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1 Introduction

We make the world around us comprehensible through our cognitive
skills, making use of our senses and the mind to reason about phenomena
and to answer questions. As animals we are limited in our perception
and conception and for anything that goes beyond common experience,
in the areas of science and engineering, we complement common sense
with technologies and methodologies. For example, molecular systems
are usually not directly observable and properties not directly measur-
able. Experimentation, helped by instrumentation, generates data we
can analyse to explain the phenomenon under consideration. Raw data,
i.e., a list of numbers usually does not reveal a relationship or pattern
by itself. Mathematics helps us to reveal, explain and represent (model)
principles for which the data may provide evidence.

Like for anything else it takes time to learn the tricks of the trade. You
should enjoy learning math as you like to acquire skills with the latest
technology. The advantages over technology are obvious: it is cheap –
paper and pencil to start with; it is safe – equations don’t bite but most
of all it is generic – it works in different contexts, it lasts a lifetime.

Data handling, the analysis of data for the purpose of model building,
hypothesis testing and decision making is central to all sciences. To be a
good scientist, being able to answer questions, you need to be able to ask
questions. Questioning is as important in learning math as it is in the
natural sciences. For this course, the most important advice I can give
to you is that if you get stuck, treat the math like a wet-lab experiment:

• Ask why? and how? questions!

• Help yourself with a pen and paper

– visualise the question,

– keep a record of the answering process.

• Remember: Repeated trials are essential to gain confidence...

These lecture notes have extra large margin to encourage you to make Use this space!
comments.

Finally, for the given exercises, if you compare your results with those
of others, please make sure that you don’t just compare the final result
but also the steps that lead to the solution. For most problems in mathe-
matics there are several valid ways of reaching a solution! This should not
confuse you but by comparing and “playing” with alternatives you will
improve your problem-solving skills. I also recommend that you quickly
read or “scan” the notes before the lecture. This will help you memorise
new ideas and concepts. Some time after the lecture you should again
read the notes but this time try to understand all the material and do
the exercises.

ENJOY YOUR EXPERIMENTS IN
MATHEMATICS!
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2 Simple Powers

Most people who have no particular interest in mathematics find it dif-
ficult that in mathematics many things can be written, or arrived at,
in different ways. Mathematicians enjoy this aspect, because, like us-
ing a natural language, this allows for creativity and by introducing new
concepts, notation or representations one can enrich the ‘vocabulary’.
You should not get confused by notation and alternative representations.
Although not always obvious a lot of equivalent representations are for
convenience. Honestly!

Positive powers are a convenient shorthand for repeated multiplica- Multiplication of powers:

an · am = an+m
tions. For example, for 4 · 4 we write 42 (“square”) or in general

an = a · a · a · . . . · a︸ ︷︷ ︸
n times

where a is called the base and n is referred to as the exponent, power
or index. Let us see what happens when we multiply powers of the same
base together:

62 · 63 = (6 · 6) · (6 · 6 · 6) = 65 or 62 · 63 = 62+3 = 65 .

It does not matter whether the base is a number or letter

x3 · x5 = (x · x · ·x) · (x · x · x · x · x) or x3 · x5 = x3+5 = x8 .

An example for powers occurring in biology are processes that double
in time, for instance, cell division. Imagine you start with two cells,
at the next stage you have 2 · 2 cells and thereafter 2 · 2 · 2 etc. PCR
amplification is an important biological tool that serves as an example.
PCR produces an amount of DNA that doubles in each cycle of DNA
synthesis. For example, three PCR cycles of reactions produce 8(= 2·2·2)
DNA chains. We are going to consider mathematical representations of
such “exponentially increasing processes” in greater detail in Sections 12
to 16.

PRACTICE. The rule is: When multiplying powers of the same base,
add the powers. Try simplifying the following:

1. 72 · 75 · 79 =

2. 42 · 162 =

3. a4 · a5 · a7 =

4. a2 · b2 =

If we replace a and/or n by zero and one, we obtain a few special
cases

1n = 1 , a1 = a , a0 = 1
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and some familiar examples:

102 = 100 hundred

103 = 1000 thousand

106 = 1 000 000 million.

Let us see what happens when we divide powers of the same base:

35

32
=

3 · 3 · 3 · 3 · 3
3 · 3 = 3 · 3 · 3 = 33

The same result could be obtained by subtracting the indices

35

32
= 35−2 = 33

Likewise Division of powers:

an

am
= an−m

712

75
= 712−7 = 77

a4

a3
= a4−3 = a1 = a .

PRACTICE. The rule is: When dividing powers of the same base, sub-
tract the powers. Try the following without a calculator.

1.
57

53
=

2.
73 · 74 · 78

75 · 76
=

3.
a8

a5
=

4.
y2 · y7

y4
=

Next we try to answer what the value of
(
33

)2
is. One way is to Powers of powers:

(
ab

)c
= a(b·c)

proceed as follows:

(
33

)2
= 33·33 = 33+3 = 36 similarly

(
22

)3
= 22·22·22 = 22+2+2 = 26 .

The same result could be obtained if the indices were multiplied together,
i.e.,

(
33

)2
= 33·2=36(

22
)3

= 22·3=26 .

PRACTICE. The rule is: When raising the power of a number to a
power, multiply the indices together.
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1.
(
57

)3
=

2.
(
x2

)4
=

3.
(
a−2

)3
=

4.
(
x−1

)−2
=

5.
(
32 · 74

)3
=

6.

(
57

35

)4

3 =

Negative indices arise when we simplify expression such as

43

46
=

4 · 4 · 4
4 · 4 · 4 · 4 · 4 · 4 =

1

4 · 4 · 4
Applying the division rule

43

46
= 4(3−6) = 4−3

Hence

4−3 =
1

43

A negative index therefore indicates a reciprocal. We return to this in
the next section. Other examples are

2−3 =
1

23
, a−5 =

1

a5
, x−1 =

1

x
.

PRACTICE. Rewrite the following expressions.

1. 3−1 =

2. 5 · 2−2 =

3. x−2 =
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4. 3 · a−2 =

Our number system uses base ten and each digit in decimal numbers Powers of fractions:

(a

b

)c

=
ac

bc

such as 9023.4056 can therefore be represented by its place value. The
place value of each digit in a base ten number is determined by its position
with respect to the decimal point. Each position represents multiplication
by a power of ten. For example, in 324, the 3 means 300 because it is
3 times 102 (102 = 100). The 2 means 20 because it is 2 times 101

(101 = 10), and the 4 means 4 times one because it is 4 times 100 (100 =
1). There is an invisible decimal point to the right of the 4. In 5.82
the 8 means 8 times one tenth because it is 8 times 10−1 (10−1 = 0.1).
Summarised for the number 9023.4056 we have:

9 0 2 3 . 4 0 5 6
Ten-thousands, 10−4

Thousands, 10−3

Hundredth, 10−2

Tenth, 10−1Ones or Units, 100

Tens or Units, 101

Hundreds, 102

Thousands, 103

Powers of ten are a convenient way to manipulate very large or very
small numbers. Molecular biologists frequently deal with ‘extreme num-
bers’, they handle milliliters (10−3L) and count in there a million (106)
bacteria. (More on this when we introduce measurement units in Section
9). For example,

30 000 · 0.02

0.006 · 10
=

3×104 · 2×10−2

6×10−3 · 1×10
=

6×102

6×10−2 = 102 · 102 = 104

Scientific notation (or standard form) is the convention used for plac- Scientific notation:

a × 10n
ing a decimal after the first non-zero digit of a number, and then multi-
plying it by the appropriate power of 10. In this way, large numbers such
as 3, 690, 000, 000 are more conveniently represented as 3.69× 109. Like-
wise, very small numbers such as 0.00000573 are reported as 5.73×10−6.

PRACTICE. Try these questions without a calculator.

1.
0.0006

2000
=

2.
0.05 · 200

0.002
=

3.
0.0009

7000
· 1

30
· 4.9×105

0.1
=

4. (0.0005)2 =
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5. Although biologists deal with big numbers, astro-physicists probably
break the records. For example, the speed of light in empty space is
approximately 301, 000, 000 m/s. Stars are so far away that their
distance from Earth is measured in terms of how long the light has
taken to reach us. The light from our nearest star, Alpha Centauri
takes 4.3 years to reach us. How far is this in meters?

Negative exponents are dealt with in the next section and before
then we only briefly note that for very large numbers, much greater than
one, we obtain the scientific notation as follows. To express 4 500 000
in standard form a × 10n, we must first identify the value of a which is
a number between 1 and 10. In this example a = 4.5 and 4 500 000 =
4.5 × 1 000 000 = 4.5 × 106. An alternative method is first to consider
the position of the decimal point. For example, write 2 756 000 000 in
standard form. Place the decimal point and to find n count the number
of places to the right. So n = 9 and hence 2 756 000 000 = 2.756 × 109.
To practise the standard notation, invent three examples!

Remark: Powers are useful for a number of reasons. In biology, cell
division or the growth of microbiological cultures are examples. On the
other hand, our number system is “base ten”, that is, a number like 25.3
is actually a short form of 2 · 101 + 5 · 100 + 3 · 10−1.

For subsequent sections, I try to encourage you to treat the exercises
like a laboratory experiment. In a laboratory environment it is natural
to try (“experiment”) with different tools and to ask questions when
something doesn’t work. For maths, many of us feel that a solution
should appear instantly or never. This is a mistake and the ability to
question and experiment in maths is in fact a sign of skill rather than
weakness.

The exercises required some knowledge of how to deal with fractions
and bracketed expressions. We will address these issues in the following
sections.

3 Fractions

A fraction is a mathematical concept used to describe proportions, ra-
tios, and rates. Fractions consist of two parts, the numerator and the
denominator:

num

den
, for example

3

4
(read this as ‘three over four’) .

An equivalent way to write the example is

3 · 1

4
(‘three fourth’)

which highlights the fact that a whole is divided into 4 parts and what we
have is 3 parts or “three quarters” in this particular case. Probably the
most frequently used case are ‘hundreds’ or as it is more commonly known
as: percent. It even has its own symbol: %. More about percentages
below. Sometimes fractions are equivalent, even this is not obvious at Equivalent fractions
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first glance:

3

4
=

6

8
=

9

12
=

12

16
=

15

20

To find a fraction in its lowest terms (with numbers on top and bottom Cancelling fractions
lines that are as small as possible) we cancel down:

27

63
=

3

7

÷9

÷9
Dividing numerator and denominator by the same number, simplifies Division of fractions:

a
b
c
d

=
a

b
· d

c

the expression but doesn’t change its value. To check this, we write the
operation out in detail:

27

63
=

27
9
63
9

=
27 · 9/
63 · 9/. Try this:

24

54
=

Cancelling fractions involves the division of fractions. In general, to Multiplication of fractions:

a

b
· c

d
=

a · c
b · d

divide two fractions you multiply the first fraction by the reciprocal of
the second fraction:

3
8
1
4

=
3

8
· 4

1
=

3 · 4
8 · 1 =

12

8
= (cancel)

The reciprocal of a fraction is therefore found by turning the fraction Substraction of fractions:

a

b
− c

d
=

a·d− c·b
b · d

upside down. The reciprocal of a/b is b/a. To multiply two fractions we
multiply the numerators and denominators. The following example shows
how cancelling down, before multiplication, can simplify the operation:

7

4 1 · 12 3

5
=

7

1
· 3

5
=

21

5

To subtract or add two fractions, we first have to ensure that the denom- Addition of fractions:

a

b
+

c

d
=

a·d + c·b
b · d

inators of both fractions are the same. A simple way to find a common
multiple is to multiply the denominators. To find the common denomi-
nator you can use the lowest common multiple of the two denominators.
To work out 7

8
− 1

4
, we multiply the numerator and denominator with

the factor that makes the denominator equivalent to the lowest common
multiple 8 · 4 = 32:

7

8
=

28

32

×4

×4

1

4
=

8

32

×8

×8
such that

28

32
− 8

32
=

28 − 8

32
=

20

32
= (cancel)

Note: Although multiplying or dividing the numerator and denom-
inator with the same number does not change the value of the fraction,
this is not true for adding or subtracting numbers:

a + 3

b + 3
is not the same as

a

b
. Similar

a2

b2
�= a

b
!
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Comparing fractions, it is often difficult to see the difference, say,
whether 4/5 is greater or less than 1/2 by just looking at the numbers.
However, basic fractions can be “visualised” by ‘sharing a cake’ or by
colouring a rectangle. For example, use the following rectangles to fill in
the fraction next to it. (Do it NOW):

3
8

1
2

2
4

3
6

If we consider the basic fraction a/b, we can think of some special
cases, setting b = a, a or b equal to one or zero. This leads to the
following rules:

a =
a

1
,

0

a
= 0 ,

a

a
= 1 ,

1

a
= a−1 (a ≥ 1)

For 1/a and a ≥ 1 the fraction gives a number which is smaller than Negative indices:

1

an
= a−n

one. In Section 2, on positive exponents such as an and n ≥ 1, we
observed that a number such as 250 can be expressed as 2.5×102 and since
102 = 100, the exponent 2 means effectively that we shift the decimal
point by two positions to the right to get 250. Negative exponents are
very much the same only that we move in the opposite direction. For
example, 0.025 is the same as 2.5×10−2. We can therefore generalise the
case 1/a = a−1 to any negative exponent:

1

an
= a−n

For a = 10 we obtain something familiar:

100 = 1/1 = 1

10−1 = 1/10 = 0.1

10−2 = 1/100 = 0.01 (one hundredth or a percent)

10−3 = 1/1000 = 0.001

10−4 = 1/10 000 = 0.0001

10−5 = 1/100 000 = 0.00001

10−6 = 1/1 000 000 = 0.000 001

Describing one portion as 4/5 and another as 1/2 is not very convenient if
we want to compare the two. Percentages are fractions with a denomina-
tor of 100. Dividing a cake, hundred percent, written 100%, is the whole,
while 25% is a quarter. We are usually familiar with percentages, i.e.,
have an intuition about them and therefore it is often useful to convert
a fraction to a percentage we multiply a fraction by 100:

4

5
· 100 = 80 therefore

4

5
= 80%

More on calculating with percentages follows further on. In the list above, Converting decimals to
fractionswe found that the fraction 1/100 in decimals is 0.01. To convert any

decimal, say 0.473, to a fraction we notice that from above

0.473 =
4

10
+

7

100
+

3

1000
=

400

1000
+

70

1000
+

3

1000
=

473

1000
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Convert the following decimals NOW – can you see the pattern?

0.12 =

0.3044 =

A ratio is a comparison between two like quantities (e.g. ‘you receive Ratios vs rates
two, I keep three’) while a rate is a comparison of two unlike quantities
(‘the limit is 25 miles per hour). A ratio is often written 2 : 3, read
‘two to three’. Receiving ‘two’ out of five means you get 2/5. Notice
the relation between a ratio and the fraction: the denominator of the
fraction must be the total number of parts involved. Rates are similar to
ratios. The units show the quantities being compared. For example,

speed =
distance

time

For instance, take a car travelling at an average speed of 30 mph (miles
per hour). It will take 20 mins to go 10 miles. If the average speed
increases to 40 mph, how long will it take to cover 10 miles? The car
travels

40 miles in 1 hour = 60 mins

1 mile in
60

40
mins

10 miles in
60

40
· 10 mins

= 15 mins

As the speed increases, the time will decrease (inverse proportion).

PRACTICE. Try these questions without a calculator.

1. Which two fractions are equivalent?

(a)
3

10

4

9

24

54
(b)

6

7

12

13

12

14

2. Write down 20p as a fraction of £1.

3. Work out 2
7

of 105 millimeters.

4. Convert 4
5

to a percentage.

5. Convert 34% to a fraction.

6. Out of 24, how many percent are 1
3

and 5
8
.

7. 12
5

+ 3
4

=

8. 2
5
· (1

3
+ 2

5

)
=

9.
(

a
b

c

)
· e

f
=

10. Divide 0.00034 by 0.7.
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11. If a car can travel 35 miles per gallon of petrol, how much petrol
(to the nearest gallon) would it need to go 100 miles?

12. What is the length of 3/4 of a piece which is 2/3 metres long?

Remark: If you wonder how you can best remember all the concepts
and ideas mentioned so far, I recommend you go through all framed
boxes, most of which are in the margin, and devise an example for each
‘rule’. Probably the best way of learning math is ‘learning by doing’.

4 Percentages

A percentage represents a fraction of 100. Percent therefore means “out
of 100” or “per 100”. We describe quantities in % because they are more
intuitive than decimal numbers. Percents can be written as fractions by
placing a number over 100 and simplifying or reducing. For example,

30% = 30 · 1

100
=

30

100
=

(
3

10

)

If we say that 3
4

(“three quarters”) of a given material is used, we mean
that

3

4
× 100% =

3

4
· 100

1
=

300

4
= 75%

of the available material is used. Therefore, fractions can be changed to To convert a decimal or
fraction to a percentage,
multiply it by 100.

percents by writing them with denominators of 100. The numerator is
then the percent number:

3

5
=

3

5

·
·
20

20
=

60

100
= 60%

If we ask: What is 7% of 30?

7% = 7
100

so 7% × 30 = 7
100

· 30
1

100 and 30 have the com-
mon factor 10.

= 7
10

· 3
1

= 7·3
10

= 21
10

= 2.1

To change a percent to a decimal number move the decimal point 2 places Conversion of % to decimal.
to the left because percent means “out of 100” and decimal numbers with
two digits behind the decimal point also mean “out of 100”. For example,

45% = 0 . 4 5 , 125% = 1 . 2 5

6% = 0 . 0 6 , 3.5% = 0 . 0 3 5

Note that because the 5 was already behind the decimal point and there-
fore does not count as one of the digits in the “move two places”. To
change a decimal number to a percent move the decimal point two places
to the right:

0.47 = 4 7 % , 3.2 = 3 2 0 % , 0.205 = 2 0 . 5 %

12



Although they are related to fractions and decimals, percentages are
used and manipulated in different ways. Typical problems involving per-
centages can be illustrated using our ‘shopping instincts’: Imagine you
are asked to purchase the material needed for your experiments. Prices
in catalogues are often given excluding VAT (Value Added Tax), so that
must be added to find the actual cost. For example, your cultures are
priced at £2000 + VAT (at 17.5%). The actual cost can be found in
more than one way:

VAT = 17.5% of £2000 Price = 117.5% of £2000

£2000 · 17.5
100

= £350 £2000 · 117.5
100

= £2350

Final price = £2000 + 350 = £2350

A colleague tells you that he paid £1950 with a 15% reduction. What
was the original price?

You should not find it necessary to use the calculator’s % function.
(I can never remember how to use it). However, in case you want a kind
of algorithm: Any problems that are or can be stated with percent and
the words “is” and “of” can be solved using this formula: “IS” and “OF” formula :

%

100
=

“is” number

“of” number

%

100
=

“is” number

“of” number

or “of” means multiply and “is” means equals.

Example 1: What percent of 125 is 50?

n

100
=

50

125
.

Or n · 125 = 50, in either case the percent = 40%

Example 2: What number is 125% of 80?

125

100
=

n

80
.

Or 1.25 · 80 = n. In either case the number = 100.

If you are not confident with the rearrangement of algebraic equations,
return after you read Section 8.

PRACTICE. Try these questions without a calculator.

1. What is 15% of 70?

2. A DNA fragment of 35 kilobases is digested by an exonuclease. The
enzyme degrades seven kilobases. What percentage of the DNA is
degraded?

3. You counted 10, 000 cells three weeks ago and 12, 000 today, what
is the % increase?
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Problem Solving Strategies

Read the following section in your own time and reflect upon questions
questions related to percentages.

It is important to acknowledge that, in general, there is more than Reflective thinking
one way to obtain a solution. The following example is taken from [9]
and illustrates strategies for mathematical problem solving. One of the
main conclusions is: getting STUCK is a natural state of affairs:

A company offers you a 30% discount but you must pay 15%
tax. Which would you prefer to have calculated first, discount
or tax?

The natural response is to start by trying some specific cases. Say, we
try it with an item priced at £100.

DO SO NOW IF YOU HAVE NOT ALREADY

Surprised by the result? Now, will the same happen for a price of say
£120?

TRY IT AND SEE!

Write down your calculations and your insights. It is the only way to
develop your thinking skills. There should be a pattern in the special
cases you have tried.

TRY EXAMPLES UNTIL YOU ARE SURE!

Specialisation, which means turning to examples to learn, is as important
as trying to vary your way of thinking. With any luck you will have found
that

1. subtracting 20% from a price is the same as paying 80%, that is,
you pay 0.8 times the price.

2. adding 15% to a price is the same as paying 115% of it, that is you
pay 1.15 times the price.

Then for any initial price of say £x, calculating

discount first: you pay 1.15 · (0.80 · £x)

tax first: you pay 0.80 · (1.15 · £x)

By writing the calculation in this form you can see that the order of
calculation does not matter and, indeed, you pay the same in both cases.

5 Real Numbers

Like biologists classify species, mathematicians distinguish different kinds
of numbers. (Well, it is not quite the same but there are certainly some
unusual species on the real line...) A rational number is any number
which can be expressed exactly as a fraction a

b
where a and b are integers

(‘whole numbers’, i.e., . . .−3,−2, , 0, 1, 2, 3 . . .). An irrational number
is any number which cannot be expressed exactly as a fraction in this

14



form. For example,
√

4 = 2
1

is rational while
√

2 = 1.4142135 . . . is
not. Positive integers {1, 2, 3, . . .} are also called natural numbers.
Measurements are often assumed to be real numbers, i.e., any numerical
value we can represent on the number line:

0 1 2 3 4−1−2−3−4

e = 2.718 . . .
π = 3.141 . . .

Negative numbers are written to the left of zero. The further a number
is to the right, the bigger it is. Addition indicates that you move to the
right, while substraction takes you to the left:

0 1 2 3 4−1−2−3−4

−1 − 3 = −4

−2 + 5 = 3

Use the number line below to demonstrate the following properties of Use drawings and examples
to illustrate and memorise
abstract concepts or rules.

real numbers:

1. Addition

(a) is associative, i.e., (a + b) + c = a + (b + c)

(b) is commutative, i.e., a + b = b + a

2. Subtraction

(a) is NOT commutative, i.e, a − b �= b − a

(b) is NOT associative, e.g., (5 − 2) − 1 = 3 − 1 = 2 but
5 − (2 − 1) = 4 − 1 = 3

0 1 2 3 4−1−2−3−4

What we cannot illustrate so easily with the number line is that

1. Division

(a) is NOT commutative: a
b
�= b

a
, i.e., we cannot divide in any

order and get the same answer.

(b) is NOT associative: e.g.,
12
6

2
= 2

2
= 1 but 12

6
2

= 12
3

= 4.

2. Multiplication

(a) is commutative: a · b = b · a

15



(b) is associative: (a · b) · c = a · (b · c)
We should also remember that multiplying or dividing numbers of the

same sign gives a positive number, while if any one of the two numbers
is negative, the result is negative. Take the following examples:

3 · 4 = (+3) · (+4) = 12 3 · (−4) = −12

(−4) · (−5) = 20
−9

3
= −9

3
=

9

−3
= −3

6 Logarithms

A logarithm is the exponent or power to which a base must be raised to The logarithm of a number
gives an exponent:

logb a = n where bn = a

yield a given number. In the previous section we considered powers like
102 = 100 or more generally given the base, 10, and index n, we asked
10n =? On the other hand, given a number, say 100, and a base, say 10,
we can ask for index n. In other words, what is the power that 10 is
raised to, to give 100? This question has its own notation:

log10 100 = 2 such that 102 = 100 .

Try the following for yourself:

log10 10 000 = log3 9 = log2 64 = log10 0.0001 =

There are three bases that are most relevant to science and engineering, Logarithm of a product:

log(a · b) = log a + log b
base 10 (common logarithm), base 2 and base e. The latter is called
natural logarithm1 (or Napierian log), denoted loge or ln:

loge a = n such that en = a .

In general, i.e., for logarithms with any base, we find that Logarithm of a fraction:

log
(a

b

)
= log a − log b

Logarithm of a power:

log
(
ab

)
= b · log a

log 1 = 0 since a0 = 1 .

PRACTICE. Use a calculator to solve the following:

1. log10 3 =

2. log10 30 =

3. log10 300 =

4. log10 3000 =

5. log10 0.3 =

1Many calculators will use log to denote the logarithm to base 10 while ln is used
to denote the natural logarithm.
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6. log10 0.03 =

7. log10 0.003 =

There are many uses for logarithms. In the biosciences or specifically
for the analysis of experimental data, it is often more convenient to use
a log-scale of the number line:

log10

0 1 2 3 4−1−2−3−4

We notice that the distances between tick marks are equal although the Notation:

ln x ≡ loge x ≡ loge(x)
difference in value increases rapidly. Obvious? Write the difference out
on the number line above! Another way to see what the logarithm does
to a given number is to produce a table:

Number log10

1/10, 000 −4
1/1, 000 −3

1/100 −2
1/10 −1
1/1 0
10 1

100 2
1, 000 3

10, 000 4
100, 000 5

Create tables to experiment
with a new concept.

The table above is the first step towards the concept of a function. The If log10(a) = n, then
10n = aexample also suggests a method to use logarithms for “scaling” a graph

(cf. Fig. 12.8). The use and usefulness of logarithms becomes clearer
when we introduce this concept fully in Section 12.

PRACTICE. A number of rules for operating with logarithms are shown
in the margins. Below are exercises to practice these rules. More exer-
cises can be found in Section 19. Try the following questions (without a
calculator or computer).

1. Show that 10(a−b) · 10(b−a) = 1

2. Show by example that
(
ab

)c
= a(b·c)

3. Simplify 10a · 10a · 10a · 10a · 10a · 10a =

4. Simplify (10a)3 · (10a)−4

17



5. log (a · b2) − 2 · log b =

6. log

(
a2

b2

)
+ 2 · b =

7. log (32) − log 3 − log 18 =

Remark: Logarithm were invented by the Scotsman John Napier in
the late sixteenth century. Because multiplication of large numbers is
cognitively more complicated than to add them, Napier developed this
concept. How products turn into sums is clear from the rule log(a · b) =
log a + log b. Our parents are more appreciative of his efforts: the slide
rule they used before pocket calculators came to our rescue, work on
this principle.

7 Variables and Constants

When we introduced fractions, we generalised an example, say 3
4
· 2

5
= 3·2

4·5
by replacing the integers with letters:

a

b
· c

d
=

a · c
b · d

In dealing with more complex scientific equations, a quantity that varies
is said to be a variable. If the symbol represents a fixed value and is not
multiplied by any variables, then this is termed a constant. Coefficients Vocabulary
are numbers that are multiplied by one or more variables. In −4xy, −4
is a coefficient and in −4xy + 3, ‘3’ is a constant. Which letter is used
for variables and which for coefficients or constants is arbitrary. For
example, in −4xy + b, b may but must not be a constant. What is what,
must be stated or in scientific equations is often obvious. To introduce
new mathematical ideas, we usually make use of commonly used letters
such as x, y to denote variables, f to denote a function. However, for
applications of mathematical formula in the biosciences, we may prefer
other conventions. For example in the following (biochemical) expression

v =
Vmax · [S]

Km + [S]
,

the letter v denotes a variable (‘velocity’), Vmax and Km denote con-
stants and [S] is another variable (‘substrate concentration’, where the
square brackets are used to denote concentrations). This may initially
be confusing but you will hopefully find that notation is as useful as it
is a nuisance. The equation above will be discussed in greater detail in
Section 17

Generalisation through variables is an extremely important concept.
In science, a measured set of experimental data is the evidence we use
to establish or validate a principle (or ‘natural law’). The data are only
one particular example from which we try to generalise. This usually
leads to an equation (or set of equations), consisting of variables and
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constants as the one shown above. This representation of an observed
phenomena is called a (mathematical) model. If we are fortunate and
clever, the model will be a reasonable approximation to the natural sys-
tem under consideration. If this is the case, we can make simulations
and predictions.

Biological systems are much more complex than what engineers, physi-
cists and applied mathematicians can successfully deal with in their field
and therefore interdisciplinary collaborations have become very impor-
tant in the life sciences.

Remark: The most famous equation of all is Albert Einstein’s E = m·c2

by which he showed that energy (E) is equivalent to mass (m). In the
equation, E and m are variables and c is a constant: the speed of light
which in a vacuum is the enormous (and yet finite..) 299 792 456.2 ±
1.1 m

s . Einstein’s life, the revolutions in physics that took place during
his time, how the equation E = m · c2 came about and how on earth
they measured the speed of light, is a fascinating story. If you want to
know more, a readable book on the story of E = m · c2 is [2].

8 Algebraic Expressions and Equations

Algebra is a branch of elementary mathematics that generalises arith-
metic by using variables to range over numbers. The following vocabulary
is in use. Terms are constants or variable expression. Arbitrary exam-
ples are: 3a; −5c4d4; 25mp3; 7 are all terms. Algebraic expressions are
terms that are connected by either addition or substraction. For exam-
ple, 2s + 4a2 − 6 is an algebraic expression with three terms. Algebraic
equations are statements of equality between at least two terms. Ex-
amples: 4z = 28 and 3(a − 4) + 6a = 10 − a. As can be seen from the
examples, in algebraic expressions we use letters or symbols to represent
a quantity. Take for instance the demonstration of the commutative law
of addition:

a + b = b + a ,

or the law of association:

5b + a − b = 5b − b + a

= 4b + a .

In the equation above, we simplified 5·b to 5b. If not stated otherwise, one Short forms and brackets
uses only single letters and xy denotes the product x ·y. This should only
be done if no confusion is possible. To make associations clear we often
will use brackets in forming expressions. Although this is done to make
things clearer, brackets are also a source for errors when manipulating
equations. Make sure that whatever quantity or symbol is found adjacent
to the left-hand side of the brackets must multiply the contents of the
brackets, including the addition and substraction sign. Take for example
the expression

a − (b + c) = a − b − c . (8.1)
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Note that the sign in front of c has changed with the removal of the
brackets. On the other hand

(a − b) + c = a − b + c

Browse back through the notes and remind yourself of the rules in Section
5!

PRACTICE. Try these examples, NOW. Simplify the following expres-
sion where possible:

1. a − (2a + c)

2. a + p − c

3. xy + 2x − y + 4yx

4. −2(3 − y)

For evaluation, rearrangement and simplification of expressions it is Priority rules
important to take care of the order in which operations are performed.
Thus, for example, 5 · 3 + 2 · 4 − 3 is 20, not 25 or 65 because multipli-
cation must be done before addition or substraction. Have a look at the
following priority rules:

Evaluate expressions
within brackets first

2 · (5 + 3) = 2 · 8 = 16 not 10 + 3 = 13

Evaluate ‘inner’ brack-
ets before ‘outer’

5 · (6 + 3 · (3 + 4))
= 5 · (6 + 3 · 7)
= 5 · (6 + 21)
= 5 · 21 = 135

not 5 · 9 · 7 = 315

Take powers before
multiplying or dividing

5 · 32 = 5 · 9 = 45 not 82 = 64

With powers within
powers work down
from the top

x−2y2
means x(−2y2) not (x−2y)2

Multiply and divide be-
fore adding and sub-
tracting

3 · 4 + 8/2 = 12 + 4
= 16

not 3 · 12/2 = 18

Multiplication and division are done in the order in which they are
found going left to right; that is, if division comes first going from left
to right then it is done first. Similarly, addition and subtraction are
done in the order in which they are found going left to right; that is, if
subtraction comes first, going left to right, then it is done first. Note
that the order or priority rules apply algebraic expression with variables
and constant as well as for expression with numbers only.

If in doubt with the result of a manipulation, use substitution, i.e., Substitution
replacing symbols with numerical values. For example, considering equa-
tion (8.1) from above, let a = 6, b = 3 and c = 2:

a − (b + c) = a − b − c

6 − (3 + 2)
?
= 6 − 3 − 2

6 − 5
!
= 1
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which shows that both sides of the equation are balanced. Now try the
same equation but with a = 6, b = 3 and c = 5:

a − (b + c) = a − b − c

?
=

!
=

Another example of expanding brackets is the following: Expansion:

(a + b)(c + d) =
ac + ad + bc + bd

3(x − 2y) = 3x + 3 · (−2y) = 3x − 6y

or

(x + 1)(x − 2y) = x2 − 2xy + x − 2y

Try this one:

(2x − y)(x + y)y =

In factorisation we express a number or expression in terms of a Factorisation:

ab + ac = a(b + c)
product. For example, the number 16 can be expressed in terms of its
factor four (16 = 4 · 4). Many of us use factorisation in mental multipli-
cation. For example, to solve 34 · 7, we could do the following:

34 · 7 = (30 + 4) · 7
= 30 · 7 + 4 · 7
= 210 + 28

= 238 .

We can apply the same idea to algebraic expressions. Consider the fol-
lowing expression and factorise it in x:

2x − 2xy + 3zx + x = x(2 − 2y + 3z + 1) = x(3 − 2y − 3z)

Factorisation often allows the cancellation of common factors and thereby
simplifies an expression:

x

xy − 3x
factorise xy − 3x,

=
x

x(y − 3)
cancel common factors,

=
1

y − 3
.

PRACTICE. Try simplifying the following expressions. Use an extra sheet of paper
for more space: Keep track
of all steps.1. a · b + a · c =

2. a2 · b + a · c =
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3.
ac

b
+

a3d

a2
=

4.
2ab

ab + 3ab
=

5.
2

a + b
− 6

b
=

Factorisation and expansion are two concepts frequently used to rear- Rearranging equations
range equations. In rearranging an equation we need to remember that
we have to maintain the ‘balance’ on both sides, i.e., we must preserve
the equality of both sides. If you subtract, add, multiply and divide one
side, the same has to happen to the other. Look at the following example,
in which we try to isolate a to the left-hand side of the equation:

a · b + c · d = 1 subtract (c · d) from both sides,

a · b + cd − cd = 1 − c · d
a · b = 1 − c · d divide both sides by b,

a · b
b

=
1 − c · d

b

a =
1 − c · d

b
.

Normally you would not write the terms that cancel out and the second
step in this example would therefore usually not be written out but is
here included for completeness. In the example, I also wrote a · b which,
here, is equivalent to ab. We could also have written (a·b)+(c·d) but this
is not necessary because of the order in which operations are performed:
multiplication first, addition afterwards.

I said above that an equation is a statement that two quantities are
equal, for instance 1 metre = 1000 mm. More often an equation contains
an unknown quantity which we desire to find. In the equation 5x−7 = 23,
x is the unknown quantity. There is only one value of x such that the left
hand side (LHS) of the equation is equal to the right hand side (RHS).
This value is x = 6. When we have calculated this value of x we have
solved the equation and the value of x obtained is called the solution to
the equation. In this example, the solution is x = 6. In the process of
solving an equation the appearance of the equation may be considerably
altered but the values on both sides must remain the same. A common
problem is to isolate the variable. For example, to express x in terms of
y and z:

xy − 2x = 3zx − 1 isolate all terms in x on one side,

xy − 2x − 3zx = −1 factorise, in terms of x,

x(y − 2 − 3z) = −1 divide both sides by (y − 2 − 3z)

x = − 1

y − 2 − 3z
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Try solving the following equation:

9x + 3 = 7x + 21

Solution: x = 9

It is important to check your result by inserting the solution into the
original equation and checking the balance: when x = 9, LHS = 9·9+3 =
84. RHS = 7 ·9+21 = 84. Correct. When an equation contains brackets,
remember to remove them first and then solve:

5(2x + 6) = 10

Solution: x = −2

Check: when x = −2, LHS = 5 ·(2 ·x−2+6) = 5 ·2 = 10 = RHS. Hence
the solution is correct. When an equation contains fractions, multiply
each term by the Lowest Common Multiple (LCM) of the denominators.
The LCM of a set of numbers is the smallest number into which each of
the given numbers will divide exactly (See Section 3). For example, solve

x

4
+

3

5
= 3 · x

2
− 2

Solution: x =
52

25
= 2.08

Check:

Solve

x − 4

3
− 2x − 1

2
= 4
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Solution: x = −29

4
= −7.25

Check:

PRACTICE. Rearrange the following equations.

1. Express b in terms of a, c and d (isolate b to the left-hand side):
bc + ad = d2 − ad

2. Express a in terms of c, b and d: ad2 − ba = ca2

3. Express c in terms of a and b:
b − 1

c + 1
= a + b

4. Express y in terms of x: y2 + 2y + 1 = x

An important task in solving practical problems is to be able to trans-
late information into symbols and thereby making up an algebraic ex-
pression. For example, find an expression which will give the total mass
of a box containing x articles if the box has a mass of 8kg and each article
has a mass of 400g. Produce a table in which you caculate for 0, 1, 2, . . .
articles the total mass of the box. Then translate the table into a graph:

Remark: This process of building (hypothesizing) an equation, pro-
ducing a table and a graph is central to mathematical modelling in the
biosciences. We return to this issue in Section 12. The equatioin you
derived here will re-appear in a general form in Section 13.

If the price of an article is reduced from x pence to y pence, make an
expression giving the number of extra articles that can be bought for £1:
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If x sweets can be bought for 60 pence, what is the cost of y sweets?

To summarise this section,

1. To solve an equation the same operation must be performed on
both sides. Thus the same amount can be added or subtracted
from each side, or both sides can be multiplied or divided by the
same amount.

2. After an equation has been solved the solution should be checked
by substituting the result into the original equation. If each side of
the equation has the same value, the solution is correct.

3. To construct a simple equation the quantity to be found is repre-
sented by a symbol. Then using the given information the equation
is formed. Note that both sides of the equation must be in the same
units.

Remark: The word ‘algebra’ comes from a ninth century book by
Al-Khwarizmi (an Arab mathematician) called ‘Hisab al-jabr w’al-
muqabala’ meaning ‘Calculation by Restoration and Reduction’. Al-
gebra is a highly compact and efficient set of tools for solving practical
and theoretical problems.

9 Measurement and Units

The basic idea of measurement is to compare and order. In Section 5
we used the number line to identify the order of real numbers and found
that for any two numbers, the one on the right is greater than the other.
An important concept for ordering is transitivity. This says that if I
know that b is greater than a, and c is greater than b, then c must also
be greater than a. To allow the comparison of attributes we require
measurement or ratio scales such as length, area, volume, mass, weight,
time interval, angle and many others. Official standards are in metric or
SI (Systéme Internationale d’Unités) units: SI units

Attribute SI unit Abbreviation
length metre m
mass kilogram kg
time second s
temperature kelvin K
amount of substance mole mol

Derived or compound units are
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Quantity Unit Symbol Definition
Energy joule J m2kg s−2

Force newton N m kg s−2

Pressure pascal Pa m−1kg s−2 = Nm−2

Area square metres m2

Volume cubic metres m3

Capacity litre L

Note that the definitions become clearer when written as fractions. For
example, the pressure is defined as the force per square meter: 1Pa = 1N

1m2 .
A great advantage of the SI system is that it uses a base 10 system, with
standard prefixes to indicate the size of units:

giga G 109 deci d 10−1 micro µ 10−6

mega M 106 centi c 10−2 nano n 10−9

kilo k 103 milli m 10−3 pico p 10−12

The system makes it easy to change from one size to another. So to
express 2.11m in centimeters, it is only necessary to multiply by 100, so
2.11m = 211cm because 1m = 102cm = 100cm. Obviously there are
again some rules to follow with units:

1. If you are dealing with measurements, never forget to write down
the units and ‘carry’ them through your calculations.

2. Only quantities which have the same units can be added or sub-
tracted.

3. In ratios units can cancel. For example:

6 m

12 m
= 0.5 but

6 m kg s−2

12 kg
= 0.5 m s−2

A typical lab experiment (and exam question) involves conversions. For
example, convert 55 millilitres to litres:

Since 1000 millilitres = 1 Litre

then 1 millilitre = 1
1000

Litre

and 55 millilitres = 55 · 1
1000

Litres

= 55
1000

= 11
200

Litre
Converting 2.11m into cm, we can use the knowledge that 1m = Changing prefixes = moving

the decimal point.100cm and therefore only need to multiply by 100: 2.11 · 100 = 211.0 or
2.11m = 211cm. Notice that to multiply by one hundred we move the
decimal point two places to the right:

2 . 1 1 · 1 0 0 = 2 1 1 . 0

Similar, to convert 2.11m into mm, we know that 1cm = 10mm and 1m
= 100cm = 1000mm. Multiplying by 1000 we move the decimal point
three places to the right:

2.11m = mm
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PRACTICE. Try the following and observe the movement of the decimal
point:

2.11m = km

23mL = L

23mL = µL

0.054g = kg

0.054g = µg

0.054g = mg

The conversion of units and rewriting of numbers with different pre-
fixes is a common source of errors. I would recommend you “explain” Skip back to Section 2!
the following interconversions of non-SI and SI units of volume, by us-
ing the concept of powers with base ten, introduced in Section 2. Make
a drawing to illustrate how the decimal point moves as you make the
conversion!

1 litre (L) 103mL = 1 dm3 = 10−3m3

1 millilitre (mL) 1mL = 1 cm3 = 10−6m3

1 microlitre (µL) 10−3mL = 1 mm3 = 10−9m3

1 nanolitre (nL) 10−6mL = 1 nm3 = 10−12m3

The following table summarises the conversion between few common
units to their SI quivalents:

Unit Symbol SI-equivalent
Ångstrøm A 10−10m
Inch in. 0.0254m
Ounce oz 28.3g
Pound lb 0.4536kg
Centigrade degree ◦C (t◦C + 273)K

[(5/9)(◦F-32)]◦C
millimeters mercury mmHG 133.322Pa
Atmosphere atm 101325Pa
Calorie cal 4.186J

PRACTICE. Try these questions without a calculator.

1. The height of the author of these notes is 2.11m. Given that 1 feet
(ft) is 0.3048m, what is his height in feet?

2. Travelling to other countries you may find this useful: A gallon of
fuel costs £2.55. (A gallon is approximately 4.5 litres). What is
the price per litre?

3. Convert 4570 milligrams to grams.
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Remark: We used ÷b to make clear that we divide by b, e.g., a/b or we
used × to describe the task of multiplication, e.g. a × a to denote the
process of multiplying a ·a. Most symbols, like for example % are recog-
nised regardless of nationality, culture and have not changed over time.
However, communicating your experimental results with colleagues in
Germany and France you should note the following differences. While
in Britain we write 0.4 (nought point four) there it is written as 0, 4.
Thousands are also the other ways round: in Britain we write 1, 000
while for example in Germany one thousand is written 1.000. Of course
measurement units are another example where some countries adopt dif-
ferent conventions. The emphasis is on convention – there is no true or
correct standard and the next time you drive with a German to a pub
(on what for him is the wrong side of the road) remember that “miles”
and “pints” aren’t natural to him or her.

10 Concentrations

In the following two sections we deal with two common tasks in labora-

concentration =
quantity

volume

tory work: calculating concentrations and giving approximate results.
In your laboratory work, a solution is defined in terms of the amount

of solute (material) and the amount of solvent (liquid). Concentrations
are expressed most commonly in terms of weight by volume (w/v) in
which a given amount of solid is dissolved in a solvent to a fixed total
volume, including the solute. Less frequently solutions are expressed as
weight/weight (w/w), in which case a fixed mass of solvent is added to
dissolve the solute. In summary, the following cases can be distinguished
[10]:

1. Percentage weight/volume: % (w/v) = weight in grams of so-
lute per 100mL of solution. Example: 1g (100mL)−1 = 1% (w/v)
solution. In some textbooks or journal papers you may see concen-
tration measured in milligrams per cent (mg%). This is defined as
the weight of solute in milligrams per 100mL of solution.

2. Percentage volume/volume: % (v/v) = volume in millilitres of
solute per 100mL of solution. Example: 1mL methanol plus 99mL
water = 1% (v/v) solution.

3. Percentage weight/weight: % (w/w) = the weight in grams of
solute per 100g of solution. Example: 15g of salt plus 85g of water
= 15% (w/w) solution.

If the concentration is very low it is common for either parts per
million (p.p.m.) or parts per billion (p.p.b.) to be used, the assumption
being made that the density of water approximates to 1g cm−3. Gas
mixture concentrations are expressed as p.p.m or p.p.b on a volume/total
volume basis.

Molarity (M) is another very common expression of concentration. It Molarity, Mole
expresses the number of moles of a substance that are present in a given
volume of solution. A mole of a substance in grams (the gram mole) is
numerically equal to its molecular mass. For example, for sodium chlo-
ride, which has a molecular mass of 58.5 daltons (from atomic weights:
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Na=23 daltons, Cl=35.5 daltons) one mole is 58.5g. A 1M solution of a
substance contains one mole of the substance in 1 litre of solution.

Various units of concentration are therefore possible and the con- Skip back to page 4 and 10!
version rules for units, introduced in the previous section, are important.
Familiarise yourself with the following interconversions of mol, mmol and
µmol in different volumes to give different concentrations:

M mM µM
1 mol dm−3 1 mmol dm−3 1 µmol dm−3

1 mmol cm−3 1 µmol cm−3 1 nmol cm−3

1 µmol mm−3 1 nmol mm−3 1 pmol mm−3

PRACTICE. Try the following questions.

1. Assuming that in 100mL of water are 3g of salt. How much is in
20mL?

2. 100mL of a 10% (w/v) solution is prepared. Assume that the salt
is evenly distributed throughout the solution. 50mL of the solution
is removed.

(a) What is the amount of salt present, in grams?

(b) What is the concentration of the 50mL sample that is removed?

3. What are the following concentrations in % (w/v)?

(a) 5g of glucose in a final volume of 50mL.

(b) 7.5g of glucose in a final volume of 75mL.

11 Accuracy

In Section 2 the scientific or standard notation was introduced as a way to Significant figures
present very large and very small numbers. Handling experimental data
it is often necessary to decide what level of accuracy is required. The
required accuracy is expressed by the number of significant figures.

To express 349 to two significant figures, only the first two digits are
displayed while the remaining digits are set to zero. Since the third digit
is larger than 5, the result is 350. In general, if the last significant figure
is smaller than five you round down, while for the last digit being greater
than five you round up. The purpose of this is to minimise the error
in rounding. For example, expressing 19 732 to three significant figures,
we notice that position four is less than 5 and hence we leave the last
significant figure as it is. The answer is therefore 19 700.

So far we have not mentioned what to do if the last significant figures The even/odd rule
is equal to 5. To minimise the error it is better to use the rule that
if the last significant figure is odd, i.e., {1, 3, 5, 7, 9}, then it should be
rounded up, but if the last figure is even it should be rounded down. For
example, 365 to two significant figures: The number in position three is
5 and hence the rule is applied. Since the last significant figure, 6 is even,
we round down. The answer is 360.

Our previous examples only considered integer values. To express Decimal places
2.342 to two decimal places, we notice that the third digit after the
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decimal point is the value 2, which is less than five and hence the answer
is 2.34. To compare both, significant figures and decimal places, consider
the number 0.0457 and express it first to two significant figures: We
count only non-zero values, so the first figure considered is 4. The value
at position three is greater than 5; hence the answer is 0.046. To express
0.0457 to two decimal places, we notice that the value at position three
is 5, so we round up and 0.0457 becomes 0.05 to two decimal places.

PRACTICE. Try the following questions.

1. Express 7849 and 375 to two significant figures. Describe the error
for rounding up and down.

2. Represent the following to three decimal places: (i) 45.09653 (ii)
0.464782 (iii) 0.00089 (iv) 1289.632

3. Represent the following to three significant figures: (i) 23.347893
(ii) 128904 (iii) 0.003429 (iv) 267491.954

12 Relations and Functions

A set X is a collection of arbitrary objects (e.g. points in the plane,
real numbers or symbols), called the elements of X. If x is an element
of X, we write x ∈ X. Curly brackets are used to write a set as a list
of elements, X = {x}. A relation is a set of ordered pairs; the set of Relations are multi-valued

while functions assign unique
elements

first elements in each ordered pair is called the domain, and the set of
second elements is called the range. A function is a relation for which
each value in the domain corresponds to a unique value in the range. A
function is also referred to as a mapping or map for short (See Figure
12.1). The term mapping suggests some form of ‘rule’ that describes how
elements in the domain are related to the elements in Y . For example,
in Section 6, we discussed logarithms: assuming a base b, and given a
number x, the logarithm determines the exponent y = logb(x) such that
by = x. With base 10 and x = 1000 the logarithm is 3 since 103 = 1000. Skip back to Section 6!
While we keep the base fixed, there is no reason why we shouldn’t explore
what happens for other numbers. In Section 6, we produced a table
for some obvious candidates. Assuming a fixed base b, and replacing a
particular number by the symbol x, we treat x and its logarithm y as
variables. In the equation y = logb(x) the brackets are used to emphasise
the dependency of y on x. y is then also called the dependent variable Independent and dependent

variables.while x the independent variable. With this generalisation we obtain a
logarithmic function.

In another example, let the domain, denoted X, be a subset of all
genes in a genome and let the range, Y , denote all known ‘functional
classes’1. The relationship between genes and gene products is a relation
not a function because more than one gene can code for the same product.

1Most areas of research have evolved their individual way of communicating and
representing knowledge. The mathematician’s and the life scientist’s vocabulary over-
lap occasionally. The term ‘function’ is an example. In mathematics the definition of
a function is unambiguous and we are going to use the alternative term ‘mapping’ if
there is a risk of confusion.
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Figure 12.1: Examples of a relation (bottom) and a function (top).
While a relation is multi-valued, one element in domain X can be
related with more than one element in the range Y .

The concept of mathematical relations is frequently used by computer
scientists (think of relational databases). However, the definition of a
function, which is stricter than that of a relation, provides the basis
for very powerful methodologies developed within the areas of applied
mathematics, physics and engineering.

There are several ways of representing functions but a plot in the
Cartesian plane remains the most revealing form of presentation. In Cartesian coordinates
1637, the French philosopher and mathematician Descartes published a
book entitled La Géométrie which set out a new way of linking algebra
and geometry. The system, which grew out of his work describes a point
with reference to two perpendicular lines or axes. Figure 12.2 illustrates
a relation in the Cartesian space, denoted X×Y and formed by all points
in the plane (ordered pairs (x, y)). For a function, the set of ordered pairs
{(x, y)} is called its graph.

Y -axis

X-axis
(0, 0)-origin

R

(x, y)

x

y

X × Y

Figure 12.2: A relation R defined in the Cartesian plane X × Y is a
subset of X × Y , i.e., a set of ordered pairs {(x, y)}.

Let us consider a somewhat idealised situation in which you conducted
an experiment in which you studied the growth of bacteria. Starting off
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with one cell at an arbitrary time 0, you make four consecutive mea-
surements after equal time intervals. Let us assume you obtained the
following data:

time 0 1 2 3 4
count 1 2 4 8 16

Visualised with their Cartesian coordinates, in Figure 12.3 (on the left),
the experimental data suggest that we may be able to model the data and
then simulate the experiment with a function (why not a relation?). In
Figure 12.3 on the right we see the plot of the function y = 2x which shows
a good approximation to the experimental data and if it is reasonable
representation of the biology would allow us to make predictions.
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Figure 12.3: Experimental data on the left and plot of exponential
function y = 2x on the right. The function (model) allows us to make
predictions.

The principal purpose of experimentation is to generalise from the The purpose of
mathematical modellingspecial case obtained in our experiment to what one would expect to ob-

serve if the experiment is repeated and measurement errors are minimal.
In other words, we try to recognise a pattern in the data. Ultimatively,
we like to postulate some principle by which the natural system under
consideration operates. The process of mathematical modelling is illus-
trated in Figure 12.4.

Despite the enormous advances in applied mathematics and the very
successful representation of natural systems in physics, the complexity
of biological systems has meant that we often face a dilemma, Albert
Einstein summarised as follows:

So far as the laws of mathematics refer to reality, they are
not certain. And so far as they are certain, they do not refer
to reality.

Despite the difficulties in building accurate mathematical models of ge-
netic systems, mathematics and statistics play a major role in state-of-
the-art molecular biology, biochemistry and bioinformatics. The discov-
ery of structure in data, the formulation of causal entailment in genetic
systems will always be the natural scientist’s job; mathematical mod-
elling is a way of thinking that helps you in the discovery! The need
for theory and mathematical modelling was nicely summarised by Henri
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Phenomenal World Mathematical World

causal entailment inferential entailment

ambience the self

NATURAL
SYSTEM

FORMAL
SYSTEM

decoding

(prediction)

encoding

(observation, measurement)

Natural Law

Figure 12.4: The modelling relation between a natural system S and
a formal or mathematical system M. If the modelling relation brings
both systems into congruence by suitable modes of encoding and de-
coding, it describes a Natural Law . In this case M is a model of S,
that is, S is a realisation of M.

Poincaré: ‘Science is built up of facts, as a house is with stones. But a
collection of facts is no more a science than a heap of stones is a house.’

Figure 12.3 shows how we can generalise from our experimental data.
Given y = 2x we can calculate the value y for any time in the future
or in between the instances at which we made our measurements. For
example, at x = 2.5, using the model y = 2x, we find y = 22.5 = 5.66.
Despite the apparent success of our modelling approach there is scope
for questions. The mathematical function y = 2x grows to infinity as x
increases but if we had continued our measurements, would the number
of cells increase indefinitely? With your cultures growing on a plate of
limited size, this is unlikely. Also, how do we get any function y = f(x)
from any set of training data? Admittedly, the data were deliberately
chosen to fit to the exponential function and with more general situations
and measurement errors we enter the area of statistics which is not part
of this course. In statistics, specifically regression analysis, a number of Statistics, regression analysis
very powerful methods are available to fit functions to experimental data.
Most software packages, which handle data, have such functions built-in.
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Figure 12.5: A selection of exponential functions.
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Figure 12.6: A selection of logarithmic functions.

The irrational, if not bizarre, number e and its functions such as
loge(x) and ex play an important role in applied mathematics2. Examples
are:

1. In a system at thermal equilibrium at an absolute temperature T ,
the numbers n1 and n2 of molecules in two states with energies E1

and E2 respectively are related according to the equation

n1

n2
= e

E2−E1

kT

in which k is the Boltzmann constant (= 1.38×10−23JK−1 = R/N ,
where R = 8.31JK−1mol−1 is the gas constant and N = 6.02 ×
1023mol−1 is the Avogadro constant). If we take the natural log-
arithms on both sides, we can express the difference between the
energies as

E2 − E1 = kT loge

(
n1

n2

)

2. In a first-order reaction with rate constant k, the extent of reaction
after time t is proportional to 1 − e−kt. See Figure 12.7. More on
this later!

3. The decay of a radio-isotope to a non-radioactive form can be de-
scribed in the form ‘the instantaneous change in a quantity with
time is equal to a constant times the current value’. Translated
into a mathematical expression, we get the following differential
equation

d

dt
m(t) = k · m(t) (12.1)

2An important property of the function y = ekx is that it is the only function
which is equal to its own derivative, i.e., if y = ekx, dy/dx = ekx.
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In other words, the rate of decay of a radioactive substance – and
the amount of radiation it emits – is at every moment proportional
to its mass m. The solution of this differential equation is

m(t) = m0 · ekt (12.2)

where m(t) is the number of radioactive particles in the sample at
time t, and m0 is the amount in the starting material (the mass at
t = 0) and k is the decay constant and is unique to each isotope.
From the equation above, which is plotted in Figure 12.7, we can see
that m will gradually approach 0 but never reach it. This explains
why, years after disposal, radioactive waste can still be a hazard.
The value of k determines the rate of decay of the substance and is
usually measured by the half-life time, the time it takes a radioac-
tive substance to decay to one-half of its initial mass. Different
substances have vastly different half-life times. For example, the
common isotope of uranium3, U238, has a half-life of about five bil-
lion years, ordinary radium, Ra226, about sixteen hundred years,
while Ra220 has a half-life of only twenty-three milliseconds. I am
going to explain differentials and differential equations in Section
15; don’t worry if you are unfamiliar with them!

4. If money is compounded continuously (that is, every instant) at an
annual interest rate k, the balance grows exponentially in time.

5. When sound waves travel through air (or any other medium) their
intensity is governed by a first-order differential equation where y
denotes the intensity and x the distance travelled. A similar law,
known as Lambert’s law, holds for the absorption of light in a
transparent medium.

Note that with numerous elements, such as fractions, in the exponent,
it is sometimes typographically inconvenient to write function ex and

exp(x) ≡ ex
instead we may write exp(x) which is identical.
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Figure 12.7: Radioactive decay example (left) and example of first-
order reaction (right).

3The expression U238 is a notation used in chemistry and is not the power of a
number U !
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Equation (12.2), describing the exponential decay of radioactive ma-
terial, is interesting because there are a number of natural processes that
can be modelled by this equation. We are going to see it again in Sec-
tion 15 and Section 16 where we discuss a population model and rate
equations, respectively. Another example that has led to its fame is ra-
diocarbon dating. The method can be explained with the following Radiocarbon dating
example. If a fossilised bone contains 25% of the original amount of ra-
dioactive carbon C14

6 , what is its age? The idea to answer this question
was honored with the Nobel Prize in chemistry for W. Libby in 1960.
He concluded that in the atmosphere, the ratio of radioactive carbon C14

6

and ordinary carbon C12
6 is constant, and that the same holds for living

organisms. When an organism dies, the absorption of C14
6 by breathing

and eating terminates. Hence one can estimate the age of a fossil by
comparing the carbon ratio in the fossil with that in the atmosphere.
The half-life of C14

6 is 5730 years. A result is obtained from the solution More about the “half-life”
on page 51(12.2) to differential equation (12.1):

m(t) = m0 · ekt

Here, m0 is the initial amount of C14
6 . By definition, the half-life (5730

years) is the time after which the amount of radioactive substance, C14
6 ,

has decreased to half of its original value. Thus,

m0 · ek·5730 =
1

2
m0, e5730·k =

1

2
, k =

loge 0.5

5730
= −0.000121 .

The time after which 25% of the original amount of C14
6 is still present

can now be calculated from

m0 · e−0.000121·t =
1

4
m0, t =

loge 1/4

−0.000121
= 11460 years .

Hence the mathematical answer is that the bone has an age of 11460
years. Actually, the experimental determination of the half-life of C14

6 in-
volves an error of about 40 years. Also a comparison with other methods
shows that radiocarbon dating tends to give values that are too small,
hence, 12000 or 13000 is probably a more realistic answer to our present
problem.

In Section 6, I mentioned that scientific data are often plotted using Log-scale plots
a logarithmic scale in graphical representations of the data. Considering
the exponential function y = 2x, Figure 12.8 illustrates why it makes
sense to visualise data in this way. Without a logarithmic scale, the y
values increase exponentially and become very large, very quickly. Plot-
ted on a log-scale, we obtain a simple straight line and it then becomes
easier to read off values for a larger range of x. In Section 16, (see Figure
16.3) we are going to encounter a useful example for log-scales.

Before we conclude this section, we have a look at two more curious
functions: the logarithmic spiral and the ‘hanging chain’. Suspending a
chain between two poles, its shape is closely modelled by the equation

y =
a

2

(
e−

x
a + e−

x
a

)
.

Probably one of the most famous equations which has inspired mathe-
maticians, biologists and artists alike is the logarithmic spiral:

r = a · ebΘ
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Figure 12.8: Representing data with log-scales. For both plots the
same values of the function y = 2x are calculated. What is different,
is the way the information is visualised.

where r is radius of a line with angle Θ to the abscissa. The shape of
the logarithmic spiral resembles the cross-section of nautilus shell but
many other examples, which show this pattern have been found in the
natural world. See the books [11, 12, 8] and in particular [1], which
has many beautiful illustrations. Many other books on ‘chaos theory’
and ‘fractals’, are filled with examples with astonishingly good matches
between mathematics and nature. Does this suggest that nature and
natural laws are mathematical? Is π in the sky? Do mathematicians
discover mathematics or is it an invention that fits the world around
us only so well because it is the creation of the human mind, which is
part of the natural world? The book by Evelyn-Fox Keller [6] provides a
fascinating discussion of the use of models in physics and the difference
between the physical and biological sciences.
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Figure 12.9: Logarithmic spiral (left), a = 1, b = 0.1 and 0 ≤ Θ ≤ 6π.
The ‘hanging chain’, a = 1 (right).

A conclusion from this and the following sections should be that plots Conclusions
of functions are a powerful tool to analyse real-world problems and to
visualise results. Central to all this is the concept of a mapping or func-
tion. For example, a mapping which we use when travelling by train is
that between a set of names of stations and a set of times of day:
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Manchester → 10.00
Stockport → 10.09
Wilmslow → 10.17
Watford Station → 12.24
Euston → 12.44

As so often in mathematical modelling, this timetable makes a somewhat
idealistic assumption – that the train from Manchester to London is
fast and reliable... . Here is a mapping which might be of interest to
parachutists. It gives the total distance fallen for various times after
they jump, before the parachute opens, and neglecting air resistance:

Time in seconds: Distance in metres:
0 → 0
1 → 4.9
2 → 19.6
3 → 44.1
4 → 78.4
5 → 122.5

A function was defined as any rule or method whereby, for any and
every object in the original set, we can find a (unique) corresponding
element in its range. Different ways of symbolising the same function
helps us to understand, or to centre our attention on, different aspects
of it. We used words to describe functions;, Venn diagrams with arrows
as in Figure 12.1; algebraic equations; tables or sets of ordered pairs and
graphs. The graph of a function is particularly useful and we will use
this frequently in subsequent sections. You should not hesitate to make
drawings, sketches to illustrate written ideas, tables and equations!

PRACTICE. Try the following questions.

1. If a bacterial culture contains N(t) bacteria at time t, then the
growth of the population can be modelled by the equation:

N(t) = N0 · 2n

where N0 is the number of bacteria at the start and n is the number
of generation times that have occurred. For example [10], a Bacillus
subtilis bacterium divides approximately every 40min and a culture
was found to contain 103 bacterial cells. How many cells are present
after 10h?

2. For the decay of a radio-isotope as described above, the half-life for
an isotope is the time taken for the amount of material to decrease
by 50%. For 32P, the half-time t1/2 is 14.3 days. What is the value
of the decay constant k?

3. A population increases at an annual rate of 4% to 360 000 over a
period of ten years. Assuming exponential growth, what was the
original size of the population?
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Remark: The irrational number e = 2.718 . . . is indeed strange, and
fascinating. The number e and exponential function e(·) are hugely
important in science and engineering. Most of us get used to using e,
directly or indirectly, without ever questioning it. If you are baffled by
this number you are in good company. Most of your lecturers will not
be able to tell you what e really is, what it means and why it appears in
so many areas and disciplines. If you want to know more, I recommend
the books by Maor [8] and Lakoff [7].

13 More on Functions

In the previous section, we pointed out that the aim of most scientific
experiments is to try to identify relationship from data. In the Carte-
sian plane this means that we wish to quantify the relationship between
variables x and y. We referred to y as the dependent variable, and the
function f is to describe the process by which a value x is transformed
to the ‘output’ y. In mathematical notation, the statement “function f
is a mapping from domain X to range Y ” is written as

f : X → Y

and the statement “function f maps an argument x into the value y” is
written as

x 	→ y where y = f(x) .

In this representation of a function, f is deliberately not specified and
we have numerous possibilities to consider. In previous sections we con-
sidered for example:

x 	→ y = logb(x) , x 	→ y = 2x , x 	→ y = ex .

One of the simplest (hence useful and important) functions is that of a Straight line equation:

y = a + b x
straight line. Figure 13.1 shows the plot of the general straight line for
which the equation is

y = a + b x . (13.1)

In this equation, b and a are a coefficient and constant respectively.
The straight line cuts the y-axis (or ordinate) at a distance a from

the origin. Because of this relationship, a is known as the intercept Intercept a
on the y-axis. The intercept on the x-axis is found by putting y = 0,
which gives a + bx = 0, and so x = −b/a. The meaning of b follows from
consideration of how y changes when x changes. Suppose that y changes
from y1 to y2 as x changes from x1 to x2. Then

y1 = a + bx1 , y2 = a + bx2

If the first equation is subtracted from the second, the constant a disap-
pears:

y2 − y1 = a + bx2 − a − bx1 = bx2 − bx1 = b(x2 − x1)

and if we divide both sides of the equation by (x2 − x1) and interchange
the left- and right-hand sides we obtain the expression for b: Gradient b
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Figure 13.1: Plot of the general straight line y = a + b x.

b =
y2 − y1

x2 − x1

(13.2)

The coefficient b has a meaning very similar to that of the slope or gra-
dient of a hill: the steeper the hill, the greater the gradient. It describes
a rate of change: if we change x by one unit, y changes by b units. “Rate of change”

Suppose you need to find the equation of the line given only two
points in the plane through which the line passes: (0, 3) and (3, 9). The
gradient is given by: Determining the equation of

a straight line
b =

y2 − y1

x2 − x1

=
9 − 3

3 − 0

=
6

3
= 2.

The equation of a straight line is y = a + bx, so if we substitute for x, y
and b the given values and the gradient from above:

9 = a + (2 · 3)

a = 9 − 6

= 3 .

The equation of the line is therefore given as y = 3 + 2x.

PRACTICE. Rearrange the following equations into ‘straight line’ form.
What are the gradients (slopes) and intercepts (on the x-axis)?

1. y − 3x = 1

2. 2y − 3x − 1 = x
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3. 0 = 4y + 5(2x − 3 + 10)

4. Assuming two variables x and y are linked by a linear relationship,
find the equation of the line from the following data: (0, 2) and
(2, 5) fall on the line.

5. The straight line has a y intercept 3 and includes the ordered pair
(4, 4), what is the equation of the linear relationship?

6. Given the point (7, 3) lies on the line and that b = 4 find the equa-
tion for the straight line.

7. Sketch the following functions: y = 2x + 3, and −1 = y − x
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the y and x axis. This is the usual representation from computer
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14 Proportionality

In this section we briefly look at a simple special case of the linear equa-
tion (13.1):

y = a + b x .

Consider the example

y = 3x ,

where each time there is a change in x, there is a change in y which is
two-fold greater than that of x. The equation can be rearranged so that
x and y are represented as a proportion:

y/x = 2

Any two quantities that can be represented as a proportion such that Proportion:

A ∝ B implies A = kBy/x = a constant

are said to be proportional. The symbol for proportionality is ‘∝’ and
indicates that both sides of the equation are not equal but that they are
related and can be represented as a proportion. In general, we can write

A ∝ B implies A = kB

where k is a constant terms the constant of proportionality. The
example y = 3x is a special of equation (13.1):

y = bx

which shows that if two variables, here x and y, are related by this special
linear equation, the constant of proportionality is equal to the gradient
(y/x = 3) (Figure 14.1).
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Figure 14.1: Plot of x and y such that y = 3x.
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15 Differential Equations

In Section 13, we introduced the concept of a function f : Skip back to page 39 if the
notation appears unfamiliar.

f : X → Y

x 	→ y = f(x) .

In the equation y = f(x), the variable y is referred to as the dependent Equation y = f(x):
Dependent variable y.
Independent variable x.
Function f .

variable while x is called the independent variable. We call this a gen-
eral equation because function f is not explicitly specified. A particular
example for the general case y = f(x) is the exponential equation we
encountered previously:

y(t) = y0 · ekt .

In this equation y0 and k are coefficients, i.e., some fixed numbers, while
t is used to replace x. The letter t is most commonly used to describe
time. Therefore in case the equation above is intended to model some
natural phenomena, time t is the independent variable and to emphasise
the dependence of y on t we write y(t).
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Figure 15.1: Translation (horizontal movement) of a mass with con-
stant velocity.

For many practical situations, the equation y = f(x) is unknown.
However, through observation and experimentation we can often assess
rates of changes of variable y. For example, watching a moving car, we Cf. page 40!
observe its velocity as the rate of change of position1. As illustrated in
Figure 15.1, we find that for a car with constant velocity,

v =
∆d1

∆t1
=

∆d2

∆t2
=

∆d3

∆t3
= · · ·

and therefore for constant velocity, the quotient of the travelled distance
and the time required are independent of the length and position of the
time interval considered.

The derivative of a function y = f(x) is the rate at which the
quantity y = f(x) is changing with respect to the independent variable
x. We denote the derivative as dy

dx
and translating the previous sentence

into mathematical jargon, we obtain the definition Derivative
d

dx
of function

y = f(x).
1Speed is a measure of the distance travelled during a given time period, whereas

velocity is a measure of the change in position during a given period of time.
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dy

dx
= lim

∆x→0

f(x + ∆x) − f(x)

∆x
(15.1)

The derivative is therefore defined as the limit of the change in which
we imagine the increment ∆x tends to 0. If y is dependent on only one
variable, the derivative is equivalent to the gradient, introduced in Section
13 and illustrated in Figure 13.1. See Figure 15.2 for an illustration of
the derivative of a general function. In Figure 15.2, we can see how the
derivative is related to the limit of the gradient of the chord joining the
points (x, f(x)) and (x+∆x, y+∆y).

y

x0

y = f(x)

P

(x, y)

Q(x+∆x, y+∆y)

∆x

∆y

Figure 15.2: Derivative of function f(x) at the argument x. dy/dx is
the limit of ∆y/∆x as Q approaches P .

An equation relating an unknown function and one or more of its
derivatives is called a differential equation. Because a rate of change is Differential equations
about the difference between some quantity now and its value an instant
into the future, equations of this kind are called differential equations.
We find that many natural laws (principles by which nature appears
to operate) are formulated as equations that relate not the bio-physical
quantities of primary interest but the rates at which those quantities
change with time, or the rates at which those rates change with time.
In fact most molecular, genetic or natural processes are in fact dynamic
processes. Although we ought to describe most processes by differential
equations, this is often only feasible for simple systems. In this case
one can often make assumptions which turn differential equations into
simpler linear equations.

Let us consider an example which was already briefly mentioned in Population modelling
Section 13. We denote the size of a population with the letter P and in
order to emphasise the dependency on time we write P (t). The time rate
of change of a population P (t) with constant birth and death rates is, in
many simple cases, proportional to the size of the population. That is, a
possible mathematical model is the differential equation

dP

dt
= k · P , (15.2)

where k is the constant of proportionality. Even if the value of the
constant k is known, the differential equation dP/dt = kP has infinitely
many different solutions. The solutions are all of form

P (t) = C · ekt , (15.3)
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where any constant C defines one possible solution. To verify this asser-
tion, we take the derivative of P (t):

dP (t)

dt
= Ckekt = k(Cekt) = kP (t) for all numbers t.

Once more the number e and the exponential function appear and the
reason is that it is the only function that is equal to its derivative. (See
also page 34). Suppose that P (t) = Cekt is the population of bacteria
at time t, that the population at time t = 0 (hours, h) was 1000, and
that the population doubled after 1 h. This additional information about
P (t) yields the following equations:

1000 = P (0) = Ce0 = C

2000 = P (1) = Cek .

It follows that C = 1000 and that ek = 2, so k = loge 2 ≈ 0.693147.
With this value of k the differential equation in (15.2) is

dP

dt
= (loge 2)P ≈ 0.693147 · P .

Substitution of k = loge 2 and C = 1000 in equation (15.3) yields the
particular solution

P (t) = 1000e(loge 2)t = 1000·(eloge 2
)t

= 1000·2t (because eloge 2 = 2)

that satisfies the given conditions. The “power” of mathematical mod-
elling lies in the fact that we can use this particular solution to predict
future populations of the bacteria colony. For instance, the predicted
number of bacteria in the population after one and a half hours (when
t = 1.5) is

P (1.5) = 1000 · 23/2 ≈ 2828 .

The condition P (0) = 1000 in this example is called an initial condition Initial condition
because we frequently write differential equations for which t = 0 is the
“starting time”.

The population growth example illustrates the process of mathemat-
ical modelling (Figure 15.4):

1. Formulate your problem related to a biological system in mathe-
matical terms, that is, construct the mathematical model.

2. Analyse, solve and/or simulate the mathematical model.

3. Interpret mathematical results in the context of the real process,
try to answer the question you are investigating.

4. Validate the mathematical model with experimental data.

In the population example, the problem we investigate is to determine Mathematical modelling
the population at some future time. The mathematical model consists of
a set of variables, (P and t), coefficients, (k), together with one or more
equations relating the variables, (dP/dt = kP , P (0) = P0), that are
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Figure 15.3: Graphs of P (t) = Cekt with k = loge 2 and C =
−12,−6,−3,−2,−0.5, 0.5, 1, 3, 6, 12.

known or assumed to hold. The mathematical analysis consists of solving
these equations, (here, for P as a function of t). Mathematical results,
predictions or simulations have to be interpreted with observations made
for the real system. The best way to validate a model is to compare
simulation results with experimental data. This leads us into the domain
of statistical techniques which are also used to identify parameters (here
k) from data.

Statistical
Analysis

Natural
System

Mathematical
Model

Mathematical
Analysis

Mathematical
Results

Experimental
Data Sets

Formulation

Interpretation

Experimentation

Figure 15.4: The process of mathematical modelling.

It is important to realise that the process of mathematical modelling
makes assumptions and that it is quite possible that no one solution of
the differential equation exists. The population model P (t) = Cekt does
only approximately describe a bacteria colony growing on an agar plate
with limited space. Our population function P (t) was also a continuous
approximation to the actual population, which of course grows by inte-
gral increments. Mathematical modelling requires therefore a tradeoff
between what is biologically, physically or chemically realistic and what
is mathematically possible.

47



Remark: For some reason, unknown to mathematicians, differential
equations are perceived as difficult by most who have no degree in math-
ematics. These difficulties are quite reasonable because mathematicians
would have to admit that some of the implicit assumptions of the defini-
tion dy/dx are ‘suspicious’ to say the least. In order to handle questions
about rates of changes in physics, Isaac Newton and Gottfried Leibniz
invented in the eighteenth century a new branch of mathematics, called
calculus. At the root of calculus is the metaphor that ‘instantaneous
change is average change over an infinitely small interval’. Thus, for
a function f(x) and an interval of length ∆x, instantaneous change is
formulated as f(x+∆x)−f(x)

∆x . The instantaneous change in f(x) at x is
arrived at when ∆x is “infinitely small”. The limit metaphor we used
in (15.1) states that ∆x approaches zero, without reaching it. Baffled?
There is no doubt that Newton’s calculus and its applications to physics
led to a revolution in physics and changed our view of the world. How-
ever, despite the apparent rigour of mathematics, many of the greatest
ideas in math rely on ‘tricks’. After all, if dx describes an infinitely small
quantity, so does dy and dy/dx appear to be a meaningless fraction 0/0.
The full explanation is far from being trivial and for us and in our con-
text, it is sufficient to view d

dx as an operator which describes a rate of
changes.
For a short but very good introduction to mathematical modelling and
calculus I strongly recommend the small book ‘Nature’s Numbers’ by
Ian Stewart [11]. Another book, ideally suited for those who thought
they would hate maths, is the beautiful book by Philip Ball on pattern
formation in nature [1].

16 Rate Equations

In this section we summarise some of the insights gained and techniques
learned in this course. You will find that virtually all ideas we have
discussed so far, come together in the discussion of rate-equations as a
model of kinetic processes.

Throughout biomolecular sciences we meet many processes which ex-
hibit growth or decay, and may be described by rate equations. Several
general examples were already listed in Section 12 (see page 34) and Sec-
tion 15 (the population model). Others are enzyme properties such as
activation, activity, proteolysis as well as cellular properties such as the
growth considered previously. The common element in all these, is that
the rate of the process is proportional to the amount of the substrate
itself. Take for example a protease E, which cleaves a specific peptide
bond in a substrate protein S, and thereby activating it to yield the mod-
ified cleaved form S ′. The rate of cleavage (proteolysis) is proportional Rates? See page 11

Proportionality? See page 43to the amount of inactive substrate S. We can write this as

rate of proteolysis = −kp · amount of S

where kp is a constant, referred to as the rate constant for this pro-
cess. We write −kp because the process reduces the amount of S with
increasing time. What I called “amounts”, is more commonly written as Concentrations? See page 28
concentrations. For concentrations, biochemists prefer to use following
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notational form1 [S]. The rate of proteolysis is therefore the change in
substrate concentration over time:

d[S]

dt
= −kp · [S] (16.1)

Where the notation d/dt represented an instantaneous rate of change in Notation: concentrations in
square brackets.time and is called a derivative (See page 45).

Let us consider an example of such a process with kp equal to 0.1
per second, and an initial concentration of 20mg of substrate. We have Remember: “per second” is

written /s or s−1to give our rate constant units which relate how much is changed in a
given unit of time. At time zero, t = 0, we have 20mg of substrate,
and after one second, approximately 0.1mg · 20 are converted to the
active form, giving 2mg. This leaves approximately 20 − 2 = 18mg still
uncleaved (and inactive). After another second, 0.1mg·18 equal 1.8mg are
converted, leaving 18 − 1.8 = 16.2mg, and so on. These calculations are
only approximate since the differential equation assumes infinitesimally
small intervals of time rather than our chosen one second. Nevertheless,
consider the table of eight data points, along with the corresponding
value for S ′.

t 0 1 2 3 4 5 6 7 8
S 20 18 16.2 14.58 13.12 11.81 10.63 9.57 8.61
S’ 0 2 3.8 5.42 6.88 8.19 9.37 10.43 11.39

The graphs of the data are plotted in Figure 16.1. Do you recognise the
shape of the plots? Where have you seen them before?
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Figure 16.1: Graphs of the amounts for inactive protein S and the
modified cleaved form S′.

In fact, the data show an exponential relationship and are suitably
modelled by the function y = e−x. Indeed, as we discussed in Section 15 Remember: exp(x) ≡ ex

on differential equations, the solution to our differential equation (16.1)
is (See also Figure 15.3)

[S] = [S]0 · e−kp·t

1Biochemical processes take place in a defined space (e.g. cell compartments).
Assuming a compartment of known size, [A] for some metabolite A is equivalent to
the number of molecules of A. We could then use refer to the concentration or the
number of molecules interchangeably.
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At t = 0, we have e0 = 1 and therefore [S] = [S]0, where [S]0 is the Initial value.
initial value, that is, the initial concentration or amount of the substrate
protein. Let us rename S ′ as product P , then given that [P ] = [S]0 − [S]
we can substitute the equation for [S] to obtain an equation of P :

[P ] = [S]0 − [S]

= [S]0 −
(
[S]0 · e−kp·t)

= [S]0 ·
(
1 − e−kp·t)

Figure 16.2 shows the plot of the two mathematical equations for S and
P .
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Figure 16.2: Graphs of the rate equations for S = S0 · e−kpt and
P = S0 · (1 − e−kpt), S0 = 20mg, kp = 0.1s−1.

These are all first-order kinetic processes, which are very use- First-order kinetic processes
ful to describe a number of different systems. Very often, the amount of
protein present is proportional to the activity of the protein, or some sec-
ondary measurement we can make regarding an enzyme or its properties.
Typically, the rate-equations are used to represent irreversible processes,
where “A” is “converted” or changed in some way to “B”. This leads to
the general equation

A = A0 · e−kt .

If we can express our measured quantity as a fractional measure of the
initial amount or activity, this can help us obtain a value for k. Rewriting
the equation above, we obtain

A

A0
= e−kt

Like substraction is the complementary or inverse operation to addition, Logarithms? See page 16
or multiplication to division, so is the logarithm related to the expo-
nential. Taking the natural logarithm, loge ≡ ln, on both sides of the
equation:

loge

(
A

A0

)
= −kt .
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Figure 16.3: A value for the rate constant kp can be obtained from
the gradient of loge(S/S0)(t).

We can now obtain a value for k by plotting loge(A/A0) versus t and
determining the gradient of the straight line. For our previous example,
this is illustrated in Figure 16.3.

Another useful parameter we can discuss in the given context is that Half-life of a process
of the half-life of a process. This describes the time it takes for half
of the initial quantity A to be converted into B. It does not matter
how much A is there initially, the half-life, denoted t1/2 is still the same.
Consider the general rate equation for first-order kinetics:

A = A0 · e−kt

At the half-life, t1/2, A = A0/2 = B, therefore,

A0

2
= A0 · e−kt1/2

Rearranging gives

1

2
= e−kt1/2 or loge

(
1

2

)
= −k · t1/2

Therefore

t1/2 =
loge 2

k
.

17 Michaelis-Menten Modelling

In Section 15 we introduced differential equations and as demonstrated
in Section 16, we often observe rates of changes, dy/dx of functions, y,
rather than the functions y themselves. In this Section we continue the
theme, highlight problems with differential equations and introduce an
important formula.

Consider the reaction between two molecules A and B. Biochemists
represent such an reaction using the following symbols and notation1:

A + B → P

1Who thought that only mathematicians are fond of symbols and notation?
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As we have seen before, the rate of reaction can often be modelled as be-
ing proportional both to the concentration of A and to the concentration
of B, i.e.,

d[P ]

dt
= k[A][B] (17.1)

where [A], [B], and [P ] are the concentrations of A, B and P , respectively,
at time t and k is a constant. This equation is not very useful as it
stands; it would not tell us how much product has been formed after a
given amount of time. We have to rearrange the equation, simplify it
and then solve it to obtain an equation with only [P ] and t in it.

The equation (17.1) reminds us of equation (15.2), the population
model on page 45:

dP (t)

dt
= k · P (t) (population model),

where k is the constant of proportionality and P (t) denotes the size
of the population at time t. They are however not the same as there
are four variables ([A], [B], [P ]), and t instead of only two, (P, t), in the
population model. Taking account of the fact that every molecule of P
that appears is the result of the disappearance of one molecule of A and
one molecule of B; it follows that ([A]+[P ]) and ([B]+[P ]) are constants.
Define [A]0 and [B]0 as the initial values of [A] and [B] at time t = 0 and
when [P ] = 0. We can then replace [A] and [B] in equation (17.1) with
([A]0 − [P ]) and ([B]0 − [P ]), respectively:

d[P ]

dt
= k([A]0 − [P ])([B]0 − [P ]) . (17.2)

This is then a ‘proper’ differential equation with only one variable, [P ],
depending on time t. Finding a solution to this differential equation is far
more complicated than for the very similar population model. And yet
the biochemical model is quite simple as it only models basic irreversible
reactions. For a matter of completeness, and ignoring various steps of
restructuring equation (17.2), we would obtain the following solution:

[A]0([B]0 − [P ])

[B]0([A]0 − [P ])
= e([A]0−[B]0)kt

With this equation, given a time t and initial values for [A], [B], [P ] at
t = 0, we could calculate a concentration [P ].

The moral of the story is that although we could, “in theory”, find
a solution for the model above, even simple kinetic models can lead to
intractable mathematics. For example, the simplest model commonly
discussed in enzyme catalysis is the Michaelis-Menten mechanism which
leads to the following pair of simultaneous differential equations:

d[Y ]

dt
= k1

(
[E]0 − [Y ]

)(
[A]0 − [Y ] − [P ]

)
− k−1y − k2y + k−2

(
[E]0 − [Y ]

)
[P ]

d[P ]

dt
= k2[Y ] − k−2

(
[E]0 − [X]

)
[P ] .
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Do not worry about the meaning of these equations, they serve to illus-
trate the complexity and what we can do about it. It is possible to remove
[Y ] from these equations: first, using the second equation to express [Y ]

in terms of [P ], and differentiating this gives an expression for d[Y ]
dt

in
terms of [P ] and its derivatives. These two can then be substituted into
the first equation to give a single differential equation containing only
two variables [P ] and t. However, this is as far as we can go, because the
resulting differential equation has no known analytical solution. (We can
solve and numerically simulate the equation for a specific set of initial
conditions. Mathematicians would however prefer to study properties of
general solutions - on paper.).

A common way out of this problem is to make assumptions that Steady-state kinetics
simplify the equations. For the example above, one can for instance
assume (or adjust experimental condition such) that [A]0 is much larger
than [E]0 and to consider only the time scale in which d[Y ]/dt can be
regarded as negligible. This basic restriction leads to what is known as
steady-state kinetics.

A simple enyzme-catalysed reaction which converts substrate S to
product P is represented by biochemist as:

S + E
⇀
↽ ES → P

where E represents the enzyme and ES the enzyme-substrate complex.
The rate of reaction can be measured as the change in product concen-
tration with time. We can define this as the velocity, v, of the reaction:

v =
d[P ]

dt

where [P ] is the concentration of product P . This rate of reaction is a
change of product concentration over time and hence its unit is specified
as mol · L−1 · min−1. The rate of reaction as a function of the substrate
concentration leads to what is known as the Michaelis-Menten equa-
tion: Michaelis-Menten equation

v =
Vmax · [S]

Km + [S]
(17.3)

in which [S] is the concentrations of the substrate, respectively, at time
t. Vmax is often called maximum velocity or limiting rate because v can-
not exceed it under steady-state conditions. Km is called the Michaelis
constant with unit mol · L−1. Since it is like v a velocity, it has the same
units as v. The substrate concentration [S] is measured in ‘moles’ per
litre, mol · L−1. In Figure 17.1, the rate of reaction is plotted against
substrate concentration. This plot is called the Michaelis-Menten plot.

The Michalis-Menten plot in Figure 17.1 shows that it is difficult to Michaelis-Menten plot
estimate Vmax since the curve tends to Vmax but will never reach it under
experimental conditions. To estimate Vmax it is therefore necessary to
transform the curve defined by equation (17.3) into a straight-line equa-
tion of the form (13.1). A way to do this was developed by Lineweaver Lineweaver-Burk plot
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Figure 17.1: Michaelis-Menten plot.

and Burk:

v =
Vmax · [S]

Km + [S]
invert, ...

1

v
=

Km + [S]

Vmax · [S]
separate Km and [S], ...

=
Km

Vmax · [S]
+

[S]

Vmax · [S]

that is,

1

v
=

Km

Vmax
· 1

[S]
+

1

Vmax

This equation is now in the straight-line form y = a + bx, where

y =
1

v
; x =

1

[S]
; b =

Km

Vmax
; a =

1

Vmax

The graph of 1/v against 1/[S] will therefore produce a straight line and
the y intercept is equal to 1/Vmax so Vmax can be found. The gradient is
Km/Vmax and hence if Vmax is known, we can determine Km as shown in
Figure 17.2.
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Figure 17.2: Lineweaver-Burk plot as a way to estimate the limiting
rate Vmax .

Remark: Please note that this section does not provide a full intro-
duction to modelling enzyme kinetic reactions. The material of this
Section demonstrated how the previously introduced basic mathemati-
cal concepts come together when we try to devise mathematical models
of cellular processes. There are numerous (interesting) issues associ-
ated with the assumptions and applications to cellular dynamics (e.g.
pathway modelling). For example, one might argue that if we have to
make so many assumptions and simplifications to establish a mathe-
matical model, how can the model then be useful? I would argue that
the purpose of mathematical modelling is not only to provide accurate,
quantitative predictions but the modelling process itself helps the life sci-
entist to design experiments, generate and test hypotheses. If you don’t
believe me, Sir Paul Nurse, winner of The 2001 Nobel Prize in Phys-
iology or Medicine wrote a year before his award in the journal Cell :
“Dealing with these system properties, which ultimately must underlie
our understanding of all cellular behavior, will require more abstract
conceptualizations than biologists have been used to in the past. We
might need to move into a strange more abstract world, more readily
analyzable in terms of mathematics than our present imaginings of cells
operating as a microcosm of our everyday world.”. What he refers to
is a change of thinking, away from molecular characterizations of the
nuts and bolts in cell systems to an understanding of functional activity.
Technological developments in the post-genome era make it increasingly
difficult to make sense of experimental data without mathematical mod-
elling and data analysis.
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18 Supplementary Material

The following books can be recommended for additional exercises and
further reading (prices are estimated):

[10] Introductory mathematics for the life sciences.
229 pages. ISBN 0 7484 0428 7. £16

[4] Basic mathematics for biochemists.
221 pages. ISBN 9 780198 502166. £14

[3] GCSE math designed for post-16 students.
586 pages. ISBN 0 7487 5510 1. £16

There are a number of excellent software packages for mathematics and
data analysis. The packages are well established and for which numerous
introductory books have been published. For some of these programmes
student and campus licenses are available.

• Matlab from MathWorks.

• Mathematica from Wolfram Research.

• Mathcad

• Maple [5]

The Internet provides of course a vast source of information, including
a lot of material on mathematics. The following general reference may
be useful. For example try searching the following sites for the keyword
‘logarithm’ !

• Google search engine: http://www.google.com

• Brittanica encyclopedia: http://www.britannica.com/

• Encarta from Microsoft: http://encarta.msn.com/

Other web-sites of interest are:

Mathematics WWW Virtual Library: http://euclid.math.fsu.edu/Science/math.html

Eric Weisstein’s World of Mathematics: http://mathworld.wolfram.com/
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19 More Exercises

Fractions

Try to simply the following fractions.

1.
12

5
+

3

4
=

2.
2

5
·
(

1

3
+

2

5

)
=

3.
x

y
+

2x

3y
=

4.

(
5

6
÷ 1

2

)
· 3

2
=

5.
a

b
−

(
2

c
· d

3

)
=

6.
a3 − b

b − c
÷ a

c − b
=

7.
d2

c
− d2

c2
=

8.

4x

5y

10y2
=
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Algebraic Expressions and Equations

Simplify the following expressions by finding common factors.

1. a · b + a · c =

2. a2 · b + a · c =

3.
a2c

b
+

a3d

a2

Rearrange the following equations.

1. Express b in terms of a, c and d, i.e., determine b =?):
b · c + a · d = d2 − a · d

2. Express a in terms of c, b and d: a · d2 − b · a = c · a2

3. Express c in terms of a and b for the following expression:
b − 1

c + 1
= a + b
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Variables and Constants

In the following problems, rearrange the equations to give y in terms of
x and any constants. Remember that in these examples, x and y are
the only variables and that all other terms are constants or coefficients.
For each example, also work out whether y increases or decreases when
x increases.

1. A · y + C · x = 12

2. c · y2 − 17 = 18x

3.
C

1 + y
= Z · x
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Powers

1. Show that
10m

10n
= 10m−n

2. Show that 10(a−b)10(b−a) = 1

3. Simplify 10a10a10a10a10a =?

4. Simplify (10a)3(10a)−4 =?

5. Simplify
1

a2
(3a − 4a3b) =?

Using your knowledge of powers, especially with base 10, evaluate the
following (without using your calculator). Show your working. You can
check your final answers with your calculator if you wish.

1.
0.00006

2000
=

2.
0.05 · 200

0.002
=

3.
0.0009

7000

1

30

4.9 · 105

0.1
=

4. (0.0005)2 =

Simplify each of the following:
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1. 25 · 26

2. 34 · 37

3. 53 · 54 · 56

4. 3 · 32 · 35

5.
75

72

6.
312

34

7.
28

24

8.
105 · 103

104

9.
37 · 36

35

10.
25 · 26

22 · 27

11.
(
53

)4

12.
(
3 · 54

)2

13.
(
103

)4

14.
(
2 · 32 · 53

)4

15.

(
3

4

)3

16.

(
52

73

)4
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SI Prefixes and Units

Work out the following in the correct SI units and using standard SI
prefixes.

1.
3 · 105m2

3 · 102m
=

2.
5 · 103ms−2

5 · 10−2s−2
=

3.
8 · 103ms−2

2 · 103s−1
=

4.
8 · 102mol · s−1

2 · 108s−1
=

5. 5
0.01mol2

1000mol
=
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Logarithms

Use the rules for manipulating logarithms to simplify the following ex-
pressions.

1. log(ab2) − 2 log b =

2. log

(
a2

b2

)
+ 2 log b =

3. log
(
32

) − log 3 − log 18 =

4. Express x in terms of y. All other terms are constants.
y = (1 + y2)ex

5. Express x in terms of y. All other terms are constants.
y = −AB ln x
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Functions

Rearrange the following into straight line form. What are the gradients
(slopes) and intercepts (on the y-axis) of these straight lines? Remember
that gradients have signs. You don’t need to plot these functions to
obtain these values.

1. y − 3x = 1

2. 2y − 3x − 1 = x

3. 0 = 4y + 5(2x − 3) + 10
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Graphs

Sketch graphs of the following functions. The scales have been delib-
erately omitted from the axes. This has been done to make you think
about the scales yourself. You should work out a few points by substi-
tuting values into the equations before plotting them. It is not critically
important that your plots should be perfectly proportioned, but they
should have the right shape. For each plot, try and say something about
the way the gradient changes, if at all. Does y increase when x increase?
Is the gradient always the same sign (positive or negative)?

1. y = x2 − 6x + 2

X

Y

2. y = 5
x

+ 7

X

Y
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3. y = 20x
x+5

. How does y vary with x? What is the maximum value y
can take?

X

Y

4. Plot these two functions on the axes below. You will certainly need
your calculator in order to do this. Make sure you are using the
natural logarithm function and not log10

y = ln x and y = 2.718x

X

Y

What do you notice about these plots? Is there any relationship
between them? From your graph, estimate the gradient at x = 1
for the function y = 2.718x. What do you notice about this value?
(Hint: For the first function, use values of x from 0.1 to 1.5, and
for the second function use values of x from −1.0 to 1.0).
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20 More Exercises: Solutions

Fractions

Try to simply the following fractions.

1. 12
5

+ 3
4

= 48
20

+ 15
20

= 3 3
20

2. (Do the bracket first)
2
5
· (1

3
+ 2

5
) = 2

5
· ( 5

15
+ 6

15
) = 2

5
· 11

15
= 22

75

3. x
y

+ 2x
3y

= 3x
3y

+ 2x
3y

= 5x
3y

4. (5
6
÷ 1

2
) · 3

2
= (5

6
÷ 2

1
) · 3

2
= 10

6
· 3

2
= 5

2

5. a
b
− (2

c
· d

3
) = a

b
− (2d

3c
) = 3ac

3bc
− 2bd

3bc
= 3ac−2bd

3bc

6. Note: (b − c) = −1 · (c − b) = −(c − b) then you can cancel these
terms out and simplify:
a3−b
b−c

÷ a
c−b

= a3−b
b−c

· c−b
a

= a3−b
b−c

· −(b−c)
a

= b−a3

a

7. d2

c
− d2

c2
= cd2

c
− d2

c2
= cd2−d2

c2
= d2(c−1)

c2

8.
4x
5y

10y2 = 4x
5y

÷ 10y2 = 4x
5y

· 1
10y2 = 4x

50y3 = 2x
25y3

Algebraic Expressions and Equations

Simplify the following expressions by finding common factors.

1. a · b + a · c = a(b + c)

2. a2 · b + a · c = a(ab + c)

3. a2c
b

+ a3d
a2 = a2( c

b
+ ad

a2 ) = a2( c
b
+ d

a
)

Rearrange the following equations.

1. Express b in terms of c, b and d, i.e.,determine b =?
The simplest way to solve this one is to isolate the term in b on
the left hand side by subtracting ad from both sides. Then you can
factorise in a on the right hand side, before finally dividing both
sides by c.
bc + ad = d2 − ad
bc = d2 − ad − ad = d2 − 2ad = d(d − 2a)

b = d(d−2a)
c

or d2−2ad
c

2. Express a in terms of c, b and d.
Factorise in a on the left hand side, and then divide both sides of
the equation by a. You could also do this second step first if you
wish (but be careful).
a · d2 − b · a = c · a2 ⇒ a(d2 − b) = ca2

a(d2−b)
a

= ca2

a
= d2 − b = ca

a = d2−b
c
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3. Express c in terms of a and b for the following expression.
(Treat the a+b term as a single term, and then you can divide both
sides of the equation by (a + b). Similarly, you can then multiply
both sides of the equation by (c + 1). Then it is simply a matter
of subtracting 1 from both sides.)
b−1
c+1

= a + b

c + 1 = b−1
a+b

c = b−1
a+b

− 1

Variables and Constants

In the following problems, rearrange the equations to give y in terms of
x and any constants. Remember that in these examples, x and y are
the only variables and that all other terms are constants or coefficients.
For each example, also work out whether y increases or decreases when
x increases.

1. A · y + C · x = 12. Take Cx from both sides. Then divide both
sides by A.
Ay = 12 + Cx
y = 12−Cx

A
y ↓ as x ↑

2. c · y2 − 17 = 18x Add 17 to both sides. Divide both sides by c.
Then take square roots. y increases if we only take the positive
root.
cy2 − 17 = 18x
cy2 = 18x + 17
y2 = 18x+17

c

y =
√

18x+17
c

y ↑ as x ↑

3. C
1+y

= Z · x. This is just like the earlier rearrangement. You can

treat the (1 + y) as a single term, and multiply both sides of the
equation by (1 + y) and divide both sides by Zx. Then subtract 1
from both sides.
1 + y = C

Zx

y = C
Zx

− 1 y ↓ as x ↑

Simple Powers

1. Show that 10m

10n = 10m−n

10m · 1
10n = 10m10−n = 10m−n

2. Show that 10(a−b)10(b−a) = 1

10(a−b)10(b−a) = 10(a−b)+(b−a) = 10a−a+−b = 100 = 1
or
10(a−b)10(b−a) = 10(a−b)

10−(b−a) = 10(a−b)

10(a−b) = 1

3. Simplify 10a10a10a10a10a =?

= 10a+a+a+a+a = 105a
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4. Simplify (10a)3(10a)−4 =?

= (10a)3

(10a)4
= 1

10a = 10−a

5. Simplify 1
a2 (3a − 4a3b) =?

3a
a2 − 4a3b

a2 = 3
a
− 4ab or 3−4a2b

a

Using your knowledge of simple powers, especially with base 10, eval-
uate the following (without using your calculator). Show your working.
You can check your final answers with your calculator if you wish.

1. 0.00006
2000

= 6·10−5

2·103 = 6
2
· 10−8 = 3 · 10−8

2. 0.05·200
0.002

= 5·10−2·2·102

2·10−3 = 2·5·100

2·10−3 = 5 · 103 = 5000

3. 0.0009
7000

1
30

4.9·105

0.1
= 9·10−4·49·104

7·103·3·101·10−1 = 3·10−4·7·104

103 = 21 ·10−3 = 2.1 ·10−2 =
0.021

4. (0.0005)2 = (5 · 10−4)2 = 25 · 10−8 = 2.5 · 10−7

Simplify each of the following:

1. 25 · 26 = 211

2. 34 · 37 = 311

3. 53 · 54 · 56 = 513

4. 3 · 32 · 35 = 38

5. 75

72 = 73

6. 312

34 = 38

7. 28

24 = 24

8. 105·103

104 = 104

9. 37·36

35 = 38

10. 25·26

22·27 = 22

11. (53)
4

= 512

12. (3 · 54)
2

= 32 · 58

13.
(
103

)4
= 1012

14. (2 · 32 · 53)
4

= 24 · 38 · 512

15.
(

3
4

)3
= 33

43

16.
(

52

73

)4

= 58

712
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SI Prefixes and Units

Work out the following in the correct SI units and using standard SI
prefixes.

1. Keep the values and units separate. Do values first, units last (or
the other way around) but not together. Treat the units like other
index values.

3·105m2

3·102m
= 103 · m2m−1 = 103m = 1000m

2. 5·103ms−2

5·10−2s−2 = 103ms−2

10−2s−2 = 103+2m = 105m

3. Keep the 8 divided by 2 separate too. Treat the powers of 10 to-
gether. Calculate the correct units independently. Rearrange (if
necessary) as the final step.

8·103ms−2

2·103s−1 = 4 · 100ms−1 = 4ms−1

4. 8·102mol·s−1

2·108s−1 = 4 · 102−8mol · s−1s = 4 · 10−6mol

5. 0.01mol2

1000mol
= 1·10−2

1·103 mol = 10−5mol

Logarithms

Use the rules for manipulating logs to simplify the following expressions.

1. Treat the log(ab2) term as log(ac) where c = b2. Then log(ac) =
log a + log c (but c = b2) so... Write it now as = log a + log b2. Use
2 log b = log b2 to finish it off.

log(ab2) − 2 log b = log a + log b2 − log b2 = log a

2. log(a2

b2
) + 2 log b = log a2 − log b2 + logb2 = log a2 = 2 log a

3. log(32)− log 3− log 18 = 2 log 3− log 3− log(6 · 3) = log 3− log 6−
log 3 = − log 6

4. Express x in terms of y. All other terms are constants.
Rearrange equation to isolate x term. Take natural logs of both
sides. Rearrange the left-hand-side.

y = (1 + y2)ex leading to ex = y
1+y2 leading to x = ln( y

1+y2 )

5. Express x in terms of y. All other terms are constants.
Don’t confuse exponentials and logarithms. Remember how to re-
solve y = ex. Do not forget ln e = 1.

y = −AB ln x leading to ln x = − y
AB

leading to x = e−
y

Ab
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Functions

Rearrange the following into straight line form. What are the gradients
(slopes) and intercepts (on the y-axis) of these straight lines? Remember
that gradients have signs. You do not need to plot these functions to
obtain these values.

1. y − 3x = 1 ⇒ y = 3x + 1
m = 3, c = 1

2. 2y−3x−1 = x ⇒ 2y = x+3x+1 ⇒ 2y = 4x+1 ⇒ y = 2x+1/2
m = 2, c = 0.5

3. 0 = 4y + 5(2x − 3) + 10 ⇒ 4y + 10x − 15 + 10 = 0 ⇒ 4y =
−10x + 5 ⇒
y = −10

4
x + 5

4
= −2.5x + 1.25

m = −2.5, c = 1.25

Graphs

1. y = x2 − 6x + 2. The gradient starts out negative and becomes
positive with a point of inflection at x = 3.

-4 -2 2 4 6 8
X

-10

-5

5

10

15

20

25

30
Y

2. y = 5
x

+ 7. The function decreases as x increases, but is not deter-
mined at x = 0. It converges to y = 7 at very low and very high x.

-6 -4 -2 2 4 6 8
X

-2.5

2.5

5

7.5

10

12.5

15
Y
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3. y = 20x
x+5

. The function increases with x, is not determined at
x = −5, and slowly increases until a maximum value of 20.

2.5 5 7.5 10 12.5 15
X

2.5

5

7.5

10

12.5

15
Y

4. Plot these two functions on the axes below.

y = ln x and y = 2.718x

They are inverse functions. e = 2.718, so gradient at x = 1 is e.
This holds true at every point, so that the gradient of ex always
equals ex.

-2 -1.5 -1 -0.5 0.5 1 1.5 2
X

-3

-2

-1

1

2

3
Y
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