for men is the same as that of women, a small sample of 25 death
certificates shows an average age of 58.4 years and a sample standard
deviation of 15 years.
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1. Using a significance level of 0.01, choose an appropriate hypoth-
esis test and determine whether the null hypothesis (there is no
difference between mean and woman) should be accepted.

2. Use the 99% confidence interval for the men’s average age of death
to reach the same conclusion.

Exercises for Section 6

1. A researcher believes that the average weight in a group of people
is 120 pounds. To test this belief, you determine the weight of 7
people with the following results (in pounds)): 121, 125, 118, 130,
117, 123, and 120.

(a) Estimate the population mean and variance.

(b) Decide whether the sample mean is significantly different from
a population with a mean value of 120.

(c) Obtain the critical value of t at the 5% significance level.

(d) Calculate the 95% confidence limits for the difference.

2. Imagine you want to test whether or not six minutes is enough
time for the heart to recover the pulse rate after two minutes of
exercise. For a period of one week the pulse rate is measured from
one person, every day, before exercise and six minutes after the
exercise, obtaining the data summarised in Table 10.3. Do these
data indicate that the heart rate after the exercise is higher than
before the exercise? Use a 1% level of significance.

Test 1 2 3 4 5 6
Before 69 72 75 73 70 74
After 85 79 83 84 87 78

Table 10.3: Data set.

3. We want to compare the efficiency of the two pieces of equipment,
referred to as A and B. In Table 10.4 the first row shows the
numerical values obtained for the efficiency measure for meter A
and the second row show the results for meter B.

(a) Calculate the mean and the standard deviation for each group.

(b) Calculate the 95% confidence interval for the difference of the
two group means

(c) What can you say about the efficiency of the two meters?

A 18 15 18 16 17 15 14 14 14 15
B 24 27 27 25 31 35 24 19 28 23

Table 10.4: Data set.
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11 Solutions to Exercises in Section 10

Solutions to Section 10, related to Section 5

1. SE = s√
n

= 15√
25

= 3

t = X̄−E
SE

= 68.4−73.2
3

= −1.6, | t |= 1.6
t(24)(1%) from the table is 2.797, so we do not reject the null hy-
pothesis.

2. 99%CI = X̄ ± (t(24)(1%) × SE)
99%CI = 68.4 ± (2.797 × 3)
99%CI = 68.4 ± 8.3910
The women’s average age of death is included in the range.

Solutions to Section 10, related to Section 6

1. Sample mean X̄ = 854
7

= 122
Estimated population variance s2 = 20
Estimated population standard deviation s = 4.472
SE = s√

n
= 4.472√

7
= 1.690

t = X̄−E
SE

= 122−120
1.690

= 1.832, | t |= 1.832
t(6)(5%) from the table is 2.447, so we do not reject the null hy-
pothesis.
99%CI = X̄ − E ± (t(6)(5%) × SE)
99%CI = 122 − 120 ± (2.447 × 1.690)
99%CI = 2 ± 4.1352

2. d = XA − XB

d̄ = 1
n

∑
d = 10.5

SEd = sd√
n

= 2.110

t = d̄
SEd

= 10.5
2.110

= 4.977, | t |= 4.977

t(5)(1%) from the table is 4.032, so we reject the null hypothesis.

3. SEA = SA√
n

= 1.5776√
10

= 0.4989,

SEB = SB√
n

= 4.4485√
10

= 1.4067,

SEd =

√
SE

2

A + SE2
B = 1.4926

95%CI = X̄A − X̄B ± (t(18)(5%) × SEd)
95%CI = 15.6 − 26.3 ± (2.101 × 1.4926)
95%CI = −10.70 ± 3.136
t = X̄A−X̄B

SEd
= 15.6−26.3

1.4926
= −7.1687, | t |= 7.1687

t(18)(5%) from the table is 2.101 so the means are different.
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12 Symbols and Notation

The following symbols are used in the notes. They are listed in the order
of their appearance.

A, B samples or groups,
F (x) cumulative distribution function.
X sample.

xi ∈ X element, observation or measurement in sample.
{ } list, set.
n sample size (number of elements in sample).
X̄ sample mean.
µ population mean.
σ2

n sample variance.
s2 = σ2

n−1 unbiased estimator of population variance.
σ2 population variance.

σ =
√

σ2 population standard deviation.∑n
i=1 sum of elements with index i = 1, 2, . . . , n.
fi frequency of observation (of xi or in class i).
m number of distinct value of x in a sample.

p(x) probability density function.
P (·) probability.
[a, b] interval ranging from a to b.

z standard unit.
Φ(z) cum. distr. fcn. of standardized normal variable z.
SE standard error.

SE estimated standard error.
CI confidence interval.
d.f. degrees of freedom. See also ν.

t(n−1)(·) critical value of t distribution.
t t statistic.
α 100% percentage point (of t distribution).
ν degree of freedom.
E expected value, expected frequency.
| · | absolute value.
d difference.
d̄ average of differences.
P P -value.

H0, H1 null hypothesis, alternative hypothesis.
SEd standard error of mean difference.
χ2 chi-square distribution and test.
O observed frequency.
N number of groups.

R, C number of rows and columns in contingency table.
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13 Further Reading

There are many statistics books available and I strongly recommend to
buy at least one. The small book by Rowntree [3] is the most basic
and yet very good introduction for those who are worried about the
mathematics. It shows that ideas come first, and equations should only
follow as a means towards an end. Since there are so many different
techniques and concepts in statistics, it is very important to ask the
‘right’ question in order to identify a suitable technique, test or tool.
Freedman’s [4] is a very good book in this respect too but much more
comprehensive. [2] has many exercises and is at an introductory level.
The Schaum Outline [5] is one of a series of well known introductory texts
to mathematics. Wonnacott and Wonnacott [6] is a hardcover text and
is likely to last a little longer. Although the area from which examples
are taken shouldn’t matter too much for an introductory book, here the
focus is on examples from business and economics. It has exercises and is
suitable as a basic reference. Previous books contained general examples
from science, engineering, economics etc, while [7] is a well written basic
introduction for biologists - good value for money too. The recent book
by Quinn and Keough [9] is a comprehensive treatment that is written for
biologists. It is a textbook that is also a good reference. In addition to the
basic statistics, it covers multivariate data analysis (clustering, principal
component analysis,...) and regression techniques. Finally, Sokal and
Rohlf [8] wrote one of the most comprehensive statistics book aimed at
biologists. It is a very good but also advanced reference book.
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