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Preface

A motivation not only for this text but for many if not most research projects in molecu-
lar biology, cell biology and biomedicine is an improved understanding of disease mecha-
nisms. We like to understand the causal basis of a disease that effects an entire organism.
Taking a human body, it consists of organs, which in turn are build from cells. A biologi-
cal cell is thus the basic building block for living systems and the focus of attention for an
understanding of not only the cell but higher levels of structural and functional organi-
sation. Whether we are interested in cancer, neurodegenerative diseases like Parkinson’s
or Alzheimer’s, metabolic diseases like diabetes or the malfunction of the immune sys-
tem, modern life sciences tries to understand phenomena at the physiological level of
an organism at the level of the cell. For example, a cancerous tumor is an uncontrolled
proliferation of cells and it seems therefore logical to try and understand how a cell func-
tions. The functions of a cell are its growth, differentiation (specialisation), proliferation
(division) and apoptosis (programmed cell death). In all of this the cell is interacting
or communicating with its environment and other cells. Many drugs are designed to
influence this communication, to suppress or stimulate the cell’s behavior in a defined
way. The generation of signals and transfer of information is achieved through biochem-
ical reactions among molecules. The concept of a pathway is used to identify groups of
molecules that interact in a specific way so as to realise the functions of cell. Intra- and
intercellular interactions and cell functions are nonlinear dynamic processes. To under-
stand how the cell functions requires therefore a theory of dynamic systems. We are
going to present formal mathematical concepts that are the basis for an understanding
of nonlinear, dynamic molecular interactions in cells.

The focus of this book is on systems biology, an emerging area of research that is a
natural conclusion from the advances made in related areas, including genomics, molec-
ular biology, cell biology, biomedicine and bioinformatics. The areas of genomics and
bioinformatics have identified and characterised many of the components that make up
a living cell and maintain its function. In genomics the genetic information that is en-
coded in the genome is studied with respect to genes and the proteins they code for. A
primary aim of bioinformatics has been to link genome sequences or genes with RNA
products and proteins, i.e., to determine whether in a particular experimental context
there exist a relationship between genes and proteins, amongst genes and proteins, and
across genomes. The principal objective of modern life sciences is to describe the role of
these components in developmental and disease mechanisms. While the developments
in genomics and bioinformatics have brought tremendous advances in our understand-
ing of molecular and cell biology, it is increasingly recognised that it is the temporal
interaction amongst large numbers of molecules that determine phenomena observed at
higher (metabolic, cellular, or physiological) levels. This dynamic or systems perspective
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Preface

and integrative approach (combining data from the genome, transcriptome, proteome,
metabolome, . . .) is considered in the area of research referred to as Systems Biology :

Systems biology investigates the functioning and function of inter- and
intra-cellular dynamic networks, using signal- and systems-oriented approaches.

To understand the functioning and function of cells, systems biology addresses the
following central questions:

How do the components within a cell interact to bring about
its structure and function? (intra-cellular dynamics)

How do cells interact to bring about higher levels of
structural and functional organisation? (inter-cellular dynamics)

The functions of a cell do not reside in the molecules themselves but in their inter-
actions, just as life is an emergent, rather than an immanent or inherent, property of
matter. Although life, or the function of the cell arise from the material world, they
cannot be reduced to it. Systems biology therefore signals a shift, away from molecular
characterisation and cataloguing of the components in the cell, towards an understanding
of functional activity.

A key feature of the present text is its systems-theoretic perspective. In this setting,
the word ‘systems’ in systems biology is taken to mean a merger of (dynamic) systems
theory with (cell) biology. We focus on dynamics and transient changes occurring within
cells. These changes, which in most cases will be molecule concentrations, carry infor-
mation and are at the root of cellular functions that sustain and develop an organism.
The concept by which scientists organise these processes are pathways, i.e., networks of
biochemical reactions. A pathway is an abstraction, a model, of an observed reality. The
aim for us is to take the concept of pathways, from simple maps or graphs that name
the components and indicate graphically and only roughly their relationship, towards
a dynamic simulation of the interactions of proteins in a pathway. It will not be pos-
sible to address all areas of application and to provide examples from these. However,
it is important to emphasise that the methodologies used for modelling and simulation
are generic, i.e., they are applicable to a wide range of processes related to intra- and
inter-cellular dynamics. In fact, the mathematical concepts and techniques introduced
here are widely used in various other areas, including engineering, physics, chemistry.
Learning them as generic tools, has a number of advantages for the student who is inter-
ested in broad, interdisciplinary training. Mihajlo Mesarović played an important role
in defining the discipline systems biology. Already 1968 he wrote [Mes68]:

“In spite of the considerable interest and efforts, the application of sys-
tems theory in biology has not quite lived up to expectations. [. . .] one of
the main reasons for the existing lag is that systems theory has not been di-
rectly concerned with some of the problems of vital importance in biology.”
“The real advance in the application of systems theory to biology will come
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about only when the biologists start asking questions which are based on
the system-theoretic concepts rather than using these concepts to represent
in still another way the phenomena which are already explained in terms of
biophysical or biochemical principles. [. . .] then we will not have the ‘appli-
cation of engineering principles to biological problems ’ but rather a field of
systems biology with its own identity and in its own right.”

Since then there have been dramatic advances in technologies including, gene and protein
expression assays, confocal microscopy, calcium imaging, and fluorescent tagging of pro-
teins, which allow us to observe reactions in time and space. We should not ignore, the
fact that as yet we have some way to go with regard to quantitative stimulus-response
experiments that generate time series data suitable for conventional system identifica-
tion techniques. But even if the technologies are available possibly the greatest hurdle
and certainly the reason why it is so attractive, is the human factor: advances in the life
sciences will rely on experimentalists and theoreticians working closely together; they
need each other.

One might argue that mathematical modelling in biology is anything but new. This
is true although the emphasis may have been different, which could be summarised as
follows:

1. Mathematical biology is most closely associated with:

a) population modelling – modelling dynamics of infectious disease

b) morphogenesis and spatial pattern formation

c) evolutionary dynamics

. . . a main reference is [Mur02].

2. Mathematical physiology is most closely associated with:

a) cardiac rhythmicity

b) modelling the circulatory system, respiration, blood, muscle

c) hormone physiology

d) renal physiology

e) hearing and vision

. . . a main reference is [KS01].

3. Systems biology is most closely associated with

a) molecular and cell biology

b) genetics and genomics (omics data)

c) modelling metabolic and signal transduction pathways

The literature on systems biology is reviewed below. The differences to closely relate
areas of genomics and bioinformatics are further discussed in Chapter 1.
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Preface

The outline of the text is as follows. Chapter 1 provides an introduction to the subject
area, including a discussion of the scientific approach and the role of modelling. The
‘novelty’ of systems biology is that it considers signal- and systems-oriented approaches
to modelling and simulation of cell-biological and molecular systems. We are going to
introduce the concept of a ‘system’ from a very general perspective which is then re-
fined and adapted to fit the application under consideration. Systems biology considers
dynamics, including transient changes of molecular concentrations and differential equa-
tions are therefore unavoidable. Chapter 1 provides a gentle introduction to the key
ideas.

For the theoretician it is essential to not only have a basic grasp of molecular and
cell biology but also to appreciate the generation of data from experiments. Chapter
2 introduces the two basic modelling concepts for biochemical reaction networks: mass
action models and the chemical master equation approach. We are going to provide a
thorough discussion of the differences and similarities and on the way learn a number of
important or useful mathematical techniques.

Differential equation models do not account for random variations and in Chapter 3
we are therefore going to focus on stochastic models of intracellular processes. The role
of stochasticity in cells, in modelling and the comparison to conventional kinetic models
is an interesting topic for discussion.

Chapter 4 focusses again on nonlinear differential equation models, the different flavors
that are available and applications to cell communication networks (signal transduction
pathways). The mixture of biology and mathematics, of basic and advanced material
is deliberate. In interdisciplinary research it is important to be able to read a broad
spectrum of literature and it is important to develop confidence for the experience that
not everything can be understood after the first reading.

The cell cycle is an inherently dynamic intracellular process with a long history of
mathematical modelling. In Chapter 5 we introduce the biological aspects and models
of different degrees of complexity.

The Appendix with its summary of mathematical notation used in the different chap-
ters and a glossary of technical terms is an idea adopted from biological textbooks to
help the reader in finding her/his way through the material. Throughout the text, the
most important concepts and terms are indicated in the page margin at the place where
they are introduced.

Rostock, 8th October 2012

Literature Review

Systems biology is an emerging area of research and which is truly an interdisciplinary
area, combining various disciplines and areas of research. A consequence of this is that
although there are already many relevant research journal publications, there are cur-
rently few suitable textbooks available. In trying to fill a gap with the present text,
we should not suggest that it is possible to cover all aspects of systems biology in one
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book. Considering the large number of theoretical methodologies, experimental tech-
niques and biological questions, it will be necessary to consult complementary literature.
The targeted audience for the present text are graduate and postgraduate students and
researchers from a range of disciplines. The aim is to make the text accessible to students
and researchers who may be at different levels of their training/experience. Towards this
end we are going to illustrate concepts with plots and line drawings wherever possible.
Each Section will give numerous references to research publications and books. In addi-
tion, we here give a brief list of textbooks that could help the novice to complement the
material presented here.

Although the edited volume, [BB01] was written as a textbook and provides a range of
examples for models. It covers many methodologies and application areas, but is neces-
sarily limited to brief introductions which do not allow a more comprehensive treatment
of the mathematical basis of the models. Since it was written by practitioners it remains
a valuable source book with motivating examples. The monograph by Davidson [Dav01]
describes how embryonic development is the outcome of a vast spatial and temporal
series of differential gene expressions, and how the control of these depends on a hard-
wired regulatory program built into the DNA sequence. Apart from few logical wiring
diagrams, mathematical modelling and simulation does not play a role in this book. It
does however provide a good example for theoreticians to understand the biological chal-
lenge related to regulatory systems that are involved in the development of an organism.
The edited volume by Fall et al. [FMWT02] comes closer to the present text, is well
written with an interdisciplinary audience in mind and is broader in scope. Somewhat
more advanced is the standard text in mathematical biology by Murray [Mur02]. It
covers a vast range of mathematical techniques and biological examples. In fact, several
older texts in the area of mathematical biology are ideal for studies in systems biology
but unfortunately some of these texts are out of print. More recently books specifically
directed towards systems biology have been published, including [Pal06] whose focus is
primarily on metabolic networks and with a bias towards the author’s algebraic meth-
ods. The textbook by Klipp et al. [KHK+05] has a very similar outlook and structure
as the present text but providing more information on the practical aspects of data
handling. Uri Alon [Alo06] has written an excellent text with a focus on transcriptional
networks. The present text puts more emphasis on the mathematical aspects, providing
a systems-theoretic perspective. In particular, we emphasise the assumptions involved
in modelling and provide a comparison between alternative modelling approaches. Our
text is therefore slightly more “technical” than “practical” with view to applications of
the maths presented therein. While there is a tendency to ignore mathematical details
and derivations, they are very important in systems biology. To fit any model to a set of
data is easy but to construct a model in which each term is in a meaningful correspon-
dence with biological reality, is difficult. The assumptions made in deriving the model
and the comparison between alternative formalisms, although tedious and apparently
abstract, are the basis for a useful model; one that reflects our understanding of biology
and which we trust to make meaningful predictions (suggesting new experiments for
which we invest money and time). To say we build a stochastic model by employing the
Gillespie algorithm is not enough if one does not understand the assumptions that were
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Preface

involved in the derivation.
The mathematical concepts employed by all of the authors are mostly standard tech-

niques that are described in a range of books on applied mathematics. [Kre93] is a
standard reference in the engineering sciences and covers a large spectrum of basic
mathematical techniques. There are excellent introductory treatments of differential
equations available, including [BD01] to name only one. Those texts, written for an
engineering undergraduate audience, have gone through various editions, are well illus-
trated and accessible to biologists. A more advanced but still introductory textbook is
[HSD04], introductory texts focussing on nonlinear differential equations are [JS07] and
[Str00a].

Mathematical modelling and simulation has been applied to metabolic pathways and a
number of excellent texts are available, including, [CB04], [Voi00] for introductory mate-
rial, whereas [Fel97] and [HS96] are more advanced texts, focussing on metabolic control
analysis (MCA). The main difference between signalling and metabolic pathways is that
for the latter we can concentrate on steady-states, which means that many problems
are of algebraic nature and do not require the solution of differential equations. There
are a large number of basic maths books aimed at the bio- or life science student. A
good, short introduction to the mathematics that are required for any experimentalist
are [Pho97] and [CB99], although they avoid differential equations and probability the-
ory. For statistical techniques that are relevant for generating data, we refer to [QK02].
The books by Eason et al. [ECG80] and Batschelet [Bat79], although written for the
life scientists, also introduce differential equations and other more advanced material.
[MS99] is an introduction to modelling of dynamic systems and is a good complementary
text to the present one.

With regard to software tools, an important development for systems biology is
the Systems Biology Markup Language (SBML). This standard provides a computer-
readable format for representing models of biochemical reaction networks. SBML is
applicable to metabolic networks, cell-signaling pathways, genomic regulatory networks,
and many other areas in systems biology. It is an international effort to provide a free
and open modelling language, supported by a large group of developers. The web-site
www.sbml.org provides links to a number of software tools for modelling and simulation
but also has a repository for SBML code of models published in the literature. These
models are an excellent source for hands-on exercises.

For the theoretician or modeler, there are various excellent introductory textbooks
for molecular and cell biology. The comparison between mathematical and biological
textbooks is striking. Biology textbooks are often heavy, large in size, rich in colorful
illustration and images. A good mathematics textbook will have a couple of black
& white line drawings but otherwise must appear rather dull and thin to the reader
from the life science community. The complexity of systems dealt with and the level of
abstraction used to describe such systems is in both areas very similar and yet there are
very different means of representing information and generating knowledge.

A broad general introduction to modern life sciences is available, for example, through
[P+01] and [Har01]. Focussing on the cell, the book by Alberts et al. [AJL+02] has
become almost a standard text. For microorganisms, [MMP00] provides an excellent
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introduction and survey of microbiology. The book by Brown [Bro99] is an accessible
introduction to the are of genomics. The biochemistry that underlies the reactions in
pathways is covered by various books, including [SBT02] or [MVHA99]. The area of
signal transduction is developing very rapidly, and there are few textbooks at introduc-
tory level available; on example is [Gom03]. For engineers and computer scientists the
introductory text [TB04] provides a concise summary of the most important concepts
and principles underlying modern life sciences research.

For the biologist who is interested in interdisciplinary research but whose school days
instilled a dislike for mathematics, may find parts of the material presented here chal-
lenging. Throughout the text we are going to derive virtually all results in detail,
rather than just presenting an equation. If the introductory maths texts, which we
have described above, are not sufficient, we provide a very basic introduction to math-
ematical and statistical modelling as a complement to the present text, available from
http://www.sbi.uni-rostock.de/data_handling.htm. Furthermore, we are going to
encourage computational studies and simulations to ‘play’ with the ideas presented here.
A collection of small programmes is available from www.sbi.uni-rostock.de.
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1 Modelling and Understanding Natural
Systems

One of the most spectacular examples for the wonderful complexity and beauty in na-
ture is the life cycle and total metamorphosis of the butterfly (Figure 1.1). During its
morphological development the organism undergoes a dramatic transformation, where
one genome is associated with two proteoms. The appearance and life of the two an-
imals that emerge from one genome is very different. Nowadays it is argued that the
information to enable this fascinating process is encoded in the genome of the organism; genome

whereby the genome is understood as the entirety of the genetic information, encoded in
a physical structure known as the DNA molecule. How is this process of the development
of an organism realised?

Figure 1.1: The total metamorphosis of a butterfly is an example for one genomes realising two proteomes.
It is also a spectacular example for regulation, control and coordination in cell differentiation
and the development of an organism.

What has been referred to as the post-genomics era of biology, is associated with areas
of research that exploit the fact that we have now available the genome sequences for
various organisms. The hope has been that using this information we should be able
to understand observations at the cell-, phenotypic-, or physiological level. Zooming in
from the entirety of an organism to the cell-level, we are covering an enormous scale of
magnitude and quantity. While a human can reach heights of say 2.11m, a single cell
has a diameter of only about ten micrometers. A human body may consist of some 1013

cells, where our largest organ, the liver consists of approximately 300 billion cells alone.

1



1 Modelling Natural Systems

The earth has only about six billion inhabitants, and without loosing the enthusiasm
for our research it is sometimes healthy to remind ourselves of the intellectual cosmos in
which we are trying to travel.

Not surprisingly then, in many cases where there was an initial hope to discover
a simple ‘gene/disease’ relationship, it was realised that what we are dealing here is a
complex web of hierarchical, multi-leveled, regulated dynamic processes. These processes
occur within cells and between cells and answering the question as to how a cell takessignalling

its place in higher levels of organisation like tissues and organs, means we ought to ask
questions about the communication and decision making in cells. The two central aspects
of inter- and intra-cellular communication are therefore signalling and gene expression.gene expression

Studying intra- and inter-cellular communication requires sophisticated technologies
to generate data. The complexity of the processes investigated and thus of the data,
motivates the use of mathematics as an extension of common sense reasoning. In the
words of Mike Mesarovic “Like you need a set of tools to do experiments, you need a set
of concepts to understand”.

The scientific approach, by which we wish to investigate questions like those mentioned
above, is characterised by the attempt to model natural systems1. An interesting aspect
of interdisciplinary research is the diversity of perspectives and approaches individuals
can contribute. The following story explains humorously differences among the modelers
in systems biology. A University sends a philosopher, a biologist, a mathematician, a
physicist, an engineer and a computer scientist to a hill walking trip in an attempt to
stimulate interdisciplinary research. During a break, they rest on a bench, watching
a cow in a field nearby. The philosopher asks “I wonder how one could decide on
the size of a cow?”. Since the object under consideration is a biological species, the
biologist responds first: “I have seen many cows in this area and know it is a big cow”.
The mathematician is nervous about the lack of rigor and argues “The true volume is
determined by integrating the mathematical function that describes the outer surface of
the cow’s body.” The physicist realises that this function is difficult to get and suggests
an experiment: “You lift the cow into a completely filled swimming pool, and then
measure the overflowing water, which corresponds directly to the volume of the cow,
simple as that!” By now, the engineer had some time to think about the problem and
suggests “Let’s assume the cow is a sphere...”. The computer scientist remained quite
all along and is increasingly nervous: “Sorry mates, I thought my laptop wouldn’t work
up here!”.

The underlying philosophy for the present text is to understand cell function through
emphasising transformations, processes over the objects. The technological develop-
ments in recent years have given us means to characterise the molecular components
that make up a cell. For many researchers the function or biological role of a protein is
largely defined by its three-dimensional structure. This obsession with molecular charac-
terisation has also led to the misconception of a gene as the causal agent for observations
at the phenotype- or physiological level of an organism. The thrust of the present work
is that it is systems dynamics that gives rise to biological function. A consequence of

1A natural system is a system considered in the natural sciences, i.e., physics, chemistry, biology.
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1.1 The Systems Biology Approach

this is that the bioinformatics approach, i.e., mining large databases with information
about the molecular characterisation of components that make up the cell is necessarily
limited.

Rather than focussing on the characterisation of molecular components, we here con-
sider relations between objects and relations between changes of states as more impor-
tant. This relational outlook is reflected in the following quotations. The physicist Erwin
Schrödinger concluded that

“Life is an emergent, rather than an immanent or inherent, property of
matter. Although it arises from the material world, it cannot be reduced to
it.”

The relational character of our approach is also reflected in the following quotes at-
tributed to the biologist Linus Pauling and universal genius Henri Poincaré, respectively:

“Life is a relationship among molecules and not a property of any molecule.”

“Science is built up of facts, as a house is with stones. But a collection of
facts is no more a science than a heap of stones is a house. ”

In fact Poincaré apparently went as fair as saying

“The aim of science is not things in themselves but the relations between
things; outside these relations there is no reality knowable.”

1.1 The Systems Biology Approach

Systems biology integrates experimental and modelling approaches to explain the struc-
tural and functional organisation of complex (molecular) biological systems as networks
of dynamic interactions. It aims at quantitative experimental results and building pre-
dictive models. The main focus of the present text are the system-theoretic aspects of
systems biology. Systems biology is not genomics, bioinformatics or the integration of
data from various Omics technologies. These field are important and complementary
but they do not mark the necessary paradigm shift to understand cell function as a
well organised system of dynamic processes. Systems biology should be about a shift of
focus, from the identification and molecular characterisation of components of the cell,
towards an understanding of functional activity. Since systems theory is the study of
organisation per se, it seems natural to define systems biology as a merger of (dynamic)
systems theory and (cell) biology. This is indeed how it was originally envisaged in 1968.
The systems-theoretic perspective on the functional organisation of the cell (as opposed
to its structural organisation) is motivated by the conviction that the way the compo-
nents of the cell are put together, whether we call it structure, order, or organisation, is
as material in its causal effects as matter itself. Objects and relations between objects
have identical ontological status: Life is a relation among molecules and not a property
of any molecule; Causation as the principle of explanation of change, is a relation, not
between things, but between changes of states of things.

3
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Figure 1.2: Illustration of the scope and remit of systems biology: taking genomics and bioinformatics
towards an understanding of functional activity.

Figure 1.2 illustrates the scope of systems biology. The most unfortunate misinterpre-
tation of systems biology is the association with high-throughput, whole-genome data
generation. Bioinformatics and Omics approaches are clearly important and comple-
mentary but they are also very different (Figure 1.3). In keywords one might summarise
the differences between mining and systems-approaches as follows:

The Mining Approach:

... pattern recognition

... association, correlation

... clustering, classification

The Systems Approach:

... principles (mechanisms) cell function a (spatio-temporal) dynamic process

... design of stimulus-response experiments

... modelling and simulation
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Figure 1.3: Comparison of the mining and systems approach.

1.1.1 Kinds of models

An important question biologists can ask is what mathematical modelling gives them;
why should they need mathematical models in studying pathways? The answer we give
is that biological function is realised through the dynamic principles of control, regula-
tion, and coordination; all of which are based on feedback mechanisms. Our strategy to
demonstrate the necessity of mathematical modelling and systems theory for cell biol-
ogy is as follows: We first look at the kind of data that are predominantly generated in
the life sciences and what type of analysis they require. This will lead us to statistical
modelling, testing for differences, correlation and regression. While statistical modelling
may not be very popular with experimentalists, it is widely accepted as useful in manag-
ing uncertainty. Using a simple three-component biochemical reaction network we show
that an understanding of cell function requires a different – system theoretic – conceptual
framework to encode causal entailment. We show that the behavior of relative simple
systems cannot be understood with conventional experiments. Just like statistical mod-
elling helps us to manage uncertainty, mathematical modelling of nonlinear dynamics
helps us to manage organised complexity.

Figure 1.4 summarises the material and arguments in the present section. We are
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1 Modelling Natural Systems

going to argue for a distinction between a data mining and a systems approach (indi-
cated by the horizontal split). For data mining, statistical modelling provides a basis
to manage uncertainty. The systems approach is in our conceptual framework related
to dynamic (kinetic) modelling of pathways. The systems approach is to manage com-
plexity arising from dynamic, nonlinear, feedback spatio-temporal interactions. In the
mining approach static, qualitative analyzes are prevalent, while the systems approach is
inherently dynamic and quantitative. A notable difference between the two approaches
is that in bioinformatics, mining biological databases, the analysis of ‘data rich’, while
for kinetic modelling of changes in protein concentrations there is, at present, for most
problems, a lack of sufficiently rich quantitative time series data.

Beginning with the column on the left in Figure 1.4, what is referred to as the ‘Model
Type’ describes the information that is sought from data. There are then in the columns
to the right formal (statistical/mathematical) representations, as well as quantitative and
qualitative visualisations of the models considered. Subsequent sections of the text will
guide us through this proposed hierarchy of models. The simplest model is trying to
identify the ‘presence’ of a gene, protein or metabolite. In the data this is reflected in
a ‘difference’ (between two samples, between a sample and an expected value). In prac-
tice, this type of analysis is linked to some ‘before/after’, ‘with or without’ treatment,
considering gene knock-outs, wild-type versus mutant analysis or treating a culture with
some perturbation or stimulus of some kind. The next level of analysis considers the
‘level’ and direction change of more than one variable. Observing the ‘covariation’ of two
variables we may find that one increases in level, while the other decreases. Informally,
this leads often to hypotheses about the inhibition or activation of components. Corre-
lation analysis provides the tools for a quantitative analysis of such directional analysis
but falls short of describing ‘functional relationships’. This will lead us to regression
models. We are going to distinguish three interpretations of these models, the first two
fitting a curve/plane through the data and thereby providing a summary of the data.
We then argue that for cell function, understood as dynamic processes another level of
causal, state-space modelling is required. Kinetic or differential equation models will be
most powerful with regard to predictions about the dynamics behind cell function but
the predictive power comes at a price. To construct such models from data, one requires
quantitative, sufficiently rich time series data – something that is very difficult to obtain
in systems biology. Despite its value for systems biology, we are going to discuss the
limitations of kinetic models, may they be based on differential equations or stochastic
representations. Since there is no such thing as a model free of assumptions, we are
going to pay attention to this issue.

1.1.1.1 Statistical modelling: Testing for differences

The most frequent task for data analysis in cell biology is to look for differences. Forstatistical models

example, we may look for the expression levels of a gene or protein, comparing wild-type
with mutant data or investigating the consequences of a gene knock-out. The data may
come from 2D gel, immunoblotting or microarray experiments. Let us associate the
outcomes of such comparative experiments with variables, that is quantities that can
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Figure 1.4: Hierarchy and classification of models.

vary. What follows is a presentation of standard textbook material. It is however helpful
to explicitly state the concepts and steps involved in managing uncertainty because it
demonstrates the level of statistical modelling that is required for event the simplest
experiments.

A good experimentalist will conduct several replicate experiments, as he would expect
non-biological variability in experimental data. In other words, even under nearly identi-
cal conditions the results of measurements are not exactly the same – there is a source of
some (hopefully manageable)uncertainty in the experimental system. This uncertainty
is frequently referred to as noise. What we like to do is to separate noise from the signal .

To ensure that this non-biological variability is small, compared to the biological
phenomenon or effect investigated, we repeat an experiment. Comparing two variables,
repeated measurements will then provide us with two sets of observations, referred to
as samples, denoted A and B, each containing n values. To deal with the unavoidable
uncertainty in experiments, we consider the two datasets as samples, representative of
some statistical population which we can formalise as ‘random variables’. In practice, we
would determine the ‘average value’ of a sample and consider this to be an estimate of
what we would ‘expect’ to observe if there was no noise. Even though this is frequently
forgotten, what we have done is to invoke a stochastic model. The ‘expected value’ mis
formally known as the mean value of a population. In probability theory a population
is modelled by a probability distribution. The values of a sample are thus drawn from
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Figure 1.5: Standard normal distribution for a probability law with zero mean and unit variance. The
values for x are in standard units (µ ± xσ). This density function serves as a model for
observations we make in experiments.

that distribution with a certain probability. The ‘average value’ referred to is formally
known as the sample mean

X̄ =
1

n

n∑

i=1

xi (1.1)

where xi are the individual values in a sample. What we have done is to model the
variability, assuming it follows a certain probability law. Technically, the sample mean
is thus an estimate of an idealised mean value of some probability distribution. This
distribution is formally associated with the technical term of a random variable. One
would say that the random variable generates a sample value according to that distri-
bution, i.e., with a certain probability. The probability distribution (‘probability law’)
is an abstract model for how a sample is generated.

For a very large number of practical cases, the distribution for random variables is
assumed to have the following ‘gaussian shape’normal distribution

p(x) =
1

σ
√

2π
e

−(x− µ)2

2σ2 (1.2)

where µ denotes the population mean, and σ2 is the population variance. Technically
speaking this bell-shaped curve Gaussian- or Normal Distribution is a probability density
function shown in Figure 1.5. The simplest normal distribution is the standard normal
distribution. It has zero mean and unit variance. As shown in Figure 1.5, the area
plus/minus one standard deviations from the mean captures 68.27% of the area. This
means that we would ‘expect’, on average, sampled values to be in that interval. Since the
total area under the curve equals 1, we can say that, the probability that an observation
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is found in the interval [−σ, σ] is 0.68. In general, for any interval [a, b] in X, the
probability P (a < x < b) is calculated by the area under the curve. It is useful to
remember some of the typical values for the normal distribution:

50% of the observations fall between µ± 0.674σ.

95% of the observations fall between µ± 1.960σ.

99% of the observations fall between µ± 2.576σ.

It is often convenient to ‘translate’ an arbitrary Gaussian distribution to standard units
by subtracting the mean and dividing by the standard deviation

z =
x− µ
σ

. (1.3)

Equation (1.2) is then replaced by the so called standard form:

p(z) =
1√
2π

e
−z2

2 , (1.4)

where the constant 1/(
√

2π) ensures that the area under the curve is equal to unity, which
simply means that the probability of ‘some’ (any) outcome is one. For our discussion
about the role of modelling in cell biology we notice that this density function is an
abstract model of experimental observations. We assume that the uncertainty in our data
can be described by this model. The sample statistics X̄, (1.1), and s2 are considered
estimates of the real population µ and σ2 respectively. The area of statistics is really
the real-world interface to probability theory: using statistics there is an (often implicit)
assumption of a stochastic/probabilitistic, that is, a theoretical, model. Rather than
indulging in more abstract discussion, let us return to our practical situation in which
we study gene or protein expression.

If the two sample mean values we calculated differ, what we may want to do is to argue
for a difference in the two expression levels of the biological variables under investigation.
The question is then how convince ourselves that the measured difference is ‘significant’,
knowing that the estimate of the mean value itself is varying, that is, subject to some
uncertainty? Our psychology makes it easy to convince ourselves of a difference but in
order to convince our peers in scientific journals we would have to resort to statistical
modelling, whether we like it, or not. This procedure is often less painful than it seems.
We start by noting that the sample mean is an estimate, subject to variations and
therefore is itself a random variable. Its variability is known and quantified as the
(estimated) standard error [SR94] standard error

SE =
s√
n
, where s =

√
n

n− 1
σ2
n , and σ2

n =
1

n

n∑

i=1

(xi − X̄)
2
.

Our sample means would in fact follow a t-distribution, which allows us to calculate a
95% confidence interval (CI)

95% CI(mean) = X̄ ±
(
t(n−1)(5%)× SE

)
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Figure 1.6: (a): Bar plot to compare differences in samples. (b): Time series measurements and linear
models fit to the data. The solid line is a linear regression model through all data points,
while the dashed line is a model fitted only through the last four data points and is used to
decide whether the system has reached a steady state.

using some statistical table of critical values for the t-statistic. The critical value
t(n−1)(5%) is the number of estimated standard errors S̄E away from the estimate of
the population mean X̄, within which the real mean value will be found 95 times out
of hundred, i.e., with probability 0.95. Our analysis so far could be visualised with a
barplot of the kind shown in Figure 1.6. As can be seen, while the two sample mean val-
ues are different, we cannot be certain that the difference is significant. The confidence
interval tells us that in a repeated experiment there is a ‘chance’ that the perceived
difference is not real. To improve on our analysis, we can employ what is called a t-
test . In general there are three possibilities to test differences with the t-test: testingt-test

the difference between a sample and an expected value (one-sample t-test), testing the
difference between two samples from the same population (paired t-test), and testing
the difference between two samples from two populations (two-sample t-test).

Using the two-sample2 t-test to decide whether the means of two sets of measurements,analysis of variance

sampled from two independent populations, are significantly different from each other,
we find an answer by following these steps

Step 1: The null-hypothesis is that the mean of the differences is not different from zero.
In other words, the two groups X and Y from which the samples were obtained
have the same mean.

Step 2: The test statistic t is given by the following formula:

t =
mean difference

standard error of difference
=
X̄ − Ȳ

SEd

2For more than two variables the ANOVA (analysis of variance) test is available.
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1.1 The Systems Biology Approach

The standard error of the difference SEd is more difficult to calculate because this
would involve comparing each member of the first population with each member
of the second. Assuming that the variance of both populations is the same, we can
estimate SEd using the following equation:

SEd =

√(
SEX

)2
+
(
SEY

)2
,

where SEX and SEY are the standard errors of the two populations.

Step 3: Calculate the significance probability P that the absolute value of the test
statistic would be equal to or greater than t if the null hypothesis were true. There
are nX + nY − 2 degrees of freedom, where nX and nY are the sizes of samples X
and Y .

Step 4: Using a statistical software package,

If P < 0.05, reject the null hypothesis, the sample means are significantly
different from each other.

If P ≥ 0.05, there is no evidence to reject the null hypothesis, the two sample
means are not significantly different from each other.

Step 5: The 95% confidence interval for the mean difference is given by

95% CI(difference) = X̄ − Ȳ ±
(
t(nX+nY −2)(5%)× SEd

)
.

Where are we then with our question why a molecular biologist should use mathemat-
ical modelling? In order to demonstrate that an experimentally determined difference in
expression levels is significant, we saw that one has to resort to statistical modelling. All
of the concepts are elementary level statistics. The question of why statistical modelling
is useful is usually not asked in this context. Instead it is accepted that statistical mod-
elling is part of the scientific method, specifically as a means to judge uncertainty. The
statistical models involved are in this case the probability distributions from which we
assume the samples were taken or which describe the variation in the sample means. The
sample mean, sample standard error etc. are then parameters of these models, which we
obtain from data. In other words, if you want to convince others of a significant differ-
ence that reflects the presence/absence or under-/overexpression of some gene/protein,
then one cannot avoid statistical modelling. The steps described in the following sections
will take us naturally to an example that demonstrates why for virtually all pathways,
we cannot avoid mathematical modelling of the dynamic interactions of the proteins in-
volved. In future, this part of cell biology research will embrace mathematical modelling
and simulations in the same way statistical modelling is used in analyzing non-temporal
data. As we shall see, it is simply not possible to understand the behavior of a nonlinear
dynamic system without mathematical modelling.
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1 Modelling Natural Systems

1.1.1.2 Associations and regression

With advancing measurement technologies, we are now in many experiments able not
only to detect the presence/absence of genes and proteins (testing differences) but we
may even be able to manipulate a variable to different levels and monitor changes in
others. Such experiment allow us to establish associations using the (product-moment)
correlation coefficientcorrelation

rx,y =

∑
i xiyi√∑
i x

2
i

∑
i y

2
i

.

The correlation coefficient is a value between −1 and 1, describing whether the sizes
of two variables are independent or whether they covary. A value of −1 means that if
one variable is large, the other is small and the other extreme of rx,y = +1 means that
if one variable is large the value of the other is as well. A correlation coefficient near
zero means that there is no association in the sizes of two variables. In other words,
using correlation analysis we can test whether the size of one variable coincides with the
level of another. As with the test for differences, the correlation coefficient is subject to
variations, which we could describe with a confidence interval. This can be looked up in
the literature.

Correlations do not imply causal entailment and in order to predict the level of one
variables as a function of others, we need a different conceptual framework that helps us
to establish lawful relations among variables. Towards this end regression models are a
frequently employed framework to analyze experimental data. Let us denote with y the
dependent variable, which we wish to predict on the basis of the independent variables
x1, x2, . . . , xm. Note that we now speak of a variable, i.e., a changeable quantity of
(natural) system. These variables can assume values, obtained through experiments.
A variable is thus a concept, say the ‘expression level’ of a gene or protein, and the
sampling or measurement gives us a value (or sample of values) for this variable. Using
small capitals to denote variables as well as sample values can be confusing, which is
why the statistical literature often uses capital letters to denote variables. This notation
is however not very common in systems theory where Y would be used to denote the
space of possible values the variable y can take. The difference of a sample value and a
variable should be clear from the context.

There are two main purposes of multiple regression analysis: One is to establish a lin-regression

ear prediction equation that will enable a better prediction of y than would be possible
by any single independent variable xj . The aim is to define a set of independent vari-
ables that predict a significant proportion of the variance in y. The second purpose of
multiple regression is to estimate and fit a structural model to ‘explain’ variation in the
observations of response variable y in terms of (“as a function of”) the independent re-
gressor variables xj . Such ‘functional relationship’ is formally expressed by a mapping3,
which we denote by f , such that for given values of x1, . . . , xm, these are “mapped into”

3In mathematics, a ‘mapping’ is more often called a ‘function’. Since this term can be confused with
other biological meanings, we use the term ‘mapping’ (which is formally correct and understood in
mathematics as well).
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1.1 The Systems Biology Approach

a value y. The mathematician’s notation for this is x1, . . . , xm 7→ y, which is the same
as writing

y = f(x1, . . . , xm) , (1.5)

which is read as “y is a function of x1, . . . , xm”. The notation can be further simplified
if we combine variables x1, . . . , xm in a vector x = (x1, . . . , xm). Let us denote by X and
Y the space of values the variables xj , respectively y can take. The mapping h is said to
establish a ‘relation’ between variables xj and variable y. An equivalent representation
of model (1.5) is then

f : X1 × · · · ×Xm → Y

(x1, . . . , xm) 7→ y = f(x1, . . . , xm) .

The symbol × is used to combine the value spaces of the variables x1 to xm. A model
(that is, a mapping) establishes therefore a rule assigning to each element (x1, . . . , xm)
of X1 × · · · ×Xm an element y in Y . While this notation may on the surface not look
very practical, it is however a rather compact representation of what science is all about:
establishing relations between system variables!

X1

X2

Y ŷpredicted

exp. data

Linear model:
ŷ = θ0 + θy1x1 + · · ·+ θymxm

Figure 1.7: Multiple regression fits a hyperplane through data points. This process is guided by an
objective function, which tries to minimise the prediction error. The objective function is
usually some least squares criterion, minimising the squared difference between the plane and
the experimental data point for all datapoints in the training sample.

In order to relate this model to a real system, we need to establish a link to experi-
mental data. The relationship between independent and dependent variables, expressed
through f , can be of a linear or nonlinear nature4. For mathematical convenience a lin-
ear relationship is preferable (but not necessarily realistic). Towards this end, the linear
multiple regression model , as a special case of (1.5), is given by the following equation linear regression

ŷ = θ0 + θy1x1 + θy2x2 + · · ·+ θymxm , (1.6)

4See also the discussion about the definition of nonlinearity on page 27 in Section 1.1.
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where the estimate of the dependent variable y is a function of m independent variables
x1, x2, . . . , xm. ŷ denotes a predicted value of y. The coefficients θyj denote the partial
regression coefficient , that is, these would be the regression coefficients of y on variable
xj , if all other variables could be held constant in the experiment. More generally,
the θ are referred to as model parameters. While variables are by definition quantities
that change, are expected to change in an experiment, one usually considers parameter
values to be constant. They are characterising the system’s behavior and should thus
not change with time. Considering only two independent variables and plotting data as
well as predictions of y as a function of x1 and x2, we see that the linear regression model
fits a plane through the data (Figure 1.7). Just as in the case of testing for differences in
simple comparative experiments, the estimation of parameter values from experimental
data is likely to involve some noise, which is often accounted for by adding a noise term
w to the regression model:

y = θ0 + θy1x1 + θy2x2 + · · ·+ θymxm + w

One can either think of w as being some measurement error/noise, linked to the instru-
ments, or we can think of w being the residual influence of independent variables that
are not among the x1 to xm chosen to represent the natural system (as predictors of
y). In either case, one considers w to be a random variable with a definite probability
distribution. This in turn means that y is a random variable as well. The model is
geometrically a surface that is fitted through the data. The estimation of parameter
values is thus a process by which we ‘fit’ a surface through the data points, so as to
minimise the prediction error. There are well established algorithms and tools available
for this purpose [Wol01].

1.1.1.3 Time series analysis

What we have so far assumed for all of our experiments is that measurements of gene/pro-
tein expression levels do not depend on the point in time they are taken. Many exper-
iments are however of a stimulus-response nature, that is, we induce a change in one
variable and observe the subsequent change in one or more other variables. For example,
in cell signalling we would stimulate a pathway by adding ligands to a culture and in
many other typical experiments we study the response to stress, including changes in pH
levels, changes in temperature or oxygen supply or modifying the level of small molecule
concentrations. In order to use any of the statistical tools described above, we must
be sure we can assume that in these before-and-after experiments the system is at an
initial point in time (say to) at rest (in a steady state) and following the stimulus (per-
turbation, stress) the system will eventually settle into another steady state. In other
words, we must demonstrate that our before-and-after measurements are independent of
time. This can only be done by a series of later measurements to test whether there is
no further change. Measurements at only two time points would therefore rarely suffice.
Consider the time series plot in Figure 1.6(b), the dashed straight line is fitted to the
data of the last four time points to test whether there is any significant change. The

14



1.1 The Systems Biology Approach

Time t

M
ea
su
re
m
en
t

(a)

Time t

M
ea
su
re
m
en
t

(b)

Figure 1.8: Cyclic and transient dynamics which cannot be studied by trend analysis.

model is given by the regression equation

ŷ(t) = θ0 + θ1t ,

where θ1 is the regression coefficient and θ0 determines the intercept of the straight line
with the y-axis. If the slope is close to zero, we could argue that there is no significant
further change to variable y, the system would be in a steady-state. From the given
time series, using only the last few time points to test whether the system has reached
a steady state, we used the regression model to account for some of the variation of y in
terms of variation in the independent variable, which is here time t. As for the t-tests we
can now determine the standard errors of regression statistics to test for significance. We
do not pursue this further as this is a standard technique in the literature (e.g. [SR94]).

Studying cell functions, including cell growth, cell differentiation, apoptosis and the
cell cycle, we notice that these are dynamic processes where for an understanding of the
principles that underly observed data time, respectively change matters. The simplest
approach to accept an influence of time is to consider a simple trend model. This leads
us to the second use of a regression model, illustrated by the solid line in the plot on
the right in Figure 1.6(b). We fitted a curve (straight line) through the time series to
test whether there is a temporal trend or whether the system has reached a steady state
(in which case time would not matter). Such simple trend-model will however only be
adequate for rather simple systems and will have little explanatory value. The values of
the dependent variable y are only explained in terms of the independent variable, time
t. In Figure 1.8 we see two typical dynamic responses which would not sufficiently well
modelled by the straight line regression model. There are now two possible avenues to
proceed: We introduce a forecasting model in which the current value of y at time t
depends on past values of y and secondly we introduce a state-space model based on
rate equation and state-variables (next section).

If time series observations are available data from the past should contain information
about the future. Let y(t) denote the value of the variable of interest in period t. A
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forecast for the period t+ h made at the end of period t, has the formforecasting

ŷ(t+ h) = f
(
y(t), y(t− 1), . . .

)

where f(·) denotes a suitable (linear or nonlinear) functional relationship (mapping)
that explains y(t + h) in terms of past values of y. For virtually all realistic cases, the
behavior our system under consideration will not be determined by one gene or protein
but many others. (Additional variables may be introduced by considering the activation
state of proteins). Based on a multiple time series, yj(t), j = 1, . . . , q, a forecast of the
j-th variable is then expressed as

ŷj(t+ h) = fj
(
y1(t), . . . , yq(t), y1(t− 1), . . . , yq(t− 1), . . .

)
. (1.7)

The aim of modelling is then to determine suitable mappings f1, . . . , fq. Let us conclude
this short introduction to forecasting by stating the standard conceptual framework for
time series analysis. Assuming a prediction horizon of h = 1 time steps and linear
mappings, we get

ŷ(t+ 1) = θ0 + θ1y(t) + θ2y(t− 1) + · · ·+ θky(t− k + 1) , (1.8)

where k ≤ q is the chosen depth of past values that are considered sufficient for predic-
tions of y at time t + 1. Because the predictions of variables are based on their past
values, these models are refereed to as autoregressive models [Lüt91]. The resemblance
of this time series model with the multiple regression model (1.6) indicates the kind of
methods that are employed to estimate parameters of such models.

The formalism above may appear to be a deterministic representation but can also be
interpreted as a q-dimensional (multivariate or vector) stochastic process

y : I × S → Y1 × · · · × Yq ,

where I is an index set (e.g. the set of all integers or positive integers) such that for
each fixed t ∈ I, y(t, s) is a q-dimensional vector of random variables, denoted by yt. S
denotes the set of all elementary random events and s is an element of S, i.e. s ∈ S.
The underlying probability space is usually not mentioned. A realisation of a (vector)
stochastic process is a sequence (of vectors) yt(s), t ∈ I, for a fixed s. A realisation of a
stochastic process is thus a mapping S → Y1 × · · · × Yq where t 7→ yt(s). A time series,
generated by this stochastic process is usually denoted y1, y2, . . ., leaving out the argu-
ments in the brackets. Referring to the established literature (e.g. [KS03]) one notices
that in successful approaches either the nonlinearity of the natural system under con-
sideration to be a small perturbation of an essentially linear stochastic process, or they
regard the stochastic element as a small ‘contamination’ of an essentially deterministic
nonlinear process. Methods for genuinely nonlinear stochastic processes are not well
established.
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1.1.1.4 Kinetic modelling

The general regression model (1.6) has three possible uses/interpretations [Fre97]:

(i) A representation or summary of a dataset.

(ii) To predict the value of y from x1, . . . , xm.

(iii) To predict the value of y as a causal consequence of changes in xj .

For the first use, equation (1.6) describes the expected value of y for a given data set
(assuming a linear relationship amongst x1, . . . , xm and using a least-squares criterion
for fitting this equation to the data). For this use of (1.6) it is not necessary to interpret
variables xj as causes of y. The second possible use of the regression model is to predict
values of y, based on data that were not included in the dataset used to estimate the
parameter values. Here again no causal link between the xj and y is required but
instead it is necessary to assume the process, which generates the data, is time-invariant
or stationary in space and time. The first two interpretations are a data fitting exercise.
The third use and interpretation of (1.6) does assume a causal link between independent
and dependent variables. Causal inference in this context, means that it is assumed
that a value of y is the result or consequence of changes in xj . Causal entailment does
therefore imply some form of intervention (stimulus, perturbation), the consequence of
which is a change (in space and/or time).

Autoregressive models (1.7) and (1.8) may be suitable for time series forecasting but
the predictions are not based on equations that encode the principles or mechanisms of a
system which generate the data we observe in experiments. In other words, these mod-
els have little explanatory value, they are not suitable if the structure of the equations
should reflect our hypothesis about the nature of the biological interactions among sys-
tem variables. In cell biology we are interested in interactions, in particular regulatory
mechanisms, which leads us to state-space models. The concept of a state, denoted with
the letter x, of a system assumes that the behavior of the system at any point in time
can be encapsulated by a set of states, together with some transition rules which specify
how the system proceeds from one state to another (over time). A dynamic system is
then considered to have inputs or control variables that provide a stimulus (denoted
with the letter u) and there are observable output or response variables. The outputs
of the system, denoted by the letter y, may be identical to the state variables but may
not. For example, in cell signalling the activated and inactivated form of a protein would
be considered as two separate state variables, x1 and x2. However, in immunoblotting
experiments one may only be able to measure the total concentration, i.e., the sum of the
two state variables. This situation can then conveniently represented by the y = x1 +x2.

Causation manifests itself only through changes in states. What we require is a formal- causation

ism in which changes are encoded, naturally leading us to the formulation of differential
(rate) equations:

d

dt
xi = fi

(
x1(t), . . . , xn(t);u(t)

)

y(t) = h
(
x1(t), . . . , xn(t)

)
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where the operator d/dt denotes the rate of change of system variable xi, which is
a function of the values of variables xj at time t. In this formal representation, u,
y could denote vectors, comprising several output variables and h is a mapping that
relates state-variables with measured outputs. Rather than describing this mathematical
formalism in greater detail, we consider a practical example from which it arises. To keep
things simple, we assume a network of biochemical reactions (i.e., a pathway) with one
independent input variable S (providing the stimulus to the system), one internal state-
variable E and one output or response variable R. We know/hypothesise that this system
has generated the time series data in Figure 1.9. To begin with we do not know the
structure of the biochemical network under consideration but have available experimental
data sets of the kind shown in Figure 1.9. Our example is going to demonstrate that
a relatively simple system can display rather complex behavior, which we would not
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Figure 1.9: (a): Response of two different stimuli, the first subcritical and the second supercritical. (b):
Relaxation into the steady state for different initial response signals Ro. (c): Response to a
supercritical signal S = 14 of different duration.
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be able to understand without mathematical modelling. Say we are conducting a first
experiments in which we stimulate the system at a level of S = 8. The stimulus is
kept constant until t = 15, when it is set to a level of S = 0. The response is shown
as a dashed time curve in the plot in Figure 1.9(a). Looking at this simple time plot
a modeler could suspect a relatively simple linear model. The nonlinear nature of the
underlying system surprises us however if we stimulate the system again at a level of
S = 14 (shown as the solid line time plot in the same figure). What appears surprising
here is not only the curve that describes the transient behavior of the system into a
new steady state but when the stimulus is removed the system does not return to its
previous steady state: This system is bistable. How can we explain these experimental
observations? One might suspect that if we are dealing with one and not two systems,
that the system undergoes a change, that the kind of proteins involved is different or
that the nature of interactions is altered. As we shall see, it is possible for is one and
the same system, one set of equations with a set of fixed parameter values, to display
such behavior.

Consider the desirable situation with a particularly curious experimentalist and a lot
of funding for experiments who is the position to conduct several other experiments on
our system. As shown in the plots in Figure 1.9(c), taking one level of stimulus but
considering different initial conditions for the response variable R, we obverse that the
experimentally observed behavior depends on the initial conditions as well. Finally, con-
ducting experiments with different durations for the stimulus, we again observe a range
of curves – all of which are generated by exactly the same system. All simulations shown
in Figure 1.9 were generated by one single equation and one fixed set of parameters. The
message of this example is that if we are to understand the interactions of this (rather
simple) three-component system we require a model that encodes hypotheses about the
nature of the interactions of the system variables. In our example, a positive feedback
loop is responsible for the bistable behavior. A diagram of the system illustrates this:

R

S

E∗ E

In this system, an increase in variable R activates E (say through phosphorylation).
E in turn contributes towards the synthesis of R, which means that there is a positive
feedback loop in the system. Following the drawing of a pathway map, the next step is
to devise a model. Without explaining the details (described later in the text) the rate
equation for this system is

d

dt
R(t) = k0E

∗(R) + k1S(t)− k2R(t)

where E∗(R) describes the activation of enzyme E and for which we have chosen a math-
ematical formulation introduced by Albert Goldbeter and Daniel A. Koshland [GKJ81].
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Figure 1.10: Bistable mutual activation switch. (a): Comparison of the rate of degradation (solid line)
and the rate of production for different signal strengths (dashed lines). (b): Signal-response
curve or bifurcation plot.

We have omitted this equation since the form of this expression does not matter for
our discussion. To complete our story, mathematical tools from dynamic systems the-
ory provide us with techniques to devise such models and analyze (or simulate) their
behavior. The rate equation for R(t) consists of two parts: the rate of production,
k0E

∗(R) + k1S(t), and degradation k2R(t). Plotting these parts separately we obtain
the plot shown on in Figure 1.10(a). The intersections of these two curves are the steady-
states of the system, in which the rate of degradation and the rate of production are
balanced. As can be seen, the number of steady states of the system varies for different
levels of stimulus. The plot in Figure 1.10(b) shows the stimulus-response curve. For
each dot in this curve a stimulus was applied and the value of R in steady state was
determined. This pictures shows us the critical level of the stimulus at which the system
displays its switching behavior. Once the system has reached the upper branch it does
not return to lower levels of R even if S returns to zero. Such graphical tool to investigate
the behavior of nonlinear dynamic systems is referred to as a bifurcation plot.

If a molecular biologist is given sufficient research funding to conduct all experiments
necessary to obtain the time series shown in Figure 1.9, would he be able to understand
the system’s behavior without mathematical modelling? Our example shows that path-
ways involved in realising the cell functions are nonlinear systems in which variables
interact dynamically. If we believe that such processes as cell differentiation, prolifera-
tion and apoptosis are relevant for an understanding of diseases, then we must consider
these as dynamic systems. A consequence of our analysis is that systems biology ex-
periments are far more time consuming and expensive than those we have considered
at the beginning of our discussion. Furthermore, whether we like it or not, nonlinear
(dynamic) systems theory is going to become part of cell biology, sooner or later.
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Formal System System Properties

Natural System Biological Attributes

deduction

interpretationmodeling (abstraction)

observation

Figure 1.11: Mathematical modelling is a process by which we establish an abstract representation of a
natural system. For a model to be a valid representation, it is necessary to relate it with
observable attributes of a biological system. Diagram adapted from [Mes68].

1.1.2 Systems Theory

The definition of a system as a set of objects with relations defined among those objects
is not quite a proper mathematical expression and will require refinement. Instead of
focussing on things, we are going to emphasise processes5. The two things are not process

necessarily different: The existence or recognition of something as an object is at the
same time a process. Appearances or phenomena are entities equivalent to the act by
which they are apprehended. Likewise, a set is equivalent to the process or mapping
that identifies elements of a set. A thing is identified by distinguishing it from something
else.

We are going to distinguish two kinds of systems: a natural system, which is an
aspect of the phenomenal world under consideration and a formal system, which is the
mathematical framework employed to represent the natural system (Figure 1.11). A
formal system, theory or mathematical model is a collection of concepts. Establishing
relationships between concepts is process of modelling . Mathematical modelling is the modelling

process by which we interpret a natural system using a mathematical model. Establishing
the validity or truth of concepts requires the a priori concepts of space and time. This
may not be obvious but if we, for example, consider the concept of a derivative, we find
that any explanation of this using pen, paper or words, will use the ideas of movement,
change, or rate of change. A mathematical model, or model for short, is thus a realisation
of the formal system employed. It should not escape our notice that the process of
reasoning is a system itself. Since the world of objects is conditioned on the subject,
science is not dealing with an independent reality. It is therefore desirable for us to
look out for a conceptual framework in which not only to represent natural and formal
systems but also the process of modelling itself. I believe this may be found in the
context of category theory.

As simple as our definition of a system, as a set of objects with relations among these,
may appear, since mathematics can be reduced to set-theoretic principles, our definition
of a system is in fact as rich as the field of mathematics itself. Since we are going to derive
every aspect of our understanding from this pair of a set and relation, we also realise the
necessity or a priori nature of mathematics to establish truth in the phenomenal world.

5A process implies succession and so we are going to describe a dynamic system as a process, i.e., a
sequence of events.
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1 Modelling Natural Systems

That there is something else than the world of phenomena or “Wirklichkeit” which
we can experience, can be seen from the fact that every argument we can establish
has to have an absolute minimum of one premise and one rule of procedure, e.g. IF p,
THEN q, before it can begin, and therefore begin to be an argument at all. So every
argument has to rest on at least two undemonstrated assumptions, for no argument can
establish either the truth of its own premises or the validity of the rules by which itself
proceeds. We are therefore limited by the third class of objects that forms one of the
roots for Schopenhauer’s principle of sufficient reason. The world as we know it, is our
interpretation of the observable facts in the light of the theories we invent. The world
of objects is thus conditioned by the subject: there is something that is grasped and
something else that grasps it. In line with Kant and Schopenhauer, the entire world of
phenomena or appearances is the world of representation in time and space, connected
by causality. The world of phenomena is the self-objectification of the noumena. Thenoumena

noumena is what things are in themselves, or from our systems perspective, things
in themselves are understood as things apart from relation. The existence of things
independently of human representation or cognition, the unknowability of things, is the
non-relational aspect of things. Schopenhauer described this as will. Before we further
enter the slippery territory of philosophical arguments, we return to our definition of a
system as a set of objects with relations, and refine it in mathematical terms.

With the definitions of sets and relations at hand, we rewrite our definition of a generalgeneral system

system6, which is now considered as a relation on variables/indicators/items defined in
set theoretic terms

S ⊂ ×{Oj} , (1.9)

or equivalently

S ⊂ O1 ×O2 × · · · ,
where the curly brackets denote a list or set, j = 1, 2, . . . and × denotes the so called
Cartesian product, that is, a combination of sets. A complex system is a relation oncomplex system

systems/subsystems, i.e.,

S ⊂ ×{Sj} ,
such that there is a distinct behavior of the complex system while the integrity of the
subsystem is preserved. The characteristics of a complex system include multilevelness
and hierarchies. This definition of a complex system is more specific than the usual
interpretation of molecular and cell-systems as being complex due to the fact that usually
we are dealing with a large number of variables and nonlinear relationships among those.
More generally we consider complexity

• a property of an encoding, i.e., the number of variables in a model.

• an attribute of the natural system under consideration, e.g., the connectivity, non-
linearity of relationships.

6The notion of a general system is due to Mihajlo Mesarović, who developed the most general and
most complete conceptual framework for general systems [MT75]. For a comprehensive overview of
systems theory see [Kli91].
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1.1 The Systems Biology Approach

• related to our ability to interact with the system, to observe it, to make measure-
ment or generate experimental data.

A mathematical model is a realisation of a formal system, an abstract representation
of some aspect of the real world which is called the natural system under consideration.
The process of modelling identifies and defines the variables and relationships among modelling

them. For our purposes, a mathematical model is subsequently identified with a set of
parametric equations. The process of simulation is an ‘execution’ of, or ‘experiment’ simulation

with a model. For example, in case of differential equations models, a simulation refers
to numerical integration, as the process of finding a solution to the set of equations. In
case of mathematical models that use probabilities rather than direct values, a simulation
run generates a single realisation of the stochastic process.

The cell is a complex system and in studying the cell, we are considering processes
and components. The components interact through or in processes to generate other
components. We define the organisation of a system as the pattern or configuration organisation

of processes. Pathways are therefore an example of describing organisation in cells.
The structure of a system is the specific embodiment (implementation) of processes structure

into material components. In modelling there is therefore a duality between abstract
concepts and physical entities. Even the most basic concepts by which we make the
world plausible, ‘space’ and ‘time’ have no material embodiment and the coexistence
between the physical or material real and the mathematical or abstract should not be
a real problem. In the present text we are trying to exercise this exciting aspect of
modelling in the context of cell signalling, where the interactions of molecules lead to
changes in protein concentrations, which define a signal that in turn carries or transduces
information. We are going to consider two kinds of dynamics: intracellular dynamics and
intercellular dynamics. Intracellular dynamics are the processes by which the genome inter-/intra-cellular

dynamicsand proteome act, react and interact within the context of the cell so as to bring about
its bio-physical structure and to realise its function (role) in a larger whole. Intercellular
dynamics are the interactions of cells to realise higher levels of structural organisation,
including tissue or organs. It is obvious that both concepts are tightly coupled. Each
cell has a copy of the entire genome and there are processes that run quite independently
of other cells, cell-cell interactions are necessary for an individual cell to realise its role
in a larger whole that is some tissue, an organ or the entire organism.

The key to successful modelling is that there has to be some correspondence between
the causal structure of the natural system and the formal system. The decoding of a
natural system into a mathematical model needs to be validated through an encoding
that allows predictions about the natural system. In case of molecular systems mod-
elling is hampered by complexity, and observability, i.e., the difficulties in making direct
observations and measurements. Both, the complexity and observability of such systems
lead to uncertainty.

With all these abstract formalisms, one may ask what the practical use of systems
theory is. Although not simple, once it is mastered systems theory, mathematical mod-
elling and simulation of dynamic systems provides a conceptual framework in which to
discuss the following questions:
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1 Modelling Natural Systems

What is the influence inputs have on the system?

What do the outputs tell about the system?

What are the consequences of differences in the model structure?

More specifically, related to signal transduction pathways we wish to gain a better un-
derstanding of the following questions:

How does the physical interaction of molecules create signals, store and transmit
information?

How are signals integrated and turned into decisions?

What is the role of space, location and translocation?

How are decisions, actions and reactions of cells integrated into higher levels of
structure, organisation and response pattern?

This discussion can proceed at different levels. An abstract but also most general
discussion of properties of general systems, including issue such as coordination, hierar-
chies, multilevelness etc. can be conducted in the context of (1.9) [MT75]. We hereafter
follow a different strategy. We first argue the case for differential equations as a suitable
approach to represent signal transduction pathways and thereby concentrate on a special
case of the general system (1.9). Once we have shown that nonlinear state-space mod-
els are an appropriate modelling framework, we generalise our analysis of a particular
pathway model to a class of pathways.

Let us first demonstrate how we get from the formal definition of a system as a relation
of objects to some representation of dynamic systems. The purpose is not to frighten
the reader with complicated mathematics but to show that there is a general systems
theory which generalises many of the models that have been published in systems biology.
We are going to lower the level of abstraction immediately after this short excursion.
Beginning with the general system

S ⊂ O1 ×O2 × · · · ,

when (sub)systems interact they do this through defined interfaces, which may refer
to as inputs and outputs. In cell signalling, membrane receptors suggest themselves as
inputs that receive a stimulus in form of ligands binding to them. The expression level
of a target gene may be defined as the response, respectively output of the pathway as
a system. More formally, a signal transduction pathway may thus be described as the
system

S ⊆ Ω× Γ ,

where Ω and Γ related to the stimulus and response respectively. Most important for
our philosophy of systems biology is that we understand a pathway not as a static graph
but as a network of biochemical reactions, that is, a dynamic system which establishes a
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1.1 The Systems Biology Approach

causal connection between stimulus and response. This means that we define a pathway
formally as the mapping

σ : Ω → Γ

ω 7→ γ

where a stimulus ω (respectively response γ) is defined as a temporal sequence of events

Ω = {ω : I → U} , Γ = {γ : I → Y } .

At any point in time t ∈ I, our system S receives a stimulus u(t) to which it responds at
time t with y(t). We assume that stimuli and responses take their values from constant
sets U respectively Y .

A key concept in the systems biological approach to cell signalling is that of a signal
ω : ]t0, t1] → U acting on the system between time t0 and t1, generating a response
γ : ]t0, t1] → Y . In general, we denote the set of acceptable stimuli in terms of the
mapping

ω : I → U ,

and for the response

γ : I → Y ,

where for say concentrations we assume that data are described by positive real numbers
such that U ⊆ Rm+ and Y ⊆ Rq+. For m = 1 and q = 1 the vector-valued notation reduces
to a single signal or time series. If I = Z+ we have a discrete-time system model, which
corresponds to the collection of experimental data, and in which case we could consider
Ω and Γ as finite-dimensional vector spaces, encoding sequences of events

ω =
(
u(0), u(1), . . .

)
,

γ =
(
y(1), y(2), . . .

)
.

In modelling it often makes sense to assume a signal that is continuous in value and time.
For I = R+ a continuous-time system, with ω : ]t1, t2] → U in Ω and γ : ]t2, t3] → Y in
Γ. The entire sets of stimuli and responses that the cell can realise form the objects Ω
and Γ of our definition of a stimulus-response system.

The description of a pathway σ as a mapping that takes an input sequence to a
response pattern, is an external description, without consideration for the interactions
that generate this input-output behavior. Extending our abstract model with a state-
space X, we have the following state-space representation:

Ω Γ

X

σ

g
h

Dynamic pathway modelling is the process in which we identify and characterise the
mathematical objects Ω, Γ, X as well as the mappings that put these objects in relation
to another. At any point in time, the behavior of the system is thus encapsulated by
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1 Modelling Natural Systems

the state x ∈ X. The temporal evolution of the state, x(t), implies the existence of a
state-transition map

ϕ : I × I ×X × Ω → X

whose value is the state x(t) = ϕ(t; t0, x, ω), that is, an element of the state-space X.
In this setting, the state x at time t arises from an initial state x0 = x(t0) ∈ X at
some initial time t0 ∈ I under the action of stimulus ω ∈ Ω. The graph of ϕ in I ×X,
called the trajectory and describes the temporal evolution of the system. If we are to
investigate a pathway or cell function in experiments we assume that, at least for the
experiment, the system is time invariant, i.e.,

ϕ(t; t0, x, ω) = ϕ(t+ s; t0 + s, x, ω′)

for all s ∈ I. A dynamical system is continuous-time if I is a set of real numbers
and discrete-time if I are integers. S is finite dimensional if X is a finite-dimensional
space and we speak of a finite-state system if X is a finite set. A finite system is more
commonly known as a automaton.

Depending on the nature of the biological process under consideration but also mo-
tivated by personal preference and mathematical convenience, one can choose among a
number formalisms by which to translate biological understanding into a mathematical
model. To name but a few, we can we can distinguish between mass-action-, power-
law or S-system-, and Michaelis-Menten models that are based on differential equations.
The computer scientist tend to find the setting of automata theory, machines and formal
languages (π-calculus, Petri-nets, process algebras) more preferable. For any formalism
mentioned, one question is always the role or relevance of randomness. If the answer is
that random fluctuations cannot be ignored, we are led to stochastic models, based on
Markov-processes, Langevin-, or Chapman-Kolmogorov equations.

By far the most frequently employed approach is to represent temporal changes of
protein concentrations as differential (rate) equations

ẋ = V
(
x(t), u(t)

)

y(t) = h
(
x(t)

)

Here ẋ describes the rate of change in state vector x = (x1, . . . , xn) at time t. Here V
is again a map that in the context of dynamic systems theory is referred to as a vector
field. The map h describes the observations we make on the states of the system. A
special case of the above representation is a class of nonlinear systems models for which
there exists some experience

ẋ = f
(
x(t)

)
+

m∑

i=1

gi
(
x(t)

)
ui(t) , yj = hj

(
x(t)

)
, 1 ≤ j ≤ q .

Variable u is considered a state-independent external ‘control’-input to the system. Not
surprisingly, most of the research around this formalism has emerged from the control
engineering community.
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1.1 The Systems Biology Approach

We are going to consider a dynamic systems approach to understand inter- and in-
tracellular processes. To identify a system’s behavior we require stimulus-response time
course data. For most molecular and cell biological experiments it is not straightforward
to generate sufficiently rich and quantitative data sets that satisfy the theoretician. The
richest set of system-theoretic methods is available for time-invariant linear systems. time-invariant

systemsTime invariance means that although the system variables change over time, the rela-
tionships among the variables do not. If we were to repeat an experiment the same
mathematical relationships would be identified. The definition of linearity deserves at- linearity

tention as different scientific communities have different interpretations. For example,
the standard model of a MAP kinase pathway is a linear cascade of three modules (cf.
Figures 4.33 and 4.34). Linearity in this context refers to a series connection of mod-
ules. Any feedback loop branching of one of these modules and influencing a variable
further up in the pathway is occasionally described as nonlinear feedback. This is rather
unfortunate and should be avoided. Let yt(θ, ut) be the output of the model7 with pa-
rameters θ at time t and which is due to the input u(τ), which has been applied from
initial conditions between time zero to t, 0 ≤ τ ≤ t, t ∈ R+. A model is said to be linear
in its inputs (LI) if the outputs satisfy the superposition principle with respect to the
inputs, i.e., if

∀(α, β) ∈ R2, yt
(
θ, αu1(t) + βu2(t)

)
= αyt

(
θ, u1(t)

)
+ βyt

(
θ, u2(t)

)
. (1.10)

A system is thus nonlinear if the output from the system is not proportional to the
input. If we draw a graph of the output against the input on the abscissa, a linear
system would define a straight line while a nonlinear system would diverge from the
straight line. While this definition is common in engineering and applied mathematics,
statisticians usually refer to a different kind of linearity: A model is said to be linear
in its parameters (LP) if its outputs satisfy the following superposition principle with
respect to its parameters:

∀(α, β) ∈ R2, yt
(
αθ1 + βθ2, u(t)

)
= αyt

(
θ1, u(t)

)
+ βyt

(
θ2, u(t)

)
. (1.11)

For example, the simple straight line equation y = θ1x+ θ2 is LI and LP. We are going
to return to a discussion of the difference between linear and nonlinear systems on page
224.

If S is linear and time invariant, we can express the relationship between dependent
and independent variables by the following equation:

y(t) =

t−1∑

k=0

Θt−ku(k), t ∈ T . (1.12)

where Θt ∈ Rp×m denote the coefficient matrices which characterise the process and we
have assumed a time-discrete system, i.e., T ⊂ Z+. For each t, (1.12) specifies a set of q

7Note that we slipped the time dependence from the brackets, y(θ, u(t), t) into the subscript yt. This
is to simplify the notation with no other meaning.
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Figure 1.12: Sampling and approximation of signals. (a): Experimental data define only points and in
biological experiments measurements are frequently taken at equidistant time points. (b):
The common representation of data as a line plot implies a model of linear interpolation,
ignoring any possible random fluctuations. (c): For system identification and parameter
estimation, it is usually assumed that measurements are sampled at equally spaced intervals.
(d): In some cases it may be feasible to fit a curve through the points and model changes
with a continuous-time model. It could however be the case that the dip at the third time
point is not an outlier but rather an important biological aspect. Which assumption is
correct depends on the context in which the data are generated.

equations in q ·m unknowns of the matrix Θt. We find that for the linear system there
exist a one-to-one correspondence:

S ∼= {Θ1,Θ2,Θ3, . . .} .

For the example of a linear discrete time-invariant system, the relationship between
input u(t) and output y(t) is linear. Let U ⊂ Rm, Y ⊂ Rq, Θ(t) ∈ Rp×m, the system
can then also be represented in a canonical form using matrices F ∈ Rn×n, G ∈ Rn×m
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1.1 The Systems Biology Approach

and H ∈ Rq×n
Θ(t) = HF t−1G t = 1, 2, . . .

The problem of modelling is then to define the dimension of X, for which the sequence
Θ1,Θ2, . . . is uniquely determined; leading to the discrete-time state-space model8:

x(t+ 1) = Fx(t) +Gu(t)

y(t) = Hx(t) x(t0) = x0 .

Given the present state x ∈ X defined by x(t) and input u(t) ∈ U the map ϕ determines
the next state and for every state x, the output map h determines an output y(t). It is
usually assumed9 that X is equal to or a subset of the Euclidean space of real numbers,
Rn = R1 × · · · × Rn, and thereby any state can be represented as a point in X (see
page 26). Note that the concept of state is a general notion, defining a set of n state-
variables such that the knowledge of these variables at some initial point in time t = t0
together with the knowledge of the input for t ≥ t0 completely determines the behavior
of the system for any time t ≥ t0. State variables need not be physically measurable
or observable quantities. The state-space representation is well established and forms
the basis for automata theory and control theory. An automaton is a discrete-time automaton

system with finite input and output sets U and Y , respectively. We say the automata is
finite if X is a finite set10. Automata theory has been used to model numerous systems
including gene networks. However, we note that the finiteness of spaces, in which the
inputs and outputs take their values, may require a quantisation of measurements and
discretisation. With typically short time series and a lack of replicate measurements this
may imply an unreasonable loss of information.

t

+

+
+

+

+{“1”

{“0”

0

1

t

Figure 1.13: Quantisation of signals. Using a threshold on the amplitude of a signal, we can convert the
data into a binary signal suitable for modelling boolean networks.

The state-space representation introduced above may look fairly general but there are
more general cases to consider. For example, consider the state-space system

ẋ(t) = V
(
x(t), u(t), w(t), t

)
, x(t0) = x0

y(t) = h
(
x(t), u(t),m(t), t

)
,

(1.13)

8Any control engineering textbook will provide further reading on properties of such systems, and how
the matrices can be identified from experimental data.

9There are a number of mathematical requirements associated with the definitions and reasoning in this
section. We leave these details for later chapters and refer to the extensive literature in mathematical
systems and control theory, including for example [Son98], [Nv90], [Isi89] and [Bel90].

10The state of a linear dynamic system, continuous-time or discrete-time evolves in Rn, whereas the
state of an automaton resides in a finite set of symbols.

29



1 Modelling Natural Systems

where V can be changing with time and {m(t)}, {w(t)} are stochastic processes. Repre-
sentation (1.13) is usually too general for a detailed mathematical analysis of a specific
model. The first step to a tractable model is by assuming that φ is not dependent on
time, i.e., the system is autonomous11 or time-invariantautonomous systems

ẋ(t) = V
(
x(t), u(t)

)
.

Let us look at an example of the system above. In subsequent chapters, we are consid-
ering molecular populations that change as the result of chemical reactions. Under the
hypotheses that all elementary reactions obey first-order kinetics and the compartment
in which the reaction takes place has a constant temperature, the generalised mass action
model is given by the set of coupled equations

dx1

dt
= −θ1x1 + θ2x2

dx2

dt
= θ1x1 − (θ2 + θ3)x2

dx3

dt
= θ3x2 .

The structure of this mathematical model is given by prior knowledge or hypotheses
about the system. The parameters θi are kinetic rate constants of the elementary re-
actions, and the state variables x1, x2, and x3 are the concentrations of the reacting
chemical species. All of them therefore have a precise meaning and interpretation12.
These kind of models, describing observed changes, are therefore also referred to as phe-
nomenological or knowledge-based models. Identifying the parameters of such a modelphenomenological

models from experimental data is called parameter estimation , and for nonlinear differential
equations relies on sophisticated statistical tools. The decision of a model structure and
parameter estimation, together are referred to as system identification.

One of the question that is going to arise is how we deal with stochasticity or ran-
domness. When we are using differential equations we not arguing that the underlying
physical process is deterministic. One interpretation is that we describe the mean value
of what is intrinsically a random process, arising from the interactions of molecules in
the cell. There may however be situations in which we model a process involving only
a relative small number of molecules in a larger volume. In this case we may prefer
a stochastic model. Here again we have a selection of modelling approaches to choose
from. Randomness of the states leads to stochastic differential equations:stochastic differential

equation

ẋ = V
(
x(t), w(t)

)
,

11The term autonomous is more frequently used in the context of differential equations, while time-
invariance is more commonly used in the context of applications of differential equations to natural
systems.

12In subsequent chapters we are going to use a different notation for biochemical reactions. The one
based on xi is commonly used in applied mathematics and in the context of differential equations.
In biochemistry capital letters and square brackets, [Si], are used to denote the concentration of a
molecular species Si.
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If w(t) is considered to a Gaussian process this representation is called Langevin equation:

ẋ = V
(
x(t)

)
+G

(
x(t)

)
w(t) ,

where G is a matrix. We are not going to pursue this approach further but will look at
Markov models and stochastic master equations in later chapters.

There are however also random fluctuations in measurements that are not related to
the nature of molecular interactions but have to do the measurement itself. Adding an
error model for such measurement noise m(t) in the observation of the system gives us measurement noise

ẋ(t) = V
(
x(t), u(t)

)
,

y(t) = h
(
x(t), u(t)

)
+m(t) ,

(1.14)

For measurement noise one usually assumes a Gaussian process {m(t)}, for which the
joint probability distribution of {m(t)} is multivariate normal. We are not going to
consider such noise models. The reason is that at present it is rather difficult to validate
such models with experimental data. This is however not to say that the consequences
of perturbations to chosen parameter values are not an important part of the modelling
process. To the contrary, an analysis of the sensitivity of the system’s behavior on
parameter variations is an important aspect of systems biology.

1.1.3 Differential equations

While the physical object we focus on is the cell, the most fundamental process we
consider is that of a biochemical reaction. In these reactions the concentration of a
molecular species, referred to as the substrate, is changed. We are going to describe
networks of coupled reactions with the help of equations. As an example let us consider
the frequently occurring Michaelis-Menten equation:

V =
Vmax · S
KM + S

, (1.15)

where the variable on the left-hand side of the equation is the dependent variable or
‘output’. Vmax and KM are fixed numbers, i.e., constants or parameters, while S de-
notes the concentrations of the substrate and is our independent variable. A graphical
representation of equation (1.15) is shown in Figure 1.14. This equation, which is widely
used in the biological sciences, is ‘hiding’ the fact that it is derived from a differential
equation. Differential equations describe the rate of change of a variable over time, and
are thus ideally suited to describe changes in concentrations in biochemical reactions.
We are going to use differential equations extensively throughout and the present section
serves as a gentle introduction to this most useful conceptual framework.

Pathways are the concept by which knowledge of interactions of proteins in cell func- pathways

tions is organised. A pathway map exhibits the names of the molecular components,
whose interactions govern the basic cell functions. This leads us to a definition of path-
ways as biochemical networks. One motivation for systems biology is to bring these static
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Figure 1.14: Michaelis-Menten plot describing an enzyme kinetic reaction.

diagrams to life by modelling and simulating the biochemical reactions that underlie cell
function, development, and disease.

Although a pathway or pathway map describes molecules, their physical state and
interactions, it is an abstraction and has no physical reality. An abstraction is a rep-
resentation of an aspect of the real world, so as to reason about it. A model is the
consequence of this process, may it be by graphical means (e.g. the pathway map), by
natural language, or through mathematical formalisms.

A pathway map is thus a model, and the first step in the art of modelling is to identifypathway map

which proteins need to be included in the model. One approach to support this process
is to consider a pathway as a network of biochemical reactions. If we denote the chemical
species and/or the modifications by capital letters, the following collection of biochemical
equations would formalise a pathway:

Rµ : lµ1X1 + lµ2X2 + · · ·+ lµnXn
kµ−−−−−→ · · · (1.16)

where X denotes a chemical species participating in reaction channel Rµ, the ‘+’ signs
represents a combination, and the arrow a transformation. The coefficients lµj ≥ 0
indicate how many molecules of reactant species Xj are involved, and kµ describes the
rate at which the reaction proceeds. The reader unaccustomed to biochemical equations
should not worry, we are going to introduce and discuss these representations in greater
detail throughout the text.

While in the biochemical reaction equation participating components are denoted by
X, in the mathematical equations we use small letters x to denote variables of the model.
For example, the pathway

X1 + αX2
k1−→ βX3

k2−→ αX2 + γX4 , (1.17)
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can be split into two reaction channels

R1 : X1 + αX2
k1−→ βX3 ,

R2 : βX3
k2−→ αX2 + γX4 .

When a reaction occurs, the changes to molecule populations is determined by the sto-
ichiometric coefficients. For example, in reaction channel R1, X2 looses α molecules,
while in R2 it gains α molecules.

The framework we are going to adopt to model biochemical reaction networks is that
of nonlinear differential equations. I consider differential equations a natural choice for
the following reasons. Causation is the principle of explanation of change in the realm
of matter. For anything to be different from anything else, either space or time, or both
have to be presupposed. Causation is a relationship, not between things, but between
changes of states of things. As we going to demonstrate, differential equation models
are an ideal means to realise this philosophy. Let consider the simplest of biological
examples to demonstrate the view of causation as an explanation of change. Studying a
protease cleaving peptide bonds in a substrate protein, we stipulate that

“The rate of proteolysis is somehow proportional to amount of substrate.”

The purpose of mathematical modelling is to translate a hypothesis into a set of equa-
tions. These equations have parameter values, which we obtain from experimental data.
In our example, a direct translation of the statement above is the following differential
equation

d

dt
S = −kpS(t)

parameter (fixed)

variable (changes)

The operator d/dt is used to represent the rate of change of the substrate concentra-
tion S(t) over time. The rate is thus also a velocity. As such it is related to the slope
of the concentration profile, determined as the limit of ∆t going towards zero. This is
illustrated in the following diagram:

S(t)

t

∆S

∆t

d

dt
S = lim

∆t→0

∆S

∆t

As indicated, we call a parameter a value of the model that does not change for
the time interval of interest, while a variable changes. The former are typically rate
constants while the latter are concentrations. Such rate equation are mathematically rate equation

speaking differential equations with dx/dt = . . . describing a rate of change over time. differential equations
If the mathematical expression on the right-hand side is a “usual one”, not involving
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Figure 1.15: Simulation of the differential equation model for the proteolysis.

distributions like Dirac-distribution or the Heaviside step-function. These are then re-
ferred to as ordinary differential equations (ODEs). They consider changes only over
time and not space. If diffusion across an area of the cell has to be considered we would
end up with a description using partial differential equations (PDEs). Accounting for
different regions of the cell, e.g., the cytosol and the nucleus, can be realised with ODEs
by introducing different variables for the same protein, located in different regions. A
more serious threat to the differential equation approach comes from the translocation
of proteins, e.g., nucleocytoplasmic export. Time delays in a feedback loop more often
than not have a significant effect on the dynamics of a system. An explicit represen-
tation of such phenomena leads to delayed differential equations. Needless to say that
the theory for partial and delayed differential equations is more complicated than for
ordinary differential equations.

In our example, the state of the system is fully determined by the equation that
describes the value of the substrate S at any time t:

S(t) = S0 · e−kpt , (1.18)

where S0 denotes the initial concentration of S at time t = 0. This equations also called
the solution to the differential equation above. Although there is also the “product”
concentration P (t), the result of the proteolysis, its value can be directly determined
from S(t) using the conservation relation S0 = S(t) + P (t)

P (t) = S0(1− e−kpt) . (1.19)

The simulation of this mathematical model produces plots of (1.18) and (1.19) (Figure
1.15). As trivial as this example may seem, modelling arbitrary complex pathways is a
straightforward extension of the approach demonstrate there.
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Let us return to our pathway example (1.17) and consider the following set of ordi-
nary differential equations with dynamic variables x1, . . . , x4, corresponding to chemical
species X1, . . . , X4:

d

dt
x1 = −k1x1(t)xα2 (t)

d

dt
x2 = −αk1x1(t)xα2 (t) + αk2x

β
3 (t)

d

dt
x3 = βk1x1(t)xα2 (t)− βk2x

β
3 (t)

d

dt
x4 = γk2x

β
3 (t) .

(1.20)

Looking at the structure of these equations, we recognise the generalised representation
for (1.16):

d

dt
xi(t) =

M∑

µ=1

νµikµ

n∏

j=1

xj
lµj (t) i = 1, 2, . . . , n (1.21)

where the units of the concentrations x are mol per liter, M=mol/L. For simplicity,
we omit the commonly used square brackets [ ] to denote concentrations. The set of
nonlinear differential equations (1.21) describes a large class of systems but is by no
means the most general representation.

The aim of this section was to give a glimpse on how biological and experimental infor-
mation is translated into mathematical expressions. We have omitted various questions
but will return to these in due course.

1.1.4 Dynamic Systems Theory

The mathematical model (1.21), as general as it may seem, remains a particular choice for
a conceptual framework in which to model biochemical reaction networks. We are going
to discuss various other approaches to represent intracellular processes. The choices
involved in selecting one or the other approach are guided by practical or experimental
considerations, mathematical convenience and personal preference. To guide a discussion
of different approaches it is sometimes helpful to see whether modelling approaches can
be generalised into a more abstract framework. An increased level of abstraction can
mean that one looses the link of the model to a particular experimental setting but it
can also help in the development and understanding of a mathematical model. Another
motivation is that dynamic systems theory has developed various techniques and tools
within other disciplines such as control engineering, applied mathematics and physics.
By generalising a biological model we can use these tools and techniques for our purposes.
To illustrate this, let us consider a generalisation of (1.21), which frees us from the
discussion of how the right-hand side of the differential equation should be constructed.
Towards this end we consider the ODE as a mapping

f : X × P→ R
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x(t)

X1

x1

x2

x3

X3

X2

Figure 1.16

where X denotes the state-space and P a parameter space. At any point in time t ∈ I,
the concentrations are collected in a vector, called the state of the system and denoted

x(t) =
(
x1(t), . . . , xn(t)

)
.

The variables xi are called state-variables and the space in which they take their values
is the state-space. For a particular set of parameter values Θ ⊂ P, the current state
x(t) is associated with or mapped to a rate of change in the set of real numbers R.
Any particular parameter value is denoted as θ ∈ Θ. The model of ordinary differential
equations (1.21) can then be generalised as

ẋ = f
(
x(t),Θ

)
, (1.22)

where ẋ is short for dx/dt and f is a n-valued mapping. The vector-valued mapping
f determines the dynamics of the system13. If one imagines the state (vector) of con-
centrations as a point in state-space X = Rn+, the temporal evolution of the system
describes a curve, called trajectory , in X = X1×· · ·×Xn. The analysis of the dynamics
of the system may thus be conducted in geometric terms, as illustrated in diagram 1.16.
The system (1.22) is said to be unforced (or autonomous since there is no independent
input u(t) inside the bracket. We are also going to assume that rate coefficients are rate
constants, i.e., the parameters of the system are not changing over time. One speaks
of time-invariant systems, although their behavior is of course dynamic, changing over

13In subsequent sections various variations of (1.22) will be discussed. The mapping f may alternatively
be denoted V (for velocity). The parameter vector is often omitted despite the fact that it is always
present.
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time. If there were an explicit dependence of the model on time, the brackets of the
right-hand side of (1.22) should include a t.

Since the dynamics arising from (1.22) can be rather complex a common approach is
to decompose a complex system into simpler subsystems or modules (see for example
[TCN03, SJ04]). Under the headings of bifurcation analysis, phase-space analysis, sta-
bility analysis, reachability, observability, controllability, and realisation theory, dynamic
systems theory provides graphical and mathematical tools to predict the behavior of
inter- and intra-cellular dynamics. The challenges for the modelling lie in the relatively
large number of variables, in the inherent nonlinearity of interactions and the difficulties
in getting quantitative time series data.

Graphical tools, such as phase plane and bifurcation analysis which help us to visualise
the dynamic behavior of a system are restricted to systems in two or three dimensions.
Even then, a mathematical analysis is focussing only on specific parts of the phase-plane
and reduces in those areas the analysis of nonlinear dynamics to a linear systems theory.
Although biological systems are for most cases driven by nonlinear interactions we must
acknowledge the fact that mathematical tools are for most cases only tractable if we
revert to linear systems theory. This does not mean that we treat a nonlinear system as
a linear one. Let us illustrate this approach.

1

2

3 4

x1

x2

x3 x4

Figure 1.17: Decomposition of the pathway model (1.20) into subsystem described by (1.23).

As can be seen from (1.21) the nonlinear properties of pathways are mostly determined
from simple interactions among the system variables. One intuitive approach is therefore
to decompose the network (1.22) into subsystems

ẋi = fi
(
xi(t), x̄i(t),Θ

)
, (1.23)

where xi is now a scalar and x̄i is an input-vector consisting of the other state-variables
xk, k 6= i, of all other subsystems. Figure 1.17 illustrates the decomposition for the
pathway model (1.20).

Many techniques in systems theory focus on the long-term behavior of a system, as
t → ∞. For example, an important question is the stability of the system. Stability
theory helps us in this case to determine whether state variables remain within specified
bounds as time proceeds. In dynamic pathway modelling we are however particularly
interested in dynamic and short-term changes. For example, in cell signalling we wish
to establish the response of a pathway to a stimulus of ligands binding to cell surface
receptors. For signalling pathways, transient changes are of particular interest, while
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Figure 1.18: The two plots illustrate the qualitative analysis that is a main purpose of dynamic pathway
modelling. The aim is to establish the consequences or causes of parameter changes and/or
the removal/introduction of feedback loops. The plots show typical changes in form of an
acceleration/deceleration, amplification/suppression of signals.

steady states are particular relevant for metabolic pathways. The plots in Figure 1.18
show typical responses encountered in dynamic pathway modelling. The plot shows on
the left monotonic responses, while on the right there are damped oscillations. Another
important case are sustained oscillations as they are known from the cell cycle, calcium
and glycolytic systems. More recently, sustained oscillations are also discussed in the
context of cell signalling. In Figure 1.18 the systems depicted reach a steady state after
about 15 minutes. A steady-state is thus reached when there are no observable changes
in the concentrations14. This observation corresponds to the mathematical condition
where the rates of change on the left-hand side of the different equation are equal to
zero:

0 = f
(
x(t),Θ

)
. (1.24)

For a given and fixed set of parameter values Θ the points in X(t) for which this condi-
tion is met are called variously steady-states, fixed points, critical points or equilibriumcritical points

point . This diversity in definitions is the result of various disciplines dealing with dy-
namic systems. For a new field like systems biology we thus have a choice of tools
developed elsewhere but the different interpretations of the same mathematics may also
be confusing to start with.

Stability analysis provides tools to characterise the dynamics of the system the tran-
sient behavior leading up to them and thereafter. It is then possible to predict whether
the system will display cyclic changes of concentrations or whether they remain con-
stant. Furthermore, it is possible to predict whether for small changes or perturbations
the system remains stable with the critical point behavior or not. Bifurcation analysis
is used to predict how system dynamics change as a function of parameter values or

14We are going to return to the question of steady-states and the assumptions involved throughout the
text.
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changes to them. For most practical purposes these analyzes are conducted by local lin-
earisation of the nonlinear system around critical points obtained from (1.24) and then
use well established tools from linear systems theory. Ignoring the subscripts denoting
a subsystem in (1.23), we linearise the system (1.22) around the critical point x∗ (now
including all xi and xk) by considering small perturbations to the steady-state

x(t) = x∗(t) + ∆x(t)

where powers (∆x)p, p > 1, are considered “very small” compared to ∆x. This is
indicated by the notation

(∆x)p
.
= o(∆x) .

A classical technique to approximate a function around a point is by means of a Taylor
series. Assuming f(·) is sufficiently smooth such that derivatives exist, the Taylor series
expansion around x∗ is given by

f
(
x(t),Θ

)
= f

(
x∗(t)

)
+Dfx∗∆x(t) + o(∆x) ,

where

Dfx∗ =

(
∂fi
(
x(t),Θ

)

∂xj

)∣∣∣∣∣
x∗

, with i, j = 1, 2, . . . , n .

is the Jacobian matrix of first partial derivatives

Dfx∗ =




∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fn
∂x1

· · · ∂fn
∂xn




of the mapping

f =
(
f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)

)
.

The linearised system can now be written as

∆ẋ = Dfx∗∆x(t) , (1.25)

where ∆x(t) = x(t)−x∗ denotes deviations from the steady state. The Jacobian matrix
is of particular interest. An off-diagonal element of the Jacobian describes the change of
one variable, relative to another. Positive or negative entries correspond to activation, activation

respectively inhibition of one variable by another15. If we denote the Jacobian matrix by inhibition

A and consider the diagonal matrix Ã = diag(A), which contains the diagonal entries of
A, then the decomposition of the linearised system (1.25) into one-component subsystems
(1.23) is given by

∆ẋ = Ã∆x(t) + (A− Ã)∆x̄(t) ,

15The eigenvalues and eigenvectors of the Jacobian provide valuable information about the behavior
of the dynamic system. There are many books available that describe this kind of analysis (e.g.
[GH83, JS07, Str00a, HSD04]).
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where the connections among linear subsystems are now denoted by

∆x(t)
.
= ∆x̄(t) .

In terms of individual subsystems this corresponds to

∆ẋi = aii∆xi(t) +
n∑

j=1, j 6=i
aij∆xj(t) ,

where the first term on the right-hand side corresponds to self-regulation and the last
term corresponds feedback-type relations with other components. Interpreting ∆x̄ as
an input and ∆x as an output, we can study the behavior of the entire system, around
the critical point x∗, using well established tools from systems and control theory (e.g.
[SJ04]). In this setting the system can be represented by the following block-diagram:

∆x̄ A− Ã
∫

∆x∆x

Ã

+

Let us summarise what has been said so far. Beginning with the very simple biochem-
ical reaction of proteolysis we introduced differential equations for modelling changes of
molecular concentrations in the cell. We showed how sets of differential equations can be
generalised and the dynamics analyzed using dynamic systems theory. From this brief
introduction we can summarise the primary tasks in dynamic pathway modelling:

1. Realisation Theory: Characterise model structures that could realise given stimulus-
response data sets.

2. System Identification: Determine values for model parameters; using experimental
data or simulation studies.

3. Control Analysis: Predict the consequence of changes to a pathway; in particular
modifications to parameters, introduction and removal of feedback loops.

Figure 1.18 illustrated typical time course data and the kind of qualitative analysis the
experimentalist is interested in. The main aim is to determine the causes of changes to
parameters and the removal or introduction of feedback loops. The analysis is qualitative
in the sense that exact values of the curves do not matter. More often we are interested
in whether a response is ‘accelerated’ or ‘decelerated’, whether a signal is suppressed or
amplified.

1.1.5 Dealing with uncertainty

Uncertainty in modelling arises for various reasons, including randomness in the biolog-
ical process and measurement noise from observations. For most practical situations we
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Figure 1.19: As the sample size n, i.e., the number of repeated experiments increases, the shape of the
histogram approaches a distribution which changes little and approximate the probability
density function (solid line) from the sample values were drawn: On Figure (a) a sample of
100 values is used and 1000 for the plot on Figure (b)

cannot expect the measured data to match the model perfectly. In other words, observa-
tions are usually subject to random variations. If we were to repeat the experiment, for
a particular point in time t, we would obtain a set, called the sample of measurements. sample

The purpose of statistics is to characterise this sample. The most intuitive approach to
investigate a sample of data from a repeated random experiment is to visualise the distri-
bution of the data in the sample space. Such a plot is called a histogram. In Figure 1.19 histogram

we show a frequency histogram. Dividing the heights of the bars by the total number
of elements we obtain the relative frequency histogram. Dividing the relative frequency
by the bar width, the total area sum of all areas the bars equals 1. This is then called
relative frequency density. If the sample size is increased and the bar width reduced,
the relative frequency density function approaches gradually a curve, called probability
density function, denoted p(x), where we used the letter xi to denote an element of the density function

sample space X. The area under the probability density function is equal to one, i.e., the
probability that any value will occur is one. Note that a probability density function is
a model of what we observe through statistics. We can therefore abstract from a sample
to obtain a stochastic model of the process that is underlying the data. Instead of the
histogram one could characterise the sample (statistical model) or experiment (stochas-
tic model) by some characteristic properties describing effectively the curve drawn by
the histogram. For this we first consider the repeated data as referring to some real
world variable (e.g. count of molecules at time t). If the measurement or observation is
subject to random variations, it would make sense to speak of a random variable, say x.
A description of a tendency for the data to cluster around a particular point, is called
the mean value. From a statistical sample {xi} with n elements, the mean is estimated mean value

as the sample average: sample average
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x̄ =
1

n

n∑

i=1

xi .

Similar, a measure of variability around the mean value is obtained by the variance. Thevariance

variance is an average distance to the mean value and given a sample, we can estimate
the variance Var[x] as

σ̂2 =
1

n

n∑

i=1

(xi − x̄)2

where theˆ is to denote the fact that this is an estimate. The squaring is necessary to
avoid an influence of the sign of the difference on the average. The problem is then that
if the values are a physical measurement with a unit, the variance would not be in this
unit. This problem can be solved to taking the square root of the variance, leading to
what is known as the standard deviationstandard deviation

Std[x]
.
= σ .

We should remind ourselves of the difference of the mean value and the sample mean
or sample average. One has to do with a statistical experiment and the other with a
stochastic model of the process that generates such data. In this sense, statistics is the
real-world interface for probability theory. The mean value may also be considered an
expected value, if we are to repeat the random experiment many times we would expect
this value, on average. If our random experiment can be modelled by a probability
density p(x), where each possible value x is effectively weighted by the distribution or
density p, we could define the mean value as the expectation, E[x], of random variableexpectation

x

E[x] =
n∑

i=1

xp(xi) if x is discrete,

E[x] =

∫
xp(x)dx if x is continuous.

Similar, the variance can be defined as an expectation

E[(x− x̄)2] =

∫
(x− x̄)2p(x)dx .

For two random variables, x and y, the covariance is defined ascovariance

σx,y
.
= E[(x− x̄)(y − ȳ)] .

If σx,y = 0, the two random variables are said to be independent. A bounded measure
of how two variables co-vary is the correlation coefficientcorrelation

ρx,y
.
=

σx,y
σxσy

,
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such that −1 ≤ ρ ≤ 1. A positive correlation means that as one variable increases/de-
creases the other increases/decreases. In contrast, negative correlation means that as
one variable increases/decreases, the other decreases/increases.

Let us now instead of individual elements of X consider an event or set A ⊂ X defined
by its characteristic map. If we extend the concept of an expectation

E[1A] =

∫
1A(x)p(x)dx .

This in effect determines the likelihood or probability of event A, and noting that taking
the interval over X, the characteristic map 1A in effect restricts the interval to A

1A : X → {0, 1}
x 7→ 1A(x) = 1 if x ∈ A, otherwise =0 .

This leads us to an intuitive definition of probability : probability

P (A) = E[1A] =

∫

A
p(x)dx .

In terms of a sample of experimental data, it would seem plausible to define the proba-
bility then as the relative frequency:

P (A) =
number of outcomes in X where A occurs

number of elements in X
.

This is called the relative frequency interpretation for probabilities. There are however
various other approaches to probability theory and it was the Russian mathematician
Kolmogorov who put probability theory on a firm footing by linking probability theory
to measure theory. The probability of an event A is then the measure of the area of
the probability density function that overlaps with the subset A ⊂ X. For our purposes
the mathematical details of these definitions are not of central importance and we refer
to the vast literature on this. We do however note that a probability measure should
satisfy the following axioms:

1. 0 ≤ P (A) ≤ 1 for every event A.

2. P (X) = 1

3. P (A ∪B) = P (A) + P (B), if A and B are mutually exclusive, i.e., A ∩B = ∅.

Remember that we started off by fixing a particular point in time and repeat an
experiment. This generated a sample for which we now describe a stochastic model as
illustrated in Figure 1.20.

A further refinement of our random experiment is to distinguish between the random
mechanism and an observation. Denote the sample space of an experiment with random sample space

outcomes as the set Ω. This consists of possible individual elementary outcomes ω ∈ Ω.
These outcomes are mutually exclusive, i.e., only any one of the possible outcomes can
occur. A collection of elements of Ω is called a random event and is denoted A ⊂ Ω. random event
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Figure 1.20: Stochastic process x(t, ω) as a t-dependent random variable.

We denote by P (A) the probability that the event A will occur at each realisation of
the experiment. The collection of events or subsets of Ω is mathematically defined as
a σ-algebra and denoted B. The triple (Ω,B, P ) of a sample space, sigma algebra
and probability measure is then referred to as a probability space. The variable whichprobability space

is associated with the random experiment, for example the measurement of a protein
concentration at a particular point in time, is referred to as a random variable. If Ωrandom variable

is a continuous set, x is referred to as a continuous random variable and if Ω is a set
of discrete outcomes, we speak of a discrete random variable and discrete probability
distribution. A random variable x is a real-valued map defined on Ω such that for each
real number α, Aα = {ω ∈ Ω | x(ω) ≤ α} ∈ B. Aα is an event for which the probability
is defined in terms of P . A random variable is neither random, nor variable, it is simply
the mapping

x : Ω → X

ω 7→ x(ω) .

Again we will drop the ω from x(ω) in most cases to simplify the notation, especially
if x is a signal that is also a function of time. Since the experiment is associated with
some random variable x, we write

p(ωi) = P (x = ωi) and p(x) or px for P (x = ω) ,

where p denotes the probability distribution, probability mass function, or probabilityprobability
distribution

mass function
density function. We use the term ‘mass function’ for discrete sample spaces and density

density function
function for continuous sample spaces.

Talking of signals, considering a time set I ⊆ Z, a time-varying process x(t) is called
a random process if for each t we cannot determine a precise value for x(t), but instead
have to consider a range of possible values with an associated probability distribution
describing the relative likelihood of each possible value. More formally a stochastic
process is a mathematical model of a random process, defined by the real-valued functionstochastic process
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Figure 1.21: Stochastic process x(t, ω) as a joint function of t and ω.

x : I × Ω→ X

such that for each fixed t ∈ I, x(t, ω) is a random variable. A stochastic process (Figure
1.21) is subsequently a sequence of t-dependent random variables

x : I × Ω → X

(t, ω) 7→ xt .

For each fixed ω ∈ Ω the mapping from index set I into X describes a sequence of
vectors xt(ω), which is called a realisation or sample function of the process. More realisation

commonly, we refer to the realisation of a stochastic process is a time series, i.e., a time series

sequence of observations and for which an observation at time t is modelled as the
outcome of a random variable. The collection of all possible realisations is called the
ensemble. All elements xt ≡ x(t) of a stochastic process {x(t)} are defined on the same ensemble

probability space. A stochastic process is in principle described by the joint distribution
functions of all finite subcollections of x(t)’s but since these distributions will usually be
unknown, most approaches will restrict themselves first and second order moments of
the distributions, i.e., means, variances and co-variances.

Ω

ω

t

t1 t2

x(ω, ·)

Figure 1.22: Realisation of the stochastic process x(t, ω), ω-dependent random variable.

We referred to a stochastic process as a model of a random process and should add
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that a stochastic model can take various forms. A dynamic model that determines or
predicts for any t a precise value x(t) is called deterministic and any model that accounts
for random variations is called stochastic. A differential equation model such as equa-
tion (1.15) is thus deterministic. If we however add an additive noise term to this ODE
model, we could refer to this as a stochastic model. In the application of dynamic sys-
tems theory to molecular and cell biology one generally has to make a decision whether
to regard the process as a deterministic nonlinear system but with a negligible stochastic
component or to assume that the nonlinearity is only a small perturbation of an essen-
tially stochastic process. A theory of nonlinear stochastic processes has so far not found
many applications to time-series analysis. We find that there are a large number of
alternatives and combinations and the choice to whether account for uncertainty in the
model or not will depend on various issues, including convenience and realism amongst
others. This discussion how to translate a biological process into a mathematical model
makes applied mathematics so interesting. The reader should avoid getting confused by
the many alternatives and assumptions one can consider and see them as part of the art
of modelling. The great artist Pablo Picasso once said “Art is a lie that makes us realise
the truth”, to which we might add that science is the art that makes us realise reality.

The present section introduced the basic toolkit to describe systems as sets of objects
with relationships defined on them. For the rest of this text all we do is to further refine
and extend the concepts introduced here without actually adding more fundamental
concepts than those introduced here.

1.2 Dynamical Analysis

1.2.1 Overview - Dynamical Analysis

Under the heading of ”modelling” in the systems biology workflow various subtasks and
types of analyses are included. We here summarise key concepts in a concise manner,
providing links to the literature for further consideration. While some concepts and
definitions are of general nature, a number of techniques are developed for mathematical
models based on ordinary differential equations.

First the observable properties of a system have to be identified. In a second step
system (state) variables are defined, parameters, input and output variables. Given a
large-scale network, various genomics and bioinformatics tools can be used to support
the identification of a suitable (sub)system (network or pathway) to focus on a more
detailed or refined analysis.

For the following overview we assume for most concepts a mathematical model based
on differential equations. The goal of this survey is a summary of the most important
types of analyses that are available for the investigation of dynamical systems.

1.2.2 Stability Analysis

A system is in a stable state when a small disturbance of that state at a given time
only alters the state at all subsequent times by a corresponding small amount. If an
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arbitrary small disturbance to the state of a system has the effect that it produces a
large change in the state at all subsequent times, then the system is said to be in an
unstable state. Stability and instability are qualitative features of solutions of differential
equations. Stability and instability is defined in terms of fixed points and trajectories
[Jef93, Per98, JS07, Str00b]. In systems biology, stability analysis is used as a tool to
estimate boundaries of parameters for a given system. It is done in such a way that
these parameters will keep the system in stable state. Stability analysis is an important
tool used in bifurcation analysis and robustness.

Stability of fixed points [Jef93, Per98, JS07, Str00b]

Stable fixed point: fixed point x∗ in the state space is said to be stable if all trajectories
which at initial time are close enough to the x∗ remain close to it as time approaches
infinity (see Figure 1.23a).

Asymptotically stable fixed point: x∗ is said to be asymptotically stable if all trajecto-
ries which at initial time are close enough to the x∗ eventually approaches to fixed
point x∗ as time approaches infinity (see Figure 1.23b).

Unstable fixed point: A fixed point which is not stable is said to be unstable or repelling.
Its geometrical interpretation will be: all trajectories which at initial time are close
to x∗ diverge from x∗ as time approaches infinity. (see Figure 1.23c)

x*

a b

x*

c

x*

Figure 1.23: Stability of fixed points: a) stable fixed point x∗, b) asymptotically stable fixed point x∗,
and c) unstable fixed point x∗.

Formal methods for stability analysis focus mostly on autonomous systems of differ-
ential equations dx/dt = f(x) where x = [x1, x2, . . . , xn]T are the state-variables of the
system and the mappings f encode the relationships between the state variables. The
precise form of the mathematical terms for f depends on the chosen framework describ-
ing the considered biochemical processes like mass-action kinetics, power-law models, or
Michaelis-Menten kinetics.

To investigate the behavior of trajectories in the neighborhood of a fixed point x∗

linearization of differential equations about fixed points can be applied The eigenvalues
of the corresponding Jacobian matrix (i.e. unstable states of linear equations are char-
acterized by at least one eigenvalue with a positive real part) characterize the stability
of the fixed point x∗.
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Table 1.1: Phase portraits of a system with det(J) = 0 (left) and purely imaginary eigenvalues (right)
and their around the fixed points linearized versions, respectively [Bet01].

Linearization: Given the system of differential equations f(x, t), the first step is to
calculate the fixed points x∗ of the system such that 0 = f(x∗). Then, the corresponding
Jacobian matrix J

J = [Jij ] =

[
∂f(xi)

∂xj

]

x∗
, i, j = 1, 2, . . . , n (1.26)

is calculated. The linear system dx/dt = Jx with the Jacobian matrix J is called the
linearization of dx/dt = f(x) at the fixed point x∗ [Per98, Str00b, JS07]. The eigenvalues
λ of the Jacobian matrix J at the fixed point x∗ given by the characteristic equation

det(J− λI) = 0,

where I is the identity matrix, are then used to characterize the stability of the fixed
point P . An extensive discussion is given in Chapter 4.5, Phase-plane analysis, where
this methods is applied to two-dimensional systems. This technique can only be applied
in a small neighbourhood of the fixed point P [Jef93].

There are some exceptional cases where the linearization technique may fail namely
when either det(J) = 0 or when J has purely imaginary eigenvalues. In these cases, the
phase portraits for the nonlinear and the linear system may or may not be similar. In
Table 1.1 two examples illustrate the case when the two phase portraits do not resemble
[Bet01, JS07].
Lyapunov/Liapunov stability theorem: If the linearization of a nonlinear system is
not possible, the Lyapunov function is an alternative method to investigate the stability
of a fixed point. Its existence guarantees the stability of the fixed point [Per98, Bet01].

Workflow:

1. Find a Lyapunov function V (x) for fixed point x∗ such that V (x∗) = 0 and
V (x) > 0 for x 6= x∗. (i.e. the Lyapunov function is not a unique function)
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2. which additionally fulfills the condition

V (x)

dt
=

[
∂V (xi)

∂xj

]
f(x), i, j = 1, 2, . . . , n

3. Compute V̇ (x)

a) If V̇ (x) ≤ 0 for all x, then x∗ is stable

b) If V̇ (x) < 0 for all x, then x∗ is asymptotically stable

c) If V̇ (x) > 0 for all x, then x∗ is unstable

Biological interpretation of stability analysis: Bistability (when a system is able to ex-
ist in either of two steady states) can imply hysteresis, which is interesting for some
regulatory mechanisms, e.g. sporulation in Bacteria, or irreversibility of apoptosis.
Bistability can be an interesting and relevant phenomenon, in a single cell culture
in which two distinct subpopulations of cells show discrete levels of gene expression
[SVK07].

1.2.3 Network-Topological Analysis

A system described by ordinary differential equations can be locally characterized by a
Jacobian matrix. This matrix can be visualized by a graph whose topology or structure
gives hints to the underlying system dynamics. In contrast to stability analysis the
focus here is not on the numerical values of the elements of the Jacobian but only their
signs. This matrix is then referred to as the ”interaction matrix” (interaction graph or
digraph).

Chains of interactions, encoded by the elements of the interaction matrix, are referred
to as ”circuits” [Tho94, KST07] or ”cycles” [MR07]. Their analysis provides conditions
for qualitative instability, and a necessary condition for the existence of several stationary
states [Tys75, Tho94, KST07, MR07].

We point out below some theorems which connect the structure of the graph with nec-
essary conditions for oscillations, multistationarity/multistability, and other nontrivial
behaviour.

Main ideas:

1. Tyson [Tys75] shows the necessary and sufficient conditions for ”qualitative
stability” of steady state solutions of nonlinear differential equations through
the interaction description of the matrix. The main goal of the following
theorem is to classify instability: The real irreducible Jacobian matrix A is
qualitatively stable if and only if (i) aii ≤ 0 ∀ i; (ii) aii 6= 0 for some i; (iii)
aij aji ≤ 0 ∀ i¬j ; (iv) aij ajk . . . apq aqi = 0 for any sequence of three or
more indices i 6= j 6= k 6= . . . 6= p 6= q; (v) det(A) 6= 0.

2. Thomas et al. [Tho94, KST07] further elaborated the idea and resulted into
the following major conjectures that are made about the behaviour of a dy-
namical system from Jacobian matrix to circuits and nuclei. Conjecture 1
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(Thomas): The presence of a positive circuit (somewhere in phase space) is a
necessary condition for multistationarity. Conjecture 2 (Kaufman): Multista-
tionarity requires either the presence of a variable nucleus or else the presence
of two nuclei of opposite signs. Conjecture 3 (Thomas): The presence of a
negative circuit of length at least two (somewhere in phase space) is a nec-
essary condition for stable periodicity. Conjecture 4 (Thomas): A chaotic
dynamics requires both a positive and a negative circuit.

3. Mincheva and Roussel [MR07] applied and elaborated Ivanova’s theorems
(specifically stoichiometric network analysis [SNA]) in correlating the bifur-
cation structure of a mass-action model to the properties of bipartite graph.
They continued by integrating some theorems mentioned above. In addition,
they extended these graph-theoretical methods to delay-differential equation
models. There is even a one-to-one correspondence between the nonzero terms
in the determinant and all subgraphs of the bipartite graph. The subgraphs
corresponding to negative terms in a coefficient of characteristic polynomial
imply the structure in the graph responsible for the potential instability.

Tyson [Tys75] introduced the concept of representing each term of the Jacobian
matrix by sign only; and he used it at the level of steady state. Wherein Thomas
[Tho94, KST07] used it everywhere in state space; i.e. moving the steady state at
will. They had shown in their studies that the presence of appropriate circuits
(or unions of disjoint circuits) is a necessary (sufficient in particular) condition to
generate steady states since only those terms of the Jacobian matrix that belong
to a circuit are present in the characteristic equation. According to [MR07], the
graph-theoretic condition for instability is more easily applicable to large biochem-
ical networks since it obviates the need to compute a Jacobian. Note that some of
the Jacobian elements are sums of positive and negative entries, making the signs
of the weight functions undetermined. They show how these disadvantages of the
digraph can be avoided by using bipartite graph.

1.2.4 Bifurcation Analysis

Bifurcation analysis is the study of qualitative changes in the behavior of dynamical
systems under parameter variation. Qualitative changes here mean the appearance of
new solutions of the differential equations where the behavior of the system changes
significantly. Bifurcation analysis provides insight to stability changes of a system around
a critical value (of a parameter) that determines such qualitative changes (referred to as
”bifurcations”). One of the areas where bifurcation theory is widely applied, is physics,
for example, quantum physics, dynamics of the nuclear reactor, electric power systems.

For changes to a single parameter, a nonlinear system is linearized around a fixed
point (steady state). The linearised system is characterized by a Jacobian matrix whose
eigenvalues λ will inform us of the local stability of the system, see also Stabililty Anal-
ysis 1.2.2. The stable dynamical system’s eigenvalues have negative real parts.
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Bifurcations can be classified into two groups:

Local bifurcation which can be detected by fixing any small neighborhood of the fixed
point.

• at least one real eigenvalue crosses zero with a change of the parameter. There
are some of such kind of bifurcations:

– transcritical bifurcation

– saddle-node bifurcation (fold, or turning-point, or blue sky bifurcation)

– pitchfork bifurcation (supercritical, subcritical)

• at least one eigenvalue crosses the imaginary axis [FMWT02].

– Andronov-Hopf bifurcation

Global bifurcation which are hard to detect because they involve large regions of the
phase plane rather than just the neighborhood of a single fixed point. Some ex-
amples are:

• homoclinic bifurcation

• heteroclinic bifurcation

To determine bifurcations, stability analysis has to be performed first. Then to deter-
mine a type of bifurcation, that is how the behavior of a system changes as a parameter
varies, different types of software might be used, for instance Auto 2000 [ol09a], CAN-
DY/QA [ol09b, ol09c], MATCONT [DGKS04, DGKS06].

1.2.5 Reachability (of states) and Controllability (of systems)

A state of a system is reachable from another state if the system can be moved from the
later to the former in a finite time by some input (or control signal) [Son98]. Note that
the system may not necessarily stay in a reachable state.

A system is controllable if each state is reachable from every other state. Thus, a
controllable system can be steered from any initial state to any other state in a finite
time by a suitable input. Physically, this means that, directly or indirectly, the input
independently influences all parts of the system [DTB97].

Uncontrollable systems have subsystems (e.g. state variables) that are unaffected by
the input. This usually means that those subsystems of the system are physically discon-
nected from the input. Most of the theory and tools for reachability and controllability
analysis are developed for linear systems. Algebraic tests for controllability including
rank test and Grammian test have been developed over time [FPEN05] and implemented

in MATLAB
TM

Control Systems Toolbox [232].

Some authors define controllability and reachability of a system as its ability to reach
the origin and an arbitrary state, respectively [KFA69]. In some texts the term output
controllability is defined as the ability to steer the system output to all possible values
in the outputs space [Son98, AS04].
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1.2.6 Distinguishability (of states) and Observability (of systems)

Two states of a system are distinguishable if it is possible to differentiate between them
on the basis of input/output experiments [Son98]. Thus the outputs resulting from the
same input but two different initial conditions will be (same) different if the two states,
used as the initial conditions, are (in)distinguishable.

A system is observable if every two distinct states of the system are distinguishable.
For linear systems, the input has no role in determining observability. A linear system
is observable if all the state variables can be reconstructed from measurements made at
the system’s output. In an observable system, directly or indirectly, all the state vari-
ables influence the output in one way or another [DTB97]. Unobservable systems have
subsystems that have no influence on the output. Algebraic tests for observability have
been developed over time [FPEN05] and are implemented in the MATLAB

TM
Control

Systems Toolbox [232].

1.2.7 Robustness

Robustness is the property that allows a system to maintain its function against internal
and external perturbations [Kit07, Hun09] or under conditions of uncertainty [SSS+04].
In general the robustness can be classified into ”absolute robustness”, representing the
average functionality of the system under perturbation, and ”relative robustness” quan-
tifying the impact of perturbations on the nominal behaviour [RBFS09]. In biology the
concept of robustness is closely related to the notions of ”stability” and ”homeostasis”
[SSS+04]. While robustness is a general concept, homeostasis and stability are its par-
ticular instances which are identical if the function to be preserved is one maintaining
the system state [Kit07]. Different strategies to design a robust system exist:

Redundancy: Alternative ways to carry out the function that the component performs
[Kit07, SSS+04].

Feedback Control: Enables the system to regulate the output by monitoring it [SSS+04].

Modularity: Modules constitute semi-autonomous entities [Kit07, SSS+04].

Hierarchies and Protocols (Decoupling): Protocols encompass the set of rules under-
lying the efficient management of relationships. This decoupling isolates low-level
variation from high-level functionalities [Kit07, SSS+04].

Kitano [Kit07] proposed a formal definition of robustness:

RSa,P =

∫

P

Ψ(p)DS
a (p) dp (1.27)

where R is the robustness of system S with regards to function a against a set of pertur-
bations P , Ψ(p) the probability for perturbations p to take place, D(p) the evaluation
function under perturbation p. A system S1 can be said to be more robust than a system
S2 with regard to a function a against a certain set of perturbation Y when RS1

a,Y > RS2
a,Y .
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Measuring the robustness of a system means to determine the behaviour as a function
of the input [SSS+04]. An analysis of robustness in complex systems requires detailed
specifications of functions, disturbances and robustness measures considered [SSS+04].

R

S

E E∗

Figure 1.24: Stimulus-Response curve for a homeostatic system with negative feedback [TCN03]. The
corresponding wire-diagram is shown as inset.

The coordination of physiological processes which maintain most of the steady states
in organisms is called homeostasis [Kit07]. Using a negative feedback, the response
counteracts the effect of the stimulus. One example is shown in Figures 1.24, described
in [TCN03]. Homeostasis can be also described as stability through constancy with the
purpose of physiological regulations to clamp each internal parameter at a set-point by
sensing errors [Ste04]. In contrast, ”allostasis” is stability through change. The goal
of regulation is not constancy but rather fitness under natural selection [Ste04]. Figure
1.25 shows both types of robust systems in a condensed way.
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Figure 1.25: Homeostasis vs. allostasis model. Allostasis change the controlled variable by predicting,
what level will be needed. [Ste04]
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1.2.8 Sensitivity analysis

Sensitivity analysis is the study of how the variation in the output of a model can
be apportioned, qualitatively or quantitatively, to parameter variations, and how the
given model depends upon the information fed into it [SCS00]. In systems biology
sensitivity analysis yields sensitivity values that tell us how a single parameter or a
group of parameters affect the dynamics of a given variable, and these two pieces of
information (parameter-variable) must accompany any sensitivity value. In general two
different approaches can be distinguished, i) local and ii) global sensitivity analysis.

Local Sensitivity Analysis [SCS00]: One parameter at a time is varied within a small
interval around a nominal value. This is repeated with the same perturbation for
all parameters. The local sensitivity approach is practicable when the variation
around the midpoint of the input factors is small; in general, the input-output re-
lationship is assumed to be linear. When significant uncertainty exists in the input
factors, the linear sensitivities alone are not likely to provide a reliable estimator
of the output uncertainty in the model. When the model is nonlinear and various
input variables are affected by uncertainties of different orders of magnitude, a
global sensitivity method should be used.

A common approach to determine local sensitivities is the ”finite difference ap-
proximation”. This is done by changing one parameter k at a time where a 1%
change is a good practical choice in most cases, see also Table 1.2, and measuring
the change in a target variable Y . Other methods include the direct method which
uses the Jacobian matrix J and parametric Jacobian matrix F , Table 1.2.

Global Sensitivity Analysis [SCS00]: The aim is to apportion the uncertainty in the out-
put variable to the uncertainty in each input factor. Distributions that represent
our degree of knowledge for each parameter provide the input for the analysis. A
sensitivity analysis is considered global when a) all the parameters are varied si-
multaneously and b) the sensitivity is measured over the entire range of each input
parameter. Global sensitivities are variance based where the test data is either
generated with Monte Carlo methods (e.g. Sobol [SCS00]), or with a Fourier Am-
plitude sensitivity test (FAST). Another approach is the High Dimensional Model
Representation (HDMR) by Rabitz and co-workers [FHC+04] which aims to fa-
cilitate analysis of systems with many parameters. The disadvantage of global
sensitivity analysis is that the dynamics of the system, and therefore biologically
significant behavior, is likely to change over large parameter perturbations. This
means that sensitivities can change in different dynamic regimes and global sensi-
tivities might therefore not reflect biologically significant sensitivities.

1.2.9 Model Reduction

The goal of model reduction is the simplification of analysis of multivariate systems with
several parameters. During the procedure of model reduction the number of parameters
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SYk =
∆Y

∆k
S = −F

J

Principle of finite difference approx-
imation of local sensitivity analysis
for variable Y and parameter k.

Direct method approach where F is
the parametric Jacobian matrix and
J the Jacobian matrix.

Table 1.2: Illustration of finite difference approximation and direct method.

and/or variables is reduced. This reduction leads to different dynamic behaviors of the
model and the art is to eliminate those parameters/variables that maintain essential
properties of the system. There are different routes that model reduction [SMDC08]:

1. lumping of variables

2. sensitivity/identifiability based model reduction

3. time scale separation.

Lumping: Lumping is mostly based on biological intuition of the process and describes
the combination of different variables into one new variable. The drawback of
lumping is that the new variables might not have a representation with the bio-
logical system, therefore biological credibility is lost.

Sensitivity/Identifiability approach: The variables can be separated into three classes:
important, necessary and redundant. Redundant variable variables can be detected
using the normalized Jacobian of the system:

J̃i =




N∑

j=1

yi ∂fj
fj ∂yi




2

Redundant variable variables can be detected by considering only the N impor-
tant variables and calculating J̃i which expresses the strength of direct effects of
variables j on i-th variable. The variables j with the highest effects are called
necessary variables and J̃i is determined for them. Those variables that remain
are the redundant variables [SCS00].

Parameters for reduction can be determined using the normalized parametric Jaco-
bian (cf. Sensitivity). A principal component analysis of the normalized parametric
Jacobian, considering the important and necessary variables, reveals all parameters
that can be eliminated from the model [SCS00]. It is also possible to reduce the
mathematical rate laws using identifiability theory and principal component anal-
ysis. The resulting rate laws are reduced in their number of parameters and have
an increased identifiability [SMDC08]. In general it is wrong that if the sensitivity
of a parameter is small for all important variables, that this parameter could be
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eliminated from the model [SCS00]. The reason is due to indirect effects: setting
a parameter value to zero may change the trajectory of the system which will in
turn extent to other variables.

Time scale separation: Some processes within a model are very fast allowing for the
application of quasi-steady-state approximations or rapid equilibrium approxima-
tions. Very slow processes can be neglected leading to the occurrence of conserva-
tion laws. For both cases some of the differential equations are replaced by algebraic
equations which can be used to express several dependent variables as functions of
independent variables. The latter variables are determined as solutions of a smaller
set of differential equations not containing the dependent variables [KH04].

1.2.10 Sloppiness/ Sloppy Parameter Sensitivity

Many multi-parameter models are ’poorly constrained’ or ’ill conditioned’, meaning that
various parameter sets can exhibit the same dynamical behaviour. Such a poorly con-
strained model is called a ’sloppy’ model [BS03]. The behaviour of a sloppy model is
very insensitive to many parameter combinations, but also conversely very sensitive to
some other parameter combinations.

This is of particular importance in systems biology models, where some or many of the
model parameters are either unknown or significantly uncertain. Additionally, kinetic
models of biological regulation exhibit renormalized interactions (simplified dynamics)
and tentative topology (uncertain connectivity of proteins) [BS03]. Sloppiness is espe-
cially relevant to biology, because collective behaviour of most biological systems is much
easier to measure in vivo than the values of individual parameters. Sloppy sensitivity
spectra have been demonstrated in various systems biology models [GWC+07].

Workflow: The change in model behaviour is quantified as parameters θ varied from
their published/measured values θ∗ by the average square change in molecular
species time course:

χ2(θ) =
1

2NcNs

∑

s,c

1

Tc

Tc∫

0

[
ys,c(θ, t)− ys,c(θ∗, t)

σs

]2
dt ,

a kind of continuous least-square fit of parameters θ to data simulated from pub-
lished data θ∗ (experimental measurements or fitted ”Perfect Data”). ys,c(θ, t) is
the time course of molecular species s given parameters θ in condition c, and Tc
is the ”measurement” time for that condition. The species normalization σs is set
to be equal to the maximum value of species s across the conditions considered.
The sum runs over all molecular species in the model and over all experimental
conditions considered for the model. The total number of conditions and species
are denoted as Nc and Ns, respectively.
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To analyze the model’s sensitivity to parameter variation, the Hessian matrix cor-
responding to χ2 is considered:

Hχ2

j,k =
d2χ2

d(log θj)d(log θk)
,

The second derivative is calculated, since the first derivative will vanish for the
best fit (minimal cost function). The derivative is taken with respect to log θ to
consider relative changes in parameter values, because biochemical parameters can
have different units and widely varying scales. Analyzing H corresponds to approx-
imating the surface of constant model behaviour deviation to be Np dimensional
ellipsoids. The principal axes of the ellipsoids are eigenvectors of H. The width
of the ellipsoids along each principal axis is proportional to one over the square
root of the corresponding eigenvalue. The narrowest axes are called ”stiff” and
the broadest axes ”sloppy”. In general, very few principal axes are aligned to the
bare parameter axes; the ellipses are skewed from single parameter directions. The
eigenvectors tend to involve significant components of many different parameters.

Definition of a sloppy model: In a sloppy model, the characteristic parameter sensitiv-
ities

• evenly span many decades

• are skewed from bare parameter axes

What causes sloppiness?

• Transformation in parameter space between the bare parameters natural in
biology and the eigenvalues controlling system behaviour. This parameteri-
zation is fundamental to the system, not an artefact of the modelling process.

• Sloppiness depends not just upon the model, but also on the data it is fit to.

• Sloppiness may arise due to underdetermined systems, proximity to bifurca-
tions, and separation of time and concentration scales.

• Sloppiness emerges from a redundancy between the effects of different param-
eter combinations.

Consequences of Sloppiness: Direct parameter measurements must be both precise and
complete to usefully constrain predictions in sloppy systems. By contrast, collective
parameter fitting in general yields tight predictions with only a modest number
of experiments. Concrete predictions can be extracted from models long before
their parameters are even roughly known and, when a system is not already well-
understood, it can be more profitable to design experiments to directly improve
predictions of interesting system behaviour rather than to improve estimates of
parameters.

Robustness, see also Section 1.2.7, is often assumed to be an emergent evolved
property, but the sloppiness natural to biochemical networks offers an alternative
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non-adaptive explanation. Conversely, ideas developed to study evolvability in
robust systems can be usefully extended to characterize sloppy systems [Dan08].

1.2.11 Identifiability of Parameters

Identifiability deals with the uniqueness of the parameterization for a given model
[VR94]. This is an important question as identifiability is often assumed in systems
biology models, and parameters are sought without first establishing whether these can
be deduced from the set of measurements [AP09].

The parameters can be non-unique in two different ways. In the first case, there exist
two or more sets of parameter values for which a model generates identical simulations
for the observable quantities (deterministic non-identifiability). In the second case, two
substantially different parameter values yield simulated trajectories for the observables
(output variables) that are not identical but too close to be discriminated. (practical
non-identifiability) [VR94].

For the problem of parameter identification for systems which are not in a special for-
malism, there exist no general solution to the problem [FFE+06]. Early ideas included
the use of Taylor series, Generating series, Differential algebra and different transfor-
mations [WP96, WP97]. These approaches are restricted to low dimensional systems.
Most today available approaches make use of experimental design and include statisti-
cal properties [FFE+06]. Solutions of global optimization problems arising from these
approaches are given by numerical optimization algorithms [FFE+06]. An approach
based on assumptions of optimality of biological systems has been proposed in 2005
[GGD05]. In [FFE+06], conditions that guarantee local identifiability of biochemical re-
action networks are derived. In this work the problem of identifiability was approached
by linearizing the model. In a recent work by August and Papachristodoulou an a pri-
ori method for establishing identifiability for nonlinear dynamical systems is described
[AP09]. This approach uses a connections between parameter identifiability and state
observability.

1.2.12 Distinguishability of Model Structures

Distinguishability questions the uniqueness of a model structure within a class of com-
peting models [VR94].

Assuming two models, M and M ′ with two associated parameter vectors p and p′, one
can make the following definition: M will be structurally distinguishable from M ′ if, for
almost any feasible value p of the parameters of M , there is no feasible value p′ of the
parameters of M ′ such that M ′(p′) = M(p) [WP97].

It is easy to prove that the identifiability of two structures is neither necessary nor
sufficient for their distinguishability [WP97].

In a practical or nondeterministic framework a mechanism is never unique, since it is
always possible to postulate additional steps that involve unstable intermediates which
occur rapidly enough so that their inclusion does not significantly alter the computed
magnitudes of the observable species [VR94].
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1.2.13 Generalized Modelling

In biological systems it is often difficult to identify a unique model parameterisation
(cf. Identifiability of Parameters 1.2.11) or which processes one need to consider and
specify (cf. Model Reduction 1.2.9 and Identifiability of Parameters 1.2.11). To avoid
this specification, generalized models describe a class of systems exhibiting a similar
structure. The processes that are taken into account are neither restricted to specific
functional forms nor specific parameterisations [GF06].

The approach is based on a normalization procedure that is used to describe the
natural parameter of the system. The Jacobian matrix in the normalized steady state
is then derived as a function of these parameters. The eigenvalues of the Jacobian
determine the stability of the system.

The investigation of generalized modelling enables us to generalize insights from spe-
cific models. In particular, generalized models can be used to investigate local dynamics,
to identify important parameters and to draw conclusions on the global dynamics.

By investigating randomized parameterizations, this procedure allows us to find sta-
ble and unstable regions within the parameter space without specifying the considered
processes. This approach of generalized models has already been applied to such diverse
areas as socioeconomic, laser physics and ecological food webs [GF06]. Moreover, it
has been used to analyze the stability and robustness of states in metabolic networks
[STSB06, GSB+07], where generalized models are referred to as structural kinetic mod-
elling. The underlying procedure however, is the same.

Workflow:

1. State and describe the interactions/general functions considered, e.g. F (X)

2. Formulate the system of ODEs using the general functions

3. Normalized the model

a) assume there is at least one steady state

b) denote the dynamical variables in steady state X∗

c) define normalized state variables x = X/X∗, where x∗ = 1

d) define normalized general functions f(x) = F (X∗ x)/F ∗, where f∗ = 1

4. Substitute the definitions in (3.c) and (3.d) into (2)

5. Consider the steady state of the system: dx/dt = 0

6. Define the scale parameters and substitute in (4)

7. Compute the Jacobian of the normalized model and thereby define exponent
parameters

8. Rewrite the Jacobian in terms of scale and exponent parameters

9. Randomly set parameter values and calculate stability of each parameteriza-
tion
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10. Calculate correlation between every parameter and the stability of the system
and thereby identify important control parameters in the system

11. Perform a bifurcation analysis for these parameters

Limitation: The scale and exponent parameters only capture the local behaviour of the
generalized model. The bifurcation analysis is therefore limited to the investiga-
tion of local bifurcations. Nevertheless, this analysis enables us to draw certain
conclusions on the global dynamics of the generalized model.

1.3 The Organisation of Living Cells

In this book, our aim is a study of how cell functions are governed by biochemical
signals. The emphasis is on the “functional organisation” of the cell and the present
section is to describe what this means. This survey is a mini review and for a com-
prehensive description one should consult the literature (e.g. [AJL+02]) or the Internet
(e.g. www.wikipedia.org). A non-technical introduction is [Har01] and one designed
for engineers and computer scientists is [TB04]. For the area of cell signalling, specialist
literature include [Han97, Hel05, Gom03, Bec05]. We describe physical components and
processes they are involved in. The emphasis of this text is very much on processes and
physical objects and their properties are somewhat neglected. It should be here sufficient
to know that a protein has a three-dimensional structure that influences the mechanisms
by which it interacts with other molecules. How these proteins fold and their detailed
chemical composition is largely ignored. One does not always get away with a high level
of ignorance towards the biochemistry of intra- and inter-cellular processes but then this
chapter is only to introduce the most important concepts needed to access the specialist
literature.

DNA

“genome”

replication

RNA

“transcriptome”

transcription
Protein

“proteome”

translation

Figure 1.26: Information flow to generate a protein (protein synthesis). The picture on the right visualises
the three-dimensional structure of a protein. The entire process is also referred to as gene
expression.

The most fundamental physical object we are dealing with is this that of a (macro)molecule,macromolecule
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1.3 The Organisation of Living Cells

i.e., a chemical substance with a defined three-dimensional structure in which atoms are
held together. While the composition and structure of a molecule largely determines
how it can directly interact with other molecules, we are trying to avoid any detailed
discussion of how these molecules are created. Molecules interact through the forma-
tion and breakage of chemical bonds. Two important binding processes are covalent and bonds

non-covalent bonding/modification. Covalent bonding is an intermolecular bonding char-
acterised by the sharing of one or more pairs of electrons between two molecular species,
producing a mutual attraction that holds the resultant molecule together. Such bonds
are always stronger than the intermolecular hydrogen bond16 and similar in strength to
or stronger than the ionic bond17. There are four types of non-covalent binding processes
that bring molecules together in a cell: ionic bonds (electrostatic attractions), hydrogen
bonds, van der Waals attractions and hydrophobic force18.

A macromolecule is a molecule with a large molecular mass. A polymer is a generic
term used to describe a very long molecule consisting of structural units and repeating
units connected by chemical bonds. The key feature that distinguishes polymers from
other molecules is the repetition of many identical, similar, or complementary molecular
subunits in these chains. These subunits, called monomers, are small molecules of lower
molecular weight, linked to each other during a chemical reaction called polymerisation.
There are various important kinds of molecules we are interested in, including nucleic
acids, metabolites, proteins, enzymes, hormones.

A nucleic acid is a macromolecule that conveys genetic information. The most impor- nucleic acid

tant nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Nucleic RNA

acids are found in all living cells and viruses. DNA is made of four distinct monomers.

Metabolites are the intermediates and products of metabolism. The term metabolite metabolite

is usually used to refer to small molecules.

Proteins are polymers composed of larger numbers of monomers that are called amino protein

acids. In proteins, there are twenty different kinds of amino acids. The protein sequence
of amino acid monomers largely determines the protein’s shape and hence the interac-
tion with other molecules. The process by which a protein is generated involves first
transcribing (copying) the information of the DNA into an intermediate molecule RNA
and then translating it into its final form (Figure 1.26). The process by which the infor-
mation, made available in the genome, is facilitated in the cells function is also referred
to as gene expression (see also Figure 1.27). In multicellular organisms each cell carries
the same genome and yet cells can realise specialist functions in different tissues. The
process by which cells of different types are generated is called cell differentiation.

Most chemical reactions in biological cells do not happen by themselves or not as fast
if enzymes were not involved. An enzyme is a protein that catalyzes (facilitates, speeds enzyme

16A hydrogen bond is one mechanism by which parts of the same molecule are held together. It is an
attractive force between two partial electric charges of opposite polarity.

17Ionic bonds are a type of chemical bond based on electrostatic forces between two oppositely charged
ions. An ion is an atom or group of atoms with an electric charge.

18A hydrophobic molecule is repelled by water. They are not electrically polarised and unable to form
hydrogen bonds. Thermodynamics favor hydrophobic molecules clustering together, even though
hydrophobic molecules are not actually attracted to another.
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Figure 1.27: Gene expression is the process by which information in the genome is facilitated to realise
the cell’s functions. The entire process is regulated, controlled and coordinated to ensure a
stable and fast operation that reacts sensitively to environmental cues.

up) a chemical reaction. A malfunction (mutation, overproduction, underproduction ormutation

deletion) of a critical enzyme is a potential cause for the malfunctioning of the cell. Like
all catalysts, enzymes work by lowering the activation energy of a reaction, thus allowingcatalyst

the reaction to proceed much faster (e.g. by a factor of millions).

The classic model of an enzyme-kinetic reaction is that a substrate combines with
the enzyme to form an intermediate complex before releasing the desired product and
the enzyme molecule. The enzyme is thus only temporarily involved and continues to
function after it has been involved in a reaction. This leads to the frequent assumption
of the total concentration, that is, the sum of free enzyme molecules and those bound
in complexes is constant. Such assumption tends to simplify mathematical equations
substantially.

Enzyme activity is effected by temperature, pH levels and other effector molecules. Aneffector molecules

effector molecule is a regulatory or small molecule that can bind to a protein and alter
its activity. One distinguishes between inhibitors and activators. The active site of an
enzyme is the binding site where catalysis occurs. The structure and chemical properties
of this active site allow the recognition and binding of the substrate. The active site in
many enzymes can be inhibited or suppressed by the presence of another molecule. There
are three primary modes of reversible inhibition. In competitive inhibition, the active siteinhibition

itself is blocked when a molecule chemically similar to the substrate binds to the active
site but cannot be processed by the enzyme. In noncompetitive inhibition, the inhibitor
binds to the enzyme at another site, the allosteric site, and this causes a structural change
in the enzyme such that the active site is rendered useless. Uncompetitive inhibition, is
similar to noncompetitive inhibition except that the inhibitor can only bind the enzyme-
substrate complex rather than the free enzyme. Allosteric control is the process in
which an enzyme’s or protein’s behavior is modified by binding an effector molecule at
the protein’s allosteric site (that is, a site other than the protein’s active site). Effectors
that enhance the protein’s activity are referred to as allosteric activators, while those
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1.3 The Organisation of Living Cells

that decrease the protein’s activation are called allosteric inhibitors.

The two most important classes of cellular processes in which proteins are the basic
physical objects are metabolism and signalling. Metabolism is the biochemical modifica-
tion of chemical compounds in living organisms and cells. This includes the biosynthe-
sis of complex organic molecules (anabolism – consuming energy and their breakdown biosynthesis

(catabolism – generating energy. Metabolism usually consists of sequences of reaction
steps, catalyzed by enzymes. Networks of such reaction steps are refereed to as metabolic
pathways. To realise metabolic functions, the cell requires energy. In thermodynam-
ics,free energy is a measure of the amount of work that can be extracted from a system. free energy

In this sense, it measures not the energy content of the system, but the ‘useful en-
ergy’ content. Gibbs free energy is an energy measure, calculated from the system’s
internal energy, the pressure, volume, temperature and entropy. Is the dissipation of
Gibb’s free energy through a cell’s network of biochemical reactions zero, the system is
in thermodynamic equilibrium and the cell dies. A living cell thus operates away from equilibrium

thermodynamic equilibrium.

After we have introduced the most important physical objects and briefly mentioned
metabolism, we now consider the physical structure of the cell before considering cell
signalling as a key aspect of the cell’s functional organisation.

1.3.1 The structural organisation of the cell

The most obvious aspect of the structural organisation of the (eucaryotic) cell (Figure structural
organisation1.28) is given by the outer membrane and the inner membrane that defines the nucleus.
membrane

nucleus

While the procaryotic cell (microorganisms, bacteria etc. is characterised by only one
compartment, the eucaryotic cell has the inner membrane that defines the nucleus. The
nucleus of the cell contains the genetic material or genome in form of the double-stranded genome

DNA molecule with its characteristic double helix structure. The genetic material is
packed into chromosomes. A gene is a generic term to describe the role of information- chromosome

and protein-coding regions in the genome. The medium between the nucleus and the
outer membrane is the intracellular fluid cytosol . The area between the outer and inner cytosol

membrane, including all of the components therein is called cytoplasm. The cytoskeleton cytoskeleton
is a meshwork providing structural support for the cell. As part of the cytoskelton,
microfilaments, made of actin, provide mechanical support (and participate in some cell-
cell or cell-matrix interactions), while microtubules, made of tubulin act as a transport
system for molecules.

In addition to the two main compartments (nucleus and cytoplasm), eucaryotic cells
have organelles, that are smaller compartments with a membrane and which contain a organelles

set of specific enzymes. Material can pass through the membranes directly or through
gates. More specifically, there are three kinds of proteins that are embedded in the outer
cell membrane and organelle membrane to allow material import and export: pore

ion channel
transport
pump

Pores: are made of pore-forming proteins, called porins. Pores allow small hy-
drophilic molecules (molecules that can transiently bond with water) to pass through
the membrane of an organelle.
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Figure 1.28: Structural organisation of the (eucaryotic) cell. The defining boundary structures are the
outer membrane and the inner membrane that defines the nucleus. Material, signals and
information can pass through the membranes directly, through gates, or through receptors.
What the drawing does not show are two important structural elements: the cytoskele-
ton (providing structural support and transport mechanisms) and other organelles in the
cytoplasm that fulfill specialised roles in the processing of proteins.

Ion Channels: are membrane proteins that allow specific inorganic ions (e.g. - Na+,
Potassium - K+, Calcium - Ca2+) to pass through membranes. Ions are electri-
cally charged particles. For example, in nerve cells ion channels are responsible for
electrical signaling, but they are also involved in muscle contraction, respiration,
hormone release etc. Ions either diffuse passively in and out of the cell along a
electrochemical gradient or they are actively transported by pumps.

Pumps: are proteins that actively transport ions and other molecules across cellular
and intracellular membranes. Pumps can work against an electrochemical gradient.

The transport of molecules via pores, channels and pumps is obviously important for
the normal functioning of the cell. The transport of molecules occurs by different mech-
anisms, which can be separated into those that do not consume energy in the form of
ATP (passive transport) and those that do (active transport). Adenosine triphosphate
(ATP) is the ‘molecular currency’ of intracellular energy transfer; that is, ATP is ableATP

to store and transport chemical energy within cells. ATP also plays an important role
in the synthesis of nucleic acids and in signal transduction pathways, ATP is used to ac-
tivate protein, which subsequently leads to the transmission of a signal. ATP hydrolysishydrolysis

is the reaction by which chemical energy that has been stored and transported in ATP
is released to produce work. Metabolic processes primarily uses ATP hydrolysis, hydrol-
ysis of guanosine triphosphate (GTP) is another important energy source that is usedGTP

to drive the synthesis of peptides, and which plays an important role in cell signalling.
GTP hydrolysis is catalyzed by enzymes known as GTPases.

One distinguishes between unicellular and multicellular organisms (microorganisms or
microbes being an example for the former, humans for the latter). However, even bacteria
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Ion Channel:
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Transporter:

ATP
ADP+Pi

ATP-powered Pump:

Figure 1.29: Illustration of three important information/material transducers: Channels, transporters
and pumps.

form colonies in which cells communicate. A cell must therefore not be looked at in
isolation but always be considered with respect to the environment in which it realises its
function. In higher levels of structural organisation, say organs, the extracellular matrix extracellular matrix

(ECM) is any material part of a tissue that is not part of any cell. The extracellular
matrix is the defining feature of connective tissue. The ECM’s main component are
various glycoproteins (macromolecules composed of a protein and a carbohydrate). In
most animals, the most abundant glycoprotein in the ECM is collagen. The ECM also
contains many other components, including proteins such as fibrin (a protein involved in
blood clotting), elastin (a protein for the elasticity of connective skin tissue), minerals,
or fluids such as blood plasma or serum with secreted free flowing antigens (a substance
that stimulates an immune response, especially the production of antibodies19). The
ECM’s main role is to provide support and anchorage for the cells. An integrin is a
receptor protein in the plasma membrane that transmits information (e.g. mechanical
stimuli) from the ECM to the cytoskeleton.

This very brief overview of key structural aspects of the cell demonstrates that the
cell is a highly structured and dynamic environment with materials continually moved
around within the cell, between organelles as well as in and out of the cell. We next
consider the functional organisation of these processes. In Figure 1.30 key components
and concepts characterising the structural organisation of cells are summarised.

1.3.2 The functional organisation of the cell

Cell functions are an emergent, rather than an immanent or inherent, property of
molecules. Although it arises from molecular interactions, it cannot be reduced to
it. Structural organisation is usually easy to recognise through observation (e.g. mi-
croscopy). The functional organisation of a system is realised through molecules and functional

organisationconstrained by the cell’s structural organisation but is otherwise an abstract concept.
The search for universal principles or mechanisms in molecular- and cell biology is to a
large extent the study of functional organisation. In any particular context, the role of
a cell may be to grow, to specialise, to divide, or to die. These processes all require the
transfer of information. Signal transduction, cell signalling or simply signalling is the
study of the principles by which this transfer of biological information comes about.

19An antibody is a protein used in the immune system to identify and neutralise foreign objects like
bacteria and viruses.
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Figure 1.30: Key components and concepts characterising the structural organisation of cells.

Intercellular communication is accomplished by extracellular signalling and takes place
in complex organisms that are composed of many cells. Intercellular signalling is subdi-intercellular

signalling vided into the following types:
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• Endocrine signals are produced by endocrine cells20 and travel through the blood
to reach all parts of the body.

• Paracrine signals target only cells in the vicinity of the emitting cell (e.g. neuro-
transmitters21).

• Autocrine signals affect only cells that are of the same cell type as the emitting
cell (e.g. in immune cells). Autocrine signalling coordinates decisions by groups of
identical cells.

• Juxtacrine signals are transmitted along cell membranes via protein or lipid com-
ponents integral to the membrane and are capable of affecting either the emitting
cell or cells immediately adjacent.

Cells constantly receive and interpret signals from their environment (including other
cells). Most of the molecules that enable signalling between the cells or tissues are
known as hormones22. They realise extracellular signals. Another mechanism by which hormone

neighboring cells can share information are gap junctions. These junctions directly gap junction

connect the cytoplasms of joined cells so that small intracellular signalling molecules
(mediators) such as Ca2+ and cyclic AMP (cAMP) can pass through. mediator

Cell signalling is the basis for multicellularity and organises the cell’s function, includ-
ing apoptosis (programmed cell death), cell differentiation (e.g. specialisation of stem
cells) and cell division. The functional organisation of cell signalling is realised through

• signals encoding extra-cellular balances and information:

– physical ECM-to-cell and chemical cell-cell contacts related to adhesion, tis-
sue formation and development.

– transmission of information to regulate gene expression.

• signals encoding intra-cellular balances and information:

– transmission of information to regulate cell growth and cell cycle.
– homoeostasis of pH level, temperature and water imbalances.

A receptor is a protein on the cell membrane or within the cytoplasm or cell nucleus receptor

that binds to a specific molecule (a ligand), such as neurotransmitters, hormones, or ligand

neurotransmitter

hormone

other substances. There are various types of receptors, including:

• Peripheral membrane proteins that adhere only loosely to the biological membrane
with which they are associated.

• Many hormone receptors and neurotransmitter receptors are transmembrane pro-
teins that are embedded in the cell membrane, and which allow the activation of
signal transduction pathways in response to the binding of extracellular molecules.

20The endocrine system links the brain to the organs that control body metabolism, growth and devel-
opment, and reproduction.

21Neurotransmitters are chemicals that are used to relay, amplify and modulate electrical signals between
a neuron and another cell.

22Hormones are simplify defined as chemical messengers from one cell to others.
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• Another class of receptors are intracellular receptor proteins that can enter the cell
nucleus and modulate gene expression in response to activation by a ligand.

The important role of receptors in transmitting information and effecting gene expression
makes them an important target in the developments of drugs.

Transmembrane receptors are proteins that are inserted into the outer membrane of
the cell, with one end of the receptor outside (extracellular domain) and one inside
(intracellular domain) the cell. When the extracellular domain recognises a chemical
messenger, the receptor undergoes a structural change that affects the intracellular do-
main, leading to further action. In this case the hormone itself does not pass through the
outer membrane into the cell. This transfer of information is also referred to as signal
transduction. There are however also transmembrane receptors that are ion channels.
A ligand-activated ion channel will recognise its ligand, and then undergo a structural
change that opens a gap (channel) in the outer membrane through which ions can pass.
These ions will then relay the signal. An ion channel can also open when the receptor
is activated by a change in cell potential, that is, the difference of the electrical charge
on both sides of the membrane. If such a change occurs, the ion channel of the receptor
will open and let ions pass through.

Cell membrane

Target proteins

Intracellular (cytoplasmic) mediators

Effector enzymes

Receptor

Ligand binding domain

Ligand

Nuclear membrane

Changes in gene expression

Nucleus

Other changes

Small molecules

Altered metabolism

Second messengers

Transcription factors

Protein or lipid kinases
Phosphodiesterases
Metabolic enzymes

Enzymatic activity in intracellular domain

Protein kinase activity

Adaptor proteins
Docking proteins
GTP-binding proteins

Figure 1.31: A general signalling pathway model, receiving signals in form of ligands that bind to the
receptor. The binding leads to intracellular modifications and reactions that can inform or
modify gene expression.

Figure 1.31 outlines a generic signalling network or pathway. Signalling starts with
receptor proteins that are able to sense a change in the environment outside the cell.
Transmembrane receptors are found at the cell surface, where they bind to extracellular
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molecules that cannot penetrate the outer membrane. Receptors on the cell surface can
bind to water-soluble signalling proteins (chemical messengers) such as growth factors23 growth factor

and peptide hormones which may be produced at a distant site in the body (and delivered
in the bloodstream) or by neighboring cells. Peptide hormones are a class of peptides
that are secreted into the blood stream and have endocrine functions. cytokine

As a result of ligands binding to receptors, a signal is transferred across the outer
membrane. Ligand binding causes a change in the shape of the protein; this change
is transmitted from the extracellular part of the receptor to the part inside the cell.
Sometimes this involves the formation of dimers24 of receptor molecules, i.e., two recep- dimer

tors bonded together. This tends to occur for receptor proteins with amino-acid chains
that cross the membrane only once. For receptors that fold up so that they span the
membrane several times, ligand binding may cause different parts of the molecule to
reorientate themselves with respect to each other.

The stimulus to the receptor can lead to various subsequent reactions (activation of
molecules) within the cell. As a consequence of signalling many enzymes and receptors
are switched “on” or “off” by phosphorylation and dephosphorylation. Phosphorylation
is catalyzed by various specific protein kinases, whereas phosphatases dephosphorylate.
A kinase is a type of enzyme that transfers phosphate groups from high-energy donor kinase

molecules, such as ATP, to specific target molecules (substrates); the process is termed
phosphorylation. An enzyme that removes phosphate groups from targets is known as phosphorylation

a phosphatase. In cell signalling, the purpose of phosphorylation is to often ‘activate’
or ‘energise’ a molecule, increasing its energy so it is able to participate in a subse-
quent reaction with a negative free energy change. Figure 1.32 illustrates one possible
illustration for the sequential activation of proteins in mitogen-activated protein kinase
cascades. This type of signalling cascade is further discussed later on.

The phosphorylation of substrate proteins affects their interaction with other molecules.
Phosphorylated residues in a protein can act as binding sites for specific recognition do-
mains in other proteins. A domain in a protein is a self-folding unit with a particular domain

sequence and conformation, and certain domains allow proteins to recognise each other.
So, as a result of phosphorylation protein complexes can assemble, resulting in changes
in the localisation or activity of enzymes. Some intracellular (cytoplasmic) mediator
proteins in these complexes, referred to as adaptor proteins or docking proteins, may adaptor protein

docking proteinwork only to bring together other signalling molecules. Adaptor proteins tend to lack
any intrinsic enzymatic activity themselves but instead mediate specific protein-protein
interactions that drive the formation of protein complexes.

Another aspect of intracellular signalling is realised through the activation of small
molecules or second messenger molecules. Second messengers are low-weight diffusible small molecules

molecules that are synthesised or released by specific enzymatic reactions, usually as

23The term growth factor is sometimes used interchangeably with the term cytokine. Historically, cy-
tokines were associated with hematopoietic (blood forming) cells and cells of the immune system
(e.g. lymphocytes).

24A dimer refers to a molecule composed of two similar subunits or monomers linked together. It is
a special case of a polymer. In a homodimer the two subunits are identical, while in a heterodimer
they differ (despite being very similar in structure).
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Figure 1.32: Illustration for the sequential activation of proteins in mitogen-activated protein kinase
cascades. This picture is a refined depiction of what is shown in Figure 1.31. See also
Section 4.8.8.

a result of an external signal that was received by a transmembrane receptor and pre-
processed by other membrane-associated proteins. There are three basic types of second
messenger molecules:

• hydrophobic molecules (repelled by water) are membrane-associated and regulate
other membrane-associated proteins.

• hydrophilic molecules (e.g. Ca2+) are water-soluble molecules that are located
within the cytosol.

• gases, nitric oxide (NO) and carbon monoxide (CO), that can diffuse both through
cytosol and across cellular membranes.

These intracellular messengers have some properties in common:

• They can be synthesised/released and broken down again in specific reactions by
enzymes.

• Some (like Ca2+) can be stored in special organelles and quickly released when
needed.

• Their production/release and destruction can be localised, enabling the cell to limit
space and time of signal activity.

An important second messenger is cyclic adenosine monophosphate (cAMP, cyclic
AMP) a molecule derived from adenosine triphosphate (ATP). cAMP is a second mes-cAMP

senger, used for intracellular signal transduction, such as transferring the effects of hor-
mones, which cannot get through the cell membrane. Its main purpose is the activation
of protein kinases; it is also used to regulate the passage of Ca2+ through ion channels.
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Responses triggered by signal transduction include changes in the gene-expression
programme of the cell, the production of metabolic energy and cell locomotion, for
example through remodelling of the cell skeleton. Genes are expressed as proteins, many
of which are enzymes, transcription factors25 or other regulators of metabolic activity. transcription factor

Because transcription factors can activate still more genes in turn, an initial stimulus
can trigger via signal transduction the expression of entire set of genes and subsequently
creating a physiological response of multicellular systems.

The activation of genes through signalling usually requires the movement (translocation) translocation

of a protein from the cytoplasm to the nucleus. Specific recognition systems ensure the
import and export (shuttling) of proteins to and from the nucleus. These systems recog-
nise sequence motifs26 in the proteins, and the accessibility of the motifs may be altered sequence motif

as a result of phosphorylation or complex formation. A protein complex is a group of two
or more associated proteins. Proteins can be made up of modular units, which belong
to families of related structures. Modules may be either domains or smaller motifs, such
as some phosphorylation sites. Modules can direct protein-protein interactions through
their ability to interact with other modules. They may also have enzymatic activity,
which in signalling proteins is often used to regulate other molecules. A large protein
may contain several different modules, each of which behaves similarly to related modules
in other proteins. A protein is thus made up of generic functional building blocks, which
have been shuffled around during evolution to yield different combinations of interactions
and activities.

The response of cells to activation of a particular signalling pathway depends on the
strength of stimulus and the subsequent activation of proteins. Pathways can show
graded responses - the stronger the activation of the intermediate proteins in the path-
way, the stronger the final activity. In these cases, because different cells may show
different sensitivities to a signal, low signal strengths might activate a subset of the re-
sponses that are activated by high signal strengths. In addition, some pathways work
as on/off switches - once the signal strength rises above a certain level, positive feed-
back results in full activation of downstream targets. Such dynamic motifs are further
discussed in later sections. The time course of a signalling pathway can also be critical.
Transient activation of a pathway may have quite different effects to longterm activation.
An understanding of cell signalling thus requires dynamic systems theory – and hence
mathematical modelling and computational simulation.

What follows are illustrative examples of signalling mechanisms; there are many more
described in the literature.

25A transcription factor is a protein that binds DNA at a specific promoter or enhancer region or site,
where it regulates transcription. Transcription factors can be selectively activated or deactivated by
other proteins, often as the final step in signal transduction.

26In general, a sequence motif is a nucleotide or amino-acid sequence pattern that has, or is conjectured
to have, biological significance.
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1.3.2.1 Signalling by G-protein-linked receptors

An important mechanism of signalling is the binding of water-soluble hormones to trans-
membrane receptors of the G-protein-linked receptor family. Binding of the hormoneG-protein

agonist activates the receptor, which in turn activates the G-protein acting as the trans-
ducer. The G-protein dissembles upon activation, one of the subunits then interacts with
the effector enzyme, which in turn catalyzes the production of cAMP second messenger
molecules that relay the signal within the cell. The process by which G-protein-linked
receptors function is illustrated in Figure 1.33.

receptor

ATP CAMP
Gβγ Gγ

effector
enzyme

GTP GDP

Signal (agonist)

second messenger

transducer
G - protein

Figure 1.33: Signalling by G-protein-linked receptors as an example for the activation of signalling path-
ways.

1.3.2.2 Signalling by tyrosine kinase receptors

The protein family of receptor tyrosine kinases (RTK) is another example of transmem-tyrosine kinase
receptors brane signalling receptors. RTKs act as transducers of growth factor signals. These

molecules posses kinase activity through a ligand dependent dimerisation27.dimerisation

Mitogen28-activated protein kinase (MAPK) pathways are an example of networks ac-mitogen-activated
protein kinase tivated by RTKs. An example of a MAPK pathway is the Ras/Raf/MEK/ERK pathway.

This kinase cascade controls cell differentiation and proliferation of various cell types.
An example for a specific receptor is the epidermal growth factor receptor (EGFR).epidermal growth

factor receptor The textbook version of the signalling process describes it as a cascade (Figure 1.34) of
signalling steps:

1. Ras is activated by growth factor receptors and binds to the Raf-1 kinase with
high affinity if activated.

2. This induces the recruitment of Raf-1 from the cytosol to the cell membrane.

3. Activated Raf phosphorylates and activates MEK, a kinase that in turn phospho-
rylates and activates ERK.

27A dimer refers to a molecule composed of two similar subunits or monomers linked together. It is
thus a special case of a polymer. The monomers will dimerise, or join together, upon the binding of
a signal to the receptor of each monomer.

28A mitogen is a substance that causes a cell to begin dividing.
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Figure 1.34: Textbook illustration of the Ras/Raf/MEK/ERK pathway as a representative of MAPK
pathways. Drawing adapted from [Kol00]. This drawing is an example of the general
MAPK cascade shown in Figure 1.32.

4. Activated ERK can translocate to the nucleus and regulate gene expression by
phosphorylation of transcription factors.

1.3.2.3 Interaction- and pathway maps

The graphical representation of biochemical reaction networks leads to what are inter-
changeably called pathway maps, process diagrams or molecular interaction maps (MIM). molecular interaction

mapThere is at present no accepted standard on how to visualise reaction networks and we
therefore do not argue for one or another format. The discussion of graphical represen-
tations and their translation into mathematical equations, respectively computational
models is very helpful in classifying types of interactions and processes as described in
the previous sections.

Noteworthy are the interaction map standard, originally devised by Kohn [Koh01,
KAWP05] (for an example of a molecular interaction map of the mammalian cell cycle
control and DNA repair systems see [Koh99]) and the CellDesigner software [Kit02]. In
[OMFK05] this software was used to devise a comprehensive pathway map of epidermal
growth factor (EGF) signaling. The map is described as a state transition diagram in state transition

diagramwhich states of the system are represented by nodes and arcs describe state-transitions
[KFMO05].

In Kohn’s MIMs, interactions between molecular species are shown by different types of
connecting lines, distinguished by arrowheads and other terminal symbols. Molecular in-
teractions are of two types: reactions and contingencies. Reactions include non-covalent
binding and covalent bonds/modification, stoichiometric conversion29, transcription and stoichiometry

29Stoichiometry rests upon the conservation of mass and is often used to balance chemical equations;
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degradation. Contingency arrow symbols describe stimulation, requirement inhibition
and enzymatic catalysis. Reactions operate on molecular species, while contingencies
operate on reactions on other contingencies.

There are ‘elementary’ and ‘complex’ molecular species, where the latter are com-
binations or modifications of elementary species. The effect of an interaction can be
positive or negative. The net effect of a sequence of interactions is a stimulation if the
number of negative effects is even, while the net effort is an inhibition if the number of
negative effects in the sequence is odd. The consequence or product of an interaction is
indicated by placing a small filled circle on the interaction line (not at the end). The
consequence of binding between two molecules is the production of a dimer. The conse-
quence of a modification event (e.g. through phosphorylation) is the production of the
modified molecule. Covalent modification includes, amongst others, phosphorylation30,phosphatase

acetylation31 and ubiquitination32. Acetylation, phosphorylation and ubiquitination areacetylation

ubiquitination also referred to as posttranslational modification, that is, a chemical modification of a
protein after its translation.

1.3.2.4 Temporal aspects

Signalling processes take place in as little time as a few seconds (e.g. metabolites),
few minutes (e.g. phosphorylation) or as long as a few hours (e.g. transcription). In
Figure 1.35 the many different and wide ranging time scales of metabolic processes
are summarised. An important decision in modelling is the choice of the appropriate
spatial level at which to model. In systems biology the level is the cell and occasionally
that of molecules. For time scales we can also make assumptions. If processes happen
rather fast compared to the phenomena under investigation, one can assume these to
be instantaneous. Similarly, if the level of a certain variable is rather large, changes to
that variable may be somewhat small, suggesting that one might consider this variable
as constant.

Not only are the processes within the cell highly dynamic, the cell itself is continuously
changing. In mathematical modelling we frequently assume that the environment of a
process is not changing so that model parameters are time invariant and the analysis of
the dynamic behavior remains tractable. In eucaryotic cells all processes are however
subordinate to the highly coordinated process of cell division or cell cycle. The phasescell cycle

of the cell cycle are:

• The G0 phase is a period in the cell cycle where cells exist in a quiescent state,
that is, a resting state of the cell in which it is not dividing.

it describes the molar proportions of components, that is, in chemical reaction diagrams it describes
the number of molecules of a particular molecular species involved in that reaction.

30In eukaryotes, protein phosphorylation is an important regulatory event. Many enzymes and receptors
are switched ‘on’ or ‘off’ by phosphorylation and dephosphorylation. Phosphorylation is catalyzed
by various specific protein kinases, whereas phosphatases dephosphorylate.

31In living cells, acetylation occurs as a post-translational modification of proteins.
32Ubiquitylation, also termed ubiquitination, refers to the process particular to eukaryotes whereby a

protein is post-translationally modified by covalent attachment of a small protein (ubiquitin). The
ubiquitin’s main function is to mark other proteins for destruction, known as proteolysis.
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Figure 1.35: Processes in the cell occur at widely differing time scales. If a process is relatively fast,
relative to the one we are considering, we may assume that changes in this process are
instantaneous. If on the other hand a process is relatively slow to the one we consider, we
may assume the variable to be constant. Picture adopted from [Fel97].

• The G1 phase is the first growth phase. During this stage new organelles are being
synthesised, resulting in great amount of protein biosynthesis. The metabolic rate
of the cell will be high. G1 consists of four subphases which may be affected
by limiting growth factors, nutrient supply, and additional inhibiting factors. A
cell may pause in the G1 phase before entering the S phase and enter a state of
dormancy (G0 phase).

• S phase, during which the DNA is replicated, where S stands for the Synthesis of
DNA.

• G2 phase is the second growth phase, also the preparation phase for the cell.

• M phase or mitosis and cytokinesis, the actual division of the cell into two daughter
cells. Mitosis is the process by which a cell separates its duplicated genome into
two identical halves. It is generally followed immediately by cytokinesis which
divides the cytoplasm and cell membrane. This results in two identical daughter
cells with a roughly equal distribution of organelles and other cellular components.

The duration of a complete cell cycle is several hours. The cell cycle has been modelled
in considerable detail, most notably by John Tyson and Béla Novák. A search for
their names in literature databases provides a rich source for thorough and well written
expositions of mathematical modelling in molecular and cell biology. Chapter 5 will
discuss this topic further.

Figure 1.36 summarises key processes and concepts characterising the functional or-
ganisation of cells.

1.4 Cell Chemistry

The is the basic building block of which higher organisational levels such as tissues
and organs and entire organisms are composed. This chapter is to review some basic
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Figure 1.36: Key processes and concepts characterising the functional organisation of cells.

concepts from molecular- and cell biology. The text can however not even cover the
bare minimum of the information and a comprehensive book such as the standard text
[AJL+02] is strongly recommended as a reference.

The cell is a rather complex environment, consisting of many different components.
Because cells are about 70% water, life depends mostly on aqueous chemical reactions33.
These reactions occur between molecules, where a molecule is a cluster of atoms, held
together by so called covalent bonds. The weight of a molecule is its mass relative tocovalent bonds

that of an hydrogen atom. The mass of a molecule is specified in Daltons, 1 Da being

33There are alternative views that emphasise a gel-like character of the cell [Pol01]. The issue of what
the inside of a cell is like should be important to us in modelling the interactions of molecules. In a
somewhat brave act of modelling we later consider molecules as floating around as if they were in a
gas.
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1.4 Cell Chemistry

an atomic mass unit approximately equal to the mass of a hydrogen atom.

moles =
weight

molecular weight
(a quantity)

One mole, 1 M, corresponds to NA
.
= 6.022 · 1023 molecules of a given substance. NA

is referred to as the Avogadro’s number. The molarity of a solution is defined by a
concentration of 1 mole of the substance in 1 liter of solution:

1 molar ≡ 1M ≡ 1
mol

L
(a concentration)

For example, 1 moles of glucose weights 180 g; a molar solution, denoted 1 M, of glucose
has 180 g/L. If we dissolve 1 mol in 0.5 liters, we have 2 M solution, although the amount
of substance is the same.

If molecules are clusters of atoms, held together by bonds, these bonds can be broken
by violent collisions amongst molecules. Average thermal motion at normal temperatures
does not break these bonds and thus the deliberate breaking and making of bonds is
the fundamental process that determines the concentrations of chemical species in a
reaction and subsequently cell function. This process requires energy to take place and
is carefully controlled by highly specific catalysts, which in biological systems are called
enzymes. How fast a reaction occurs is a matter of kinetics, defined by the rate of a kinetics

reaction. In general, energy is the ability of a system to perform work, which is also why
one speaks of energetics in this context. energetics

There are two principle types of biochemical reactions: catabolic pathways, breaking catabolic pathways
down foodstuff and thereby generating energy and smaller building blocks. Secondly,
biosynthetic or anabolic pathways use energy to synthesise molecules. Both sets of reac- anabolic pathways

tions together constitute what is called the metabolism of the cell. metabolism
Apart from water, nearly all molecules in a cell are based on carbon. Carbon-based

compounds are used in the cell to construct macromolecules, including the nucleic acids
(DNA, RNA), and proteins. Proteins are particularly versatile, having various roles in
maintaining the function of a cell and the organism as a whole. Many proteins serve as
enzymes that are catalysts that control kinetic (bond-breaking and -making) reactions. enzymes

Other proteins are used to build the structural components that make up the cell, or they
act as motors and produce force and movement. Enzymes catalyze reactions by binding
one or more ligands which are also called substrates, and converting them into one or
more chemically modified products, without changing themselves. Enzyme-catalyzed
reactions happen faster by a factor of a million or more than a non-catalyzed reaction.
They are therefore an important mechanism by which the cell can respond to changes
and regulate its functions. A typical enzyme will catalyze the reaction of a thousand
substrate molecules every second. The enzyme therefore requires sufficient amounts of
substrate around it. The motion caused by collisions and thus heat energy ensures that
molecules are rapidly moving about a confined area but can also move (diffuse) wider
distances. The cell is a crowded environment and yet a small organic molecule can diffuse
the entire distance across a cell in a fraction of a second.
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Enzymes move much more slowly than substrates, and the rate of encounter of each
enzyme molecule with its substrate will depend on the concentration of the substrate
molecule. For example, an abundant substrate may have a concentration of 0.5 mM
and since water is 55 M, there is only about one such substrate molecule in the cell
for every 105 water molecules. Nevertheless, an enzyme that could bind this substrate
would collide with it about 500, 000 times a second.

The biological properties or function of a protein is determined by its physical inter-
action with other molecules. The substance that is bound by a protein is referred to as a
ligand for that protein. In cell signalling, ligands binding to membrane bound receptorsligand

provide the stimulus for intracellular reactions that transmit information to the genome
of the cell. Antibodies, or immunoglobulins, are proteins produced by the immune sys-
tem in response to foreign molecules. A specific antibody binds tightly to its particularantibody

target (called an antigen), and thereby inactivates it. Antibodies can therefore be used
in experiments to select and quantitate proteins. For example, considering a population
of antibody molecules which suddenly encounter a population of ligands, diffusing in the
fluid surrounding them. The frequent encounters of ligands and antibody will increase
the formation (association) of antibody-ligand complexes. The population of such com-
plexes will initially increase but eventually complexes will also break apart (dissociate).
Eventually, a chemical equilibrium is reached in which the number of association events
per second is equal to the number of dissociation events. From the concentrations of the
ligand, antibody and the complex at equilibrium, one can calculate the equilibrium con-
stant Keq of the strength of binding. The same principle described here for antibodies,
applies to any binding of molecules.

We are going to use capital letters to denote molecular species, e.g., A, B, ERK, MEK.
A complex formed from proteins A and B is denoted either AB, A− B or A/B. If the
molecules are not referring to particular names, like A and B, we usually write AB for
the complex. For known proteins, e.g., Ras∗ and Raf we write Ras∗/Raf. In some cases
the protein complex gets a separate name, e.g., for the MAPK/ERK complex we write
MEK. Considering a reversible reaction A + B ↔ (AB), for dissociation the reaction
diagram is

(AB)
kd−→ A+B ,

where the dissociation rate equals the product of kd and the complex concentrationdissociation rate

(AB). Note that in the reaction diagrams the symbols denote molecular species while
in mathematical equations we use square brackets to distinguish concentrations from
counts of molecules. For the association of molecules,

A+B
ka−→ (AB) ,

the association rate is the product of ka, A and B. At equilibrium,association rate

kaA ·B = kd(AB)

and which leads us to the definition of the equilibrium constantequilibrium constant
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1.5 Cell Signalling

Keq =
(AB)

A ·B =
ka
kd

. (1.28)

The equilibrium constant of this particular reaction has a unit of liters per mole. The
larger the equilibrium constant, the stronger the binding between A and B. Taking
an example which considers molecule numbers rather than concentrations [AJL+02],
considering 1000 molecules of A and 1000 molecules of B, with concentration 10−9 M.
For Keq = 10−10 of the reversible reaction

A+B 
 (AB) ,

there will be 270 A molecules, 270 B molecules and 730 (AB) molecules. For a reduction
in binding energy of 2.8 kcal/M, reducing the equilibrium constant to Keq = 10−8, there
will be 915 A molecules, 915 B molecules, and 85 AB molecules. For every, 1.4 kcal/M
of free energy drop, the equilibrium constant increases by a factor of ten. Note that for
the system to be in equilibrium, there is no flow of mass or material. In later sections we
introduce the concept of steady state, for which changes in concentrations are zero. In
dynamic systems theory, a steady state is sometimes also referred to as an equilibrium so
that there is a risk for confusion. For the biochemist a biological system in equilibrium
is dead.

1.5 Cell Signalling

For cells to combine into networks that realise higher levels of organisation, including for
example tissue and organs, it is necessary for them to communicate, exchange informa-
tion. The basis for this intercellular signalling are the receptors in the cell membrane.
The transmission of extracellular information to the genome is referred to intracellular
signalling. Inter- and intra-cellular information effects the transcription of information
from the genome and the synthesis of proteins. For more comprehensive discussions
of cell signalling see [Dow01, Han97]. The glossary on page 395 provides help with
unfamiliar terminology.

The transmission of information is realised by chemical reaction networks, called path-
ways. Signals, passing these networks, are realised through changes in concentrations.
The cell membrane and the nucleus in eucaryotic cells form physical barriers. There
are principally two ways to pass these barriers - through active transport of molecules
passing through the cell surface (e.g. via pores or gap junctions) or nucleus or via sig-
nal transduction, i.e., receptor stimulation and phosphorylation as a means to transmit
information without the movement of molecules. We may refer to these two modes of
signalling as the “radio” versus “courier” mode of signal transmission. The location of a
signalling molecule within the cell affects the interaction with other proteins and hence
the movement of molecules to different cellular locations, called translocation, influences translocation

the dynamics of a signalling pathway.

We are here going to focus on receptor-ligand signalling where extracellular molecules
that bind to receptors in the cell membrane are referred to as ligands. Extracellular ligand binding
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Figure 1.37: A drastic simplification of intra-cellular signalling. Extracellular stimulation of the receptors
is transduced into the cytoplasm. A series of biochemical reactions transmits the signal
towards the genome, where the transcription of genes can be affected as a consequence of
receptor stimulation.
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Figure 1.38: Left: Most commonly receptors are bound to the transmembrane, where they bind an
extracellular signal molecule (Ligand). Right: Small signaling molecules can enter the cell
where they activate receptors inside the cell.

signalling molecules include hormones, cytokines and growth factors. Usually extracel-
lular signals are found at very low concentrations, in the order of 10−8 mol/L [Han97].
Binding to receptors is highly specific to particular ligands. Not all ligands that bind to
receptors result in the activation of that receptor. Ligands that bind to receptors and
thereby prevent activation, are called antagonists. Denoting the ligand with a ‘L’ and
the receptor with ‘R’, ligand binding to monovalent receptors with only one binding site
can be described as a reversible reaction

L+R
k1−⇀↽−
k2

(LR) .

The ratio of the concentrations, where 50% of the ligands are bound to receptors, is
defined as via the dissociation constantdissociation constant
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Kd =
R · L
(LR)

=
k2

k1
.

The lower the Kd value, the higher the affinity of the receptor for its ligand. Generalis-
ing34 the principle of mass action a mathematical model of monovalent receptor binding
is given by the equation

d(LR)(t)

dt
= k1L(t)R(t)− k2(LR)(t) ,

where k1 (M−1sec−1) describes the rate constant of the receptor-ligand interaction and
k2 (sec−1) describes the rate constant of the breakdown of the ligand/receptor complex
LR. Solving this differential equation provides us with an equation for the temporal
evolution of the ligand/receptor complex (LR)(t). We got a bit ahead of ourselves here
by jumping to this differential equation. In subsequent sections we are going to discuss
ways to establish such differential equation models and compare it with alternative
formulations35. We return to receptor modelling in Section 4.7.

extracellular signaling molecule

intracellular
signaling
proteins

target
proteins

cytoskeletal proteins alter-
ing cell shape and move-
ment

gene regulatory proteins
altering gene expression

metabolic enzymes alter-
ing metabolismreceptor protein

Figure 1.39: Basic molecular components involved in intracellular signaling.

The consequence of signalling through ligand-binding is in most cases a modification of
the activity of intracellular enzymes or activation factors (e.g. transcription factors that
determine the reading or transcription of information encoded in the genome). A change
in enzyme activity is achieved through a change in its conformation (three-dimensional
structure). The altered spatial arrangement of the active site (amino acids) reduces or
increases the protein’s catalytic action and binding to substrate.

One of the most common ways to alter the spatial arrangement and hence the prop-
erties of a protein is by adding of one or more phosphate groups, a process known as
phosphorylation. The enzymes that catalyze protein phosphorylation are known as pro- (de)phosphorylation

tein kinases or kinases for short. The reverse process of dephosphorylation is catalyzed kinases,
phosphatasesby phosphatases. Protein kinases and phosphatases are signalling molecules which cat-

alyze the transfer of a phosphate group supplied by adenosine triphosphate (ATP) to

34The term ‘generalised principle of mass action’ indicates the fact that we are not strictly using this
balance principle. For various reasons, including the indirect measurements in cell signalling, the
differential equation models described here are in most cases phenomenological models rather than
exact representations of physical interactions among molecules.

35Specifically for mathematical models of receptor binding the work of Lauffenburger and colleagues is
notable [LL93].
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Figure 1.40: Phosphorylation and dephosphorylation steps in the MAPK pathway.

and from target proteins respectively. The transfer ends with the release of adenosine
diphosphate (ADP). The transfer of the phosphate group occurs only at specific binding
sites, i.e., specific locations or amino acids of the target protein. The amino acids inbinding sites

the primary sequence of the polypeptide at which phosphorylation takes place are ser-
ine, threonine, and tyrosine. The kinases are grouped according to which amino acid
they are specific for. Tyrosine protein kinases catalyze the phosphorylation of tyrosine
residues, while serine/threosine protein kinases catalyze the phosphorylation of serine or
threonine residues. Some protein kinases (such as MAPK) can act as both, tyrosine and
serine/threosine kinases. Phosphorylated residues in a protein can act as binding sites
for specific recognition domains in other proteins. A domain in a protein is a self-foldingdomains

unit with a particular sequence and conformation. Certain domains allow proteins to
recognise each other. Phosphorylation is thus a mechanism by which protein complexes
can assemble. This results in a change of the localisation or activity of enzymes. Phos-
phorylation/dephosphorylation is a good regulatory mechanism since it can occur in
under one second [Han97]. Furthermore, the activation of a single kinase molecule re-
sults in the phosphorylation of many enzymes and therefore result in an amplificationamplification

of the intracellular signal.

While there are a vast number of proteins involved in signalling, many of the proteins
are similar in the sense that they consist of components (domains, modules, motifs),
some of which are found in many otherwise different protein molecules. At the amino
acid sequence level, this similarity is expressed as homology . It is therefore in somehomology

sense not just the protein as such but particular aspects of it which determine its role in
signalling. Because the properties of proteins and hence their ability to interact depends
on whether they are in a phosphorylated or unphosphorylated state, in mathematical
modelling we are going to introduce two variables for each of the states.

In response to signals important cell functions are influenced. These include:

• cell death (apoptosis);

• cell growth (proliferation);

• specialisation (differentiation);

• stress response;
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• cell cycle control.

Cell signalling is therefore of relevance to the development of an organism and the onset
of disease. For example, cancer is a disease of uncontrolled cell proliferation.

1.6 Experimental Techniques

Molecular and cell biology has been to a large extend driven by the development of
technologies. With the current speed at which new experimental techniques become
available36, one can expect major changes to our understanding of how the cell functions.

This section is intended to provide a few notes on methods for investigating cellular
signal transduction experimentally. The motivation is that for mathematical modelling
of signal transduction pathways it is important to appreciate the difficult and often indi-
rect process by which biological information is obtained. Biological information relevant
to mathematical modelling of signalling includes information about the interactions be-
tween proteins, information about the protein concentrations at a certain time point
and/or in a certain cell component, and kinetic information about the dynamics of
enzyme-catalysed reactions. Enzyme kinetics has been studied since the first half of the
last century. Its theoretical aspects are thouroughly discussed in chapter 2 but in the
following subsection 1.6.1 one experimental method of enzyme kinetic measurement is
introduced. The subsequent subsection 1.6.2 outlines a method for protein identification
and quantification, namely western blotting.

The given descriptions of experimental techniques are included to provide an appreci-
ation of the difficulties in getting accurate and quantitative biological data. The books
[AJL+02], [LC03], [VV04], and [KHK+05] provide basic introductions to these and var-
ious other experimental techniques37.

1.6.1 Measurement of Enzyme Kinetics

Some proteins are enzymes, such as kinases and phosphatases, that catalyse the con-
version of substrates into products. For example, for protein kinases, the substrates
are proteins which are phosphorylated at specific phosphorylation sites. Metabolic en-
zymes catalyse the interconversion of smaller biochemical molecules, the metabolites.
For the modelling of biochemical reaction kinetics as discussed in chapter 2, kinetic data
is needed. Biochemical reactions and their properties can be observed and measured in
an enzyme assay.

Exemplarily, the procedure for a continuous spectrophotometric enzyme assay is ex- continuous assay

plained briefly. It exploits the property of NADPH (a currency metabolite such as ATP)

36We cannot do justice to the fullness of technologies involved and the reader is advised to consult the
literature for further information. Major technological breakthroughs are reported in journals such
as Nature and Science.

37For more comprehensive information on underlying principles and techniques of practical biochemistry
we refer to [WW05].
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Light source Monochromator Sample Detector

Figure 1.41: Scheme of the principle of photospectrometry. The light source emits a broad range of
wavelengths but only light of a certain wavelength, e.g., λ = 340 nm, is selected by the
monochromator for reaching the sample, behind which it is detected how much of the light
was absorbed by the sample. Samples are typically placed in a transparent cell, known as
a cuvette. Cuvettes are rectangular in shape, commonly with an internal width of 1 cm.

to absorbe light of the wave length 340 nm. The optical density or absorbance A is
related to the concentration of NADPH as follows:

A = α · l · [NADPH] (1.29)

where α is the molar absorption coefficient of NADPH of 6220 cm−1M−1 and l is the
path length, i.e., the distance that the light travels through the sample.

Therefore, changes of this metabolite in a sample solution can be monitored accurately
with a spectrophotometer, a device for measuring light intensity as a function of thespectrophotometry

color, or more specifically, the wavelength of light (see Figure 1.41). Thus, the change
of concentration of NADPH over time, for example in the reaction

G6P + NADP+ −→ glucono-1,5-lactone 6-phosphate + NADPH + H+

catalysed by glucose 6-phosphate dehydrogenase (G6PHD), can be studied directly. By
adding different amounts of G6P to a solution containing the enzyme G6PHD a curve
for enzyme activity as a function of substrate concentration can be measured. Other en-
zymes than G6PDH can be studied by coupling their reaction to the NADPH-producing
reaction. For example, the reaction of phosphorylation of glucose catalysed by hexoki-
nase

Glucose + ATP −→ G6P + ADP

can be assayed as follows. The assay cocktail contains hexokinase. The reaction is
started by adding appropriate substrate solutions, glucose in this case. The assay cock-
tail also contains the enzyme glucose 6-phosphate dehydrogenase (G6PDH), and when
G6P is formed via phosphorylation of glucose this leads to the reduction of NADP+ to
NADPH. The production of NADPH in the assay mixture can then be estimated with
a spectrophotometer by monitoring the increase in absorbance at 340 nm as above. For
this measurement, it is important to add G6PDH in abundance so that its activity is
much higher than the activity of hexokinase, to ensure that the measured rate is of the
hexokinase reaction. If the reaction one investigaets does not produce G6P directly but
is only a few steps away from a G6P-producing reaction, then further coupling reactions
can be introduced. An example is the formation of F6P in the fructose-phosphorylating
reaction
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Fructose + ATP −→ F6P + ADP

catalysed also by hexokinase. Adding phosphoglucoisomerase, an enzyme that intercon-
verts G6P and F6P, to the assay cocktail channels the produced F6P to the G6PDH
reaction which again can be monitored photospectrometrically. Again, it is necessary
that the enzyme G6PDH and the enzymes that perform the coupling to the NAPDH-
producing reaction are abundant such that the observed changes reflect the properties
of the enzyme-catalysed reaction under investigation.

Unlike in the continuous enzyme assay, in the stopped enzyme assay, the studied re- stopped assay

action reaction is started in several cuvettes simultanously but then stopped (e.g., by
adding a protein degrading agent) after different time intervals. Afterwards, measure-
ments of the concentration of the product of the reaction are performed. This method
provides a time series of concentrations.

Beside the spectrophotometric assays, there are other types of enzyme assays, e.g.
fluorimetric, chromatographic, or radiometric assays. We again refer to the biochemistry
textbooks for descriptions of these methods.

1.6.2 Protein Identification and Quantification by Western Blotting

The purpose of this section is to outline38 a method of protein quantification and to indi-
cate the difficulties in obtaining such data. The described method requires the sequential
application of several techniques: protein separation by gel electrophoresis, transfer to
a nitrocellulose membrane by electroblotting, immuno-probing, image processing, and,
finally, image analysis.

1.6.2.1 Gel electrophoresis

Macromolecules are commonly separated by gel electrophoresis. This method uses gels gel electrophoresis

made of agarose for DNA or RNA, and polyacrylamide for proteins. The sample con-
taining a mixture of macromolecules is loaded onto the gel by placing it into wells on
one end of the gel, and then an electric field is applied that pulls the macromolecules
through the gel via electromotive force. The gel acts like a sieve. Big proteins move
slower than small proteins, and the proteins or nucleic acids are separated by size39.
The resolution depends on the pore size of the gel and is only optimal for a certain
size range. This is why agarose with wide pores is used for the large nucleic acids and
polyacrylamide with smaller pores for the smaller proteins. Varying the concentration
of polyacrylamide allows to adjust the size range for optimal resolution. Proteins of 200
Da - 70 kDa are well resolved by 7.5% polyacrylamide gels; proteins of 120 Da - 30 kDa
are resolved on 10% polyacrylamide gels; and proteins of 50 Da - 10 kDa are resolved
by 12.5% polyacrylamide gels.

Identification of proteins or assignment of a molecular weight is made possible by
having one well in each gel reserved for a control solution, i.e., a solution containing the

38The text is based on notes kindly provided by Walter Kolch.
39In 2-D gel electrophoresis, another dimension for separation is added, e.g., by applying a pH gradient.
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proteins in question or a solution containing proteins of known molecular weight. This
provides marker bands for comparison (see Figure 1.45).

Gels can be used for protein purification or identification, e.g. by cutting out the
area of the gel that holds the protein relevant for further investigation. For the pur-
pose of quantification, however, the separated macromolecules need be immobilised by
transferring them to a filter membrane.

1.6.2.2 Western blotting

Blotting is the transfer of macromolecules from the gel onto a membrane, in order toBlotting

make the separated macromolecules accessible, for instance, when other macromolecules
are used as probes to specifically detect one of the separated macromolecules. Blotting
can be done by various means. Traditionally, nucleic acids are blotted by capillary action
as shown in Figure 1.42, where a stack of dry papertowels is used to draw the buffer
from a tray at the bottom through the gel.

Stack of dry papertowelsThe papertowels draw the
buffer through the gel by
capillary action Blotting membrane

Gel

Paper wick

Tray with blotting buffer (salt
solution)

Figure 1.42: Blotting by capillary action.

Proteins are usually transferred onto a nitrocellulose membrane by electroblotting (see
Figure 1.43). The protein-binding capacity of nitrocellulose membranes results from
hydrophobic interactions, hydrogen bonding, and electrostatic interactions.

The membrane with DNA on it is called Southern blot40. If RNA is blotted, it is
called a northern blot. If proteins are blotted, it is called a western blot.

1.6.2.3 Quantification of western blots

Proteins on the obtained blot are detected by immuno-probing. This is a two step
process. First, the membrane is incubated with antibodies against the protein of interest
(e.g. Ras), and washed several times. The antibody against the protein of interest
is called the primary antibody . The Ras antibody will bind to the immobilised Rasprimary antibody

proteins on the membrane but will be washed off everywhere else. Next, the blot is
incubated with a secondary antibody , and washed again several times afterwards. Thesecondary antibody

40The procedure is called Southern blotting as it was invented by Ed Southern, Oxford.
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+Electrode – Electrode

Blotting membrane Gel

Current flow

Tray with blotting buffer (salt
solution)

Figure 1.43: Electroblotting is blotting through an electrical field.

secondary antibody specifically binds to the primary antibody. For example, if the
primary antibody was raised in rabbit, the secondary antibody is an anti-rabbit antibody,
if the primary antibody was made in mice, the secondary antibody is an anti-mouse
antibody, etc.

The secondary antibody is conjugated, i.e, covalently coupled, with the enzyme horse-
radish peroxidase, HRP. After the final wash the blot is overlaid with a thin layer of buffer
containing hydrogen peroxide (H2O2), iodophenol and a chemiluminescent substrate,
luminol, which will emit light when oxidised. The HRP conjugated to the secondary
antibody uses hydrogen peroxide to oxidise luminol (see Figure 1.44). This reaction is
enhanced and prolonged by iodophenol. Thus, light is produced at the place where the
secondary antibody is bound. The light emission lasts for about one hour. The buffer
is wiped off, and the blot is quickly exposed to photographic film to detect the light
emission. The emitted light gives a band on the film. This detection procedure is called band

ECL (Enhanced Chemiluminescence).

Alternatively, instead of HRP, the secondary antibody can be conjugated with a ra-
dioactive label, with a fluorescent label, or with a reporter enzyme that converts its
substrate resulting in a stain on the membrane. These techniques then require different
types of camera and film.

The band on the film is scanned and then quantified by laser densitometry before
image processing takes place. During image processing, care must be taken that the
blots are not overexposed as one quickly is out of the linear range of light detection and
goes into saturation. The linear range of film is not more than approximately 20, i.e.,
bands which differ by signal intensity of 20-fold or less are reliably quantified. This linear
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Blotting membraneRas

separated proteins

primary antibody (e.g. anti-Ras)

secondary antibody

light

HRP

+H2O2

luminol

Figure 1.44: Illustration of immuno-probing a western blot with antibodies. The presence of proteins is
made visible by coupling with a detectable and preferably measurable reaction.

range is most of the time sufficient unless one has very strong and very weak bands on
the same blot. Then one has to scan different exposures of the blot and extrapolate.
This is rather accurate, but is also labor intensive. Another option is to repeat the whole
western blot (starting with the gel electrophoresis) with a diluted sample solution. This
should result in weaker bands but it is possible only if enough sample material, i.e. cell
lysate, is left from the original biological experiment.

An example of a western blot is shown in Figure 1.45.

Figure 1.45: Western blot of Ras. This image is from the product page for Ras antibody #3339
(www.cellsignal.com/products/3339.html), SUBSTITUTE by one (with permission) from
our collaborators! Julio?
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As mentioned in section 1.5, phosphorylation of proteins plays an essnetial role in
signal transduction. In order to distinguish between the phosphorylated and the un-
phosphorylated state of a protein, two specific antibodies against this protein are nec-
essary, e.g. one antibody for total protein and one for phosphorylated protein only.
The discovery of new antibodies and the production of these antibodies is difficult and
expensive.

1.6.2.4 Considerations for modelling

When utilising the results of western blotting experiments in modelling, one has to be
aware of its limitations.

1. A western blot shows relative changes between the samples on the blot!

2. Different western blots cannot be directly compared to each other!

3. A western blot does not yield information about the concentration of a protein!

The reasons for these are many: The intensity of the bands, or signal intensity, depends
amongst others on how much protein was transferred from the gel to the membrane,
on how long the ECL solution was incubated, as well as on how fast and how long
the blot was exposed to film. For practical reasons these parameters are impossible to
standardise. For instance, if the first exposure is under- or overexposed, then you have
to put on another film - and everything has changed. Another reason is the affinity of affinity

the antibodies. Each antibody has a different affinity for its protein antigen. Typical Kd

values are between 106 and 109. Thus, a good antibody will give a strong signal even
with little protein present, and a poor antibody will give a weak signal even when lots
of protein is present. Antibodies are proteins and therefore perishable molecules. There
is batch to batch variation and also storage conditions can affect the affinity. These
considerations apply to the primary and secondary antibody. Therefore, the observed
signal intensity is a composite of the concentration of the protein antigen, the antibody
affinities, the ECL conditions, and the exposure time of the film.

Thus, the only way to determine protein concentrations in a cell via western blotting,
is to compare the band intensity obtained from a cell lysate to that of a purified protein of band intensity

known concentration. For instance, to determine the concentration of the ERK protein
in different cell lines, lysates of these cells were run alongside a serial dilution of a
purified, recombinant ERK. The densitometric scan values of this series is used to make
a standard curve. “Standard” in biochemical terms means known values for comparison.
The standard curve should be a straight line, otherwise one is outside the linear range
of the scanning. This curve relates protein concentration to densitometric scan units.
These are the numbers from the scanner; they are arbitrary units. The concentrations
of ERK in the different cell lines can be determined by mapping the scan units of the
cell lysate to the standard curve. For the reasons mentioned above it is essential that
the samples used to make the standard curve are highly pure, as the measured protein
concentration reflects the quantity of the protein of interest plus any contaminating
proteins. The purification of a protein to near homogeneity is extremely tedious. This
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makes the determination of absolute protein concentrations in cells or cell compartmentsabsolute protein
concentrations so difficult and slow.

Fortunately, technologies are rapidly improving with a wide range of supplies, which
differ in the way they quantify measurements. Improvements in the generation of quan-
titative and accurate data as well as standard operating procedures are an important
aspect of systems biology. While in the early stages of molecular biology it was sat-
isfactory to know whether a molecule is present, up- or downregulated, without much
concern about measurement errors, this is a different story in systems biology. If exper-
imental data are used for modelling it is paramount to have truly quantitative (rather
than relative) and accurate long time series data.

1.7 The Dynamic Proteome

Before we continue with more technical chapters, we here briefly reflect upon the context
of dynamic pathway modelling in which we are going to describe biochemical reactions
networks using systems-theoretic concepts.

The area of cellular signalling investigates intracellular communication. The transmis-
sion of information within cells from receptors to gene activation by means of biochemi-
cal reaction networks (pathways) impinges on the development and disease of organisms.
Our aim is to establish a mathematical/computational framework in which to investigate
dynamic interactions within and between cells. In other words, we are concerned with
dynamic pathway modelling since we do not simply map or list proteins in a pathway.dynamic pathway

modelling Spatial-temporal sequences of reaction events in a biochemical network form a basis for
signals that we observe as concentration changes in an experiment. We are not going to
describe the physical basis of the reaction in every detail but choose a level of scale that
is sufficiently high to allow a simplified description, which is however predictive.

Mathematical modelling and simulation of molecular or cellular biological systems
is challenging. We consider such systems as ‘complex’ for the following reasons. A
collection of cells, but also an individual cell consist of many interacting subsystems. For
example, choosing any particular pathway there will be other pathways that “cross talk”.
Due to the complexity of experiments to generate data and the sometimes complicated
maths involved, we usually consider one pathway, or particular aspect of one pathway
at a time. Since these systems (pathways) are interacting at different levels and in
hierarchies, modelling is bound to be an art rather than an objective science. Although
spatial aspects of the location of molecules in the cell, related diffusion or the transport of
molecules, can in principle be encoded, for example, by partial differential equations, the
available mathematical tools are often not easy to apply. Mathematical convenience is
therefore one reason to make assumptions. Whether the underlying process is inherently
random or deterministic may introduce further questions to how we represent this. For
the kinetics of biochemical reactions, nonlinear ordinary differential equations are most
commonly used for modelling while stochastic simulation is a popular avenue to avoid
the complicated formal analysis of stochastic models.

In molecular biology experiments are typically expensive, time consuming undertak-
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hypothesis

design of experiments

data

modelling

simulation

Figure 1.46: Systems biology requires an iteration of the modelling loop illustrated here. The diagram
shows the role of mathematical modelling and simulation in testing hypotheses but also in
generating hypotheses through prediction. The purpose of modelling is to support experi-
mental design, helping to identify which variables to measure and why.

ings, which in most cases deliver data sets which fall short of the expectations of statis-
ticians or mathematicians. In contrast to the engineering sciences, the observation of
molecular or cellular dynamics are indirect, i.e., it is as yet not possible to obtain a
continuous stream of accurate, quantitative measurements of an intact living cell. Ex-
periments are usually destructive with regard to the components of the cell, or in order
to visualise effects it is difficult not to alter the state of the system, even if only slightly.
Although there is a trend towards single cell measurements, to this day we are studying
the processes within a single cell by using thousands or millions of cells in a biochemical
experiment. While statisticians would usually argue the context in which the data are
generated should be irrelevant, for the analysis of molecular- or cell biological data the
context in which the data were generated is crucial information to allow any sensible
conclusion. It can therefore not be avoided that our models are representations of obser-
vations that help us to speculate about the true nature of the physical processes which
give rise to signals and communication within and between cells. For example, when we
observe steady changes of protein concentrations in a signal transduction pathway, we
may want to model this phenomena with differential equations, although the underlying
reactions, due to collisions of molecules, may in fact be a random process. If we insist
on a stochastic model, we immediately need to consider the question of how to validate
the model, i.e., how to estimate parameter values given only six to twelve time points of
a nonlinear, non-stationary process.

Modelling implies a process of abstraction and is often also a form of generalisation. In
this process we make numerous assumptions about the natural system under considera-
tion and in order to simplify the mathematical approach, without loosing the ability to
make predictions. It is therefore possible to build predictive models without them being
precise. The Lotka-Volterra predator-prey equations of two competing populations are
an example of an unrealistic model that has nevertheless value in that it helps asking the
right questions41. Mathematical modelling and simulation should in this sense comple-

41Murray, [Mur02] provides a discussion of the standard Lotka-Volterra system and how more realistic
scenarios can be dealt with.
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ment the biologists reasoning, help him to generate and test hypotheses in conjunction
with the design of experiments and experimental data.

In subsequent sections we investigate the mathematical foundations of the most com-
monly employed mathematical concepts in modelling pathways, discuss their properties,
question the assumptions involved and compare their application with examples.

Differential equations describe rates of changes and thus appear to be a natural frame-
work to describe the observations we make in experiments. Differences and changes are
what we can observe and what provides us with information about a system. The state-
transition map describes the changes of states. Causal entailment is the principal aim
of scientific modelling and that causation is the principle of explanation of change in
the realm of matter. However, in modelling natural systems, causation is a relationship,
not between things, but between changes of states of systems. This view that changes
in space and time are the essence of causal entailment has been well explained by the
philosopher Arthur Schopenhauer who argued that the subjective correlative of matter
or causality, for the two are one and the same, is the understanding :

“To know causality is the sole function of the understanding and its only
power. Conversely, all causality, hence all matter, and consequently the whole
of reality, is only for the understanding, through the understanding, in the
understanding.” [Mag97].

In experiments we usually look for differences but in our context of a dynamic systems
perspective we are particularly interested in change over time. We can distinguish be-
tween a difference and a change, providing an example that also illustrates a difference
between bioinformatics and systems biology. Let us consider the following picture as abioinformatics

toy model for two genomes:

Comparing the two, there are 28 = 256 pattern to discern. For example, from compara-
tive genomics we know that genome sequences can be very similar, while the organisms,genomics

their physiology, behavior and appearance are very different. One then wonders how
this difference in complexity is possible if the genetic material appears to be so similar.
Another example is the total metamorphosis of the butterfly, there is one genome but
essentially two proteomes. An explanation is that the genome may provide the basic
information for an organism to develop and function, but that it is the dynamic inter-
actions of molecules and components in the cell that give rise to biological functions. If
we therefore consider again our toy model, allowing the eight genes to be switched on or
off in a temporal sequence, for only three time points, there are already 2563, i.e., more
than 16 million information paths the system can describe:
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time →
We may conclude from this crude illustration that it is system dynamics that deter- systems dynamics

mines biological function. In bacterial systems it is known that the speed of transcription
can influence the folding, structure and thus to an extend also the function of proteins.
Another illustration that knowledge of components or symbols is not enough is the fol-
lowing set:

{h, t, u, r, t, e, h, t, l, l, e, t, t, b, u, o, d, n, i, f, i} .
Although not randomly arranged, looking at this list does not suffice to understand the
meaning. Ordering them further does appear to make sense:

{i, f, i, n, d, o, u, b, t, t, e, l, l, t, h, e, t, r, u, t, h} ,

but a real understanding comes only if we read the symbols with a particular speed from
left to right:

“If in doubt, tell the truth.” (Mark Twain)

Here again the temporal evolution is important: If we were given a letter a day, we would
usually not be able to make sense of we are told, nor would make a foreign language
and dialect make this easier. In line with the two quotations of Pauling and Poincare
on page 3 we would argue that molecular and cell biology are built up from facts, as a
cell is built from molecules. But a collection of facts is no more a science than a soup
of molecules is a cell. Organisms and organs are complex structures of interdependent
and subordinate components whose relationships and properties are largely determined
by their function in the whole.

1.8 Outlook

There are various approaches to arrive at a mathematical model of intra- and inter-
cellular dynamics. We are going to restrict ourselves to stochastic modelling and the use
of differential equations. For differential equations there are again various perspectives
one can take to motivate the set-up of the equations. To begin with, we are considering
a reaction network or pathway involving N molecular species Si. A network, which may
include reversible reactions, is decomposed into M unidirectional basic reaction channels
Rµ

Rµ : lµ1Sp(µ1) + lµ2Sp(µ2) + · · ·+ lµLµSp(µLµ)
kµ−→ · · ·

where Lµ is the number of reactant species in channel Rµ, lµj is the stoichiometric

coefficient of reactant species Sp(µj), Kµ =
∑Lµ

j=1 lµj denotes the molecularity of reaction
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channel Rµ, and the index p(µj) selects those Si participating in Rµ. Assuming a
constant temperature and that diffusion in the cell is fast, such that we can assume a
homogenously distributed mixture in a fixed volume V and with a constant temperature
and volume, one rate-equation model is the following

d

dt
[Si] =

M∑

µ=1

νµikµ

Lµ∏

j=1

[Sp(µj)]
lµj i = 1, 2, . . . , N (1.30)

where the kµ’s are rate constants and νµ denotes the change in molecules of Si resulting
from a single Rµ reaction. Representation (1.30) is a system of ordinary differential
equations:

dxi(t)

dt
= Vi

(
x1(t), . . . , xN (t), θ

)
, (1.31)

where xi denotes the n variables in question, θ denotes a parameter vector and V is a
nonlinear function. The reader who is less accustomed to mathematical equations should
not worry, we are going to approach the general formulations (1.30) and (3.46) below,
with numerous examples of increasing complexity and generality.

Rate equation models have been widely used in describing biochemical reactions (e.g.
[HS96, Fel97]). For modelling processes in living cells we are often not able to provide
an exact description of the physical interactions of molecules and instead describe with
our differential equations a mean of a population of interacting molecules, where the [Si]
are most probable values. The fact that a differential equation is ‘deterministic’ does
therefore not mean that it cannot describe a process that is inherently stochastic.

In a stochastic framework, we are looking at populations of molecules and wish to
determine for each molecular species Si the probability Prob{#Si(t)=ni} that at time
t there are ni molecules. For N molecular species, let n denote the N -dimensional
state-vector, whose values are positive integers, n ∈ ZN+ . νµ ∈ ZN are the step-changes
occurring for elementary reaction indexed by µ. If S is a N -dimensional variable, we
write Prob{#S=n} = Pn(t). Describing the changes in random variable S, we consider
the following two state-transitions: First, from other states to state n, denoted

n− νµ
aµ(n−νµ)−−−−−−→ n ,

where aµ(n − νµ) is the propensity , that is the probability per unit time, of a changepropensity

νµ occurring, given that we are in state n− νµ. Secondly, moving away from state n is
given as

n
aµ(n)−−−→ n+ νµ .

From these definitions we arrive at an expression referred to as master equation or
chemical master equation (CME)chemical master

equation (CME)

∂Pn(t)

∂t
=

M∑

µ=1

[
aµ(n− νµ)P(n−νµ)(t)− aµ(n)Pn(t)

]
. (1.32)
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The first term on the right-hand side describes the change to state n, while the second
term describes the changes away from state n. M denotes the number of (unidirectional)
reaction channels. The product of the propensity with the probability should be read
as an “and”. The multiplication of a propensity and probability makes sense in light
of the derivative against time on the left, in that a propensity, multiplied with dt gives
a probability. In the above setting aµ(n − νµ) and aµ(n) are transition probabilities, transition probability

while Pn(t) and P(n−νµ)(t) are the probabilities that the system is at time t in state
n, respectively n − νµ. A solution of the master equation describes the probability of
there being n molecules at time t. Chapter 3 is going to provide a series of examples for
stochastic processes for which the methodologies become increasingly general until we
arrive at (3.46).

A major difficulty with the CME is that the dimension of these sets of equations
depends not only on the number of chemical species N but for any possible num-
ber of molecules of any species we have n differential-difference equations. Gillespie
[Gil76, Gil77, Gil01, GB00] developed an algorithm to simulate or realise a CME model
efficiently. The Gillespie approach to stochastic simulation has in recent years become
popular in modelling intra-cellular dynamic processes [Kie02, RWA02, vGK01, MA97].
Some authors have unfortunately confused the simulation of a stochastic model with a
stochastic model. The Gillespie algorithm does not provide a solution to the master
equation but generates realisations. While a formal analysis of (3.46) is very difficult,
it is possible to approximate the CME by a truncated Taylor expansion, leading to the
Fokker-Planck equation, for which there exist some results [ELS01, Gar85, vK92]. Com-
paring (1.30) and (3.46), we note that while rate equations are deterministic in the sense
that they employ differential equations, they are based on a probabilistic description of
molecular kinetics. On the other hand, the CME is a stochastic formulation, but based
on differential equations, with probabilities as variables. Although we are going to look at
various stochastic models and their derivation, we eventually settle for model structures
(1.31), to describe molecular principle from what we can observe in experiments.

The motto of this book is nicely captured in the following quotation by Ludwig von
Bertalanffy, a founder of general systems theory and someone who laid the foundations
for systems biology in the 1960s:

“Considering the inconceivable complexity of processes even in a simple cell,
it is little sort of a miracle that the simplest possible model – namely, a linear
equation between two variables – actually applies in quite a number of cases.

Thus even supposedly unadulterated facts of observation already are inter-
fused with all sorts of conceptual pictures, model concepts, theories or what-
ever expression you choose. The choice is not whether to remain in the field
of data or to theorise; the choice is only between models that are more or
less abstract, generalised, near or more remote from direct observation, more
or less suitable to represent observed phenomena.

On the other hand, one should not take scientific models too seriously. Kroe-
ber (1952), the great American anthropologist, once made a learned study
of ladies’ fashions. You know, sometimes skirts go down until they impede
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the lady in walking; again, up they go to the other possible extreme. Quan-
titative analysis revealed to Kroeber a secular trend as well as short-period
fluctuations in the length of ladies’ skirts. This is a perfectly little law of
nature. I believe a certain amount of intellectual humility, lack of dogma-
tism, and good humor may go a long way to facilitate otherwise embittered
debates about scientific theories and models.”

(From Bertalanffy’s book General Systems Theory ; the introductory part to
the chapter ‘Some Aspects of Systems Theory in Biology’ [Ber68].)

The previous section took us from a relational world view to a general systems ap-
proach. The present section introduced the formal systems we are dealing with hereafter.
The next section takes us on to the journey in which we apply the concept above to an
understanding of the processes that make up a living system. Enjoy!
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For anyone interested in modelling and simulation of biochemical reaction networks
or pathways, there are plenty of tools to choose from. These packages are roughly
divided into whether they deal primarily with deterministic or stochastic models. Here
we are discussing the close relationship between both ideas, in the context of biochemical
reactions. We begin with simple, particular examples and increase the generality of the
equations before we arrive at the general chemical master equation (3.46) and have
available a set of more advanced mathematical tools to investigate the properties of such
stochastic representations.

2.1 The Rate Equation Approach

We are now going to go through a short example of the modelling process. The aim is to
describe changes in a population of molecules. We first consider only one kind or species
of molecules, which we call S. As a conceptual framework in which we formulate our
models we initially consider Ludwig Boltzmann’s Kinetic Theory of Gases from 1877.
It begins with the assumption that for constant pressure, temperature, and volume V ,
the number of collisions between any two molecules should be constant. Let #S

.
= n

denote the average number of molecules of species S. If the probability of a reaction to
occur is independent of the details of that collision, then the change ∆n in the number
of molecules is proportional to n as well as to a time interval ∆t:

∆n ∝ n ·∆t

There are several kinds of biochemical reactions, which in turn can be combined into
networks or pathways. We start with the simplest reaction which proceeds by itself,
involving only one molecular species. The empirical rule we described above can now be
turned into a mathematical equation

∆n = k · n ·∆t , (2.1)

where ∆t is assumed to be a relatively small interval of time. Dividing both sides by ∆t,

∆n

∆t
= k · n ,

we can now consider what happens as ∆t becomes infinitesimal small, ∆t → 0, leading
to the differential operator. For large n, changes in this very small time interval will
be very small compared to the overall changes in the population. We could thus turn
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from discrete changes in the number of molecules n to continuous changes S(t) in the
population or concentration of S. This then leads us to the ordinary differential equation1differential equation

dS(t)

dt
= k · S(t) , (2.2)

as a model of the simple monomolecular or autocatalytic reaction. A differential equation
describes the rate of change of variable S and is a translation of the observations and
assumptions we make in modelling a natural system. To simulate the system and to make
predictions for values of S(t) for a range of time points t, we need to find a solution to
the differential equation. For simple cases we may be able to find analytical solutions
through mathematical analysis, while for more complex cases we need to resort to a
numerical solution or simulation. The advantage of an analytical solution is that it isanalytical vs.

numerical solutions more general, we usually do not need to know an exact value for the parameters, here
k. For our simple reaction the solution to the differential equation (2.2) is

S(t) = S(0) · ekt , (2.3)

where k is the rate constant by which the conversion of reactant A proceeds and S(t0) =rate constant

S(0) defines the initial condition. We frequently write S0 for S(0). The solution is thus
dependent on a parameter value for k and the initial conditions. Since we could get the
differential equation (2.2) from (2.3) by differentiating the equation, another way round
to a solution of the differential equations is by integration. A simulation of a system of
differential equation is therefore a numerical integration of (2.2). We are going to discuss
the process by which we take the limit ∆t→ 0 and integrate the differential equation in
more detail further below in this section. Before that, we look at the application of our
model.

The model (2.2) describes an irreversible biochemical reaction, that is, the population
or concentration of S can either only increases or only decreases as the result of changes to
the molecules. As we shall see later, this irreversible reactions are somewhat unrealistic
for living cells. The reaction is also monomolecular since it involves only one kind of
species. Whatever happens to S, we could consider it to be a transformation of S1 into
S2. In other words, we have two kinds or forms of S, the biochemical notation for this is

S1 → S2 ,

where the chemical species on the left are referred to as the substrate or reactant speciesreactant species

while those on the right are called product species. As above, for a small time intervalproduct species
∆t, the changes ∆S1, ∆S2 satisfy the proportionality relation

∆S1 ∝ −S1∆t ,

and if the number of molecules is conserved

∆S2 = −∆S1 .

1An ordinary differential equation, as opposed to a partial differential equation, does not consider
spatial distribution of components or diffusion.
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Figure 2.1: Simple exponential growth of a population, S(t) = S(0)·ekt. The dashed line is for parameter
k = 2.5sec−1 and the solid line for k = 2sec−1. The solution of the differential equation
dS(t)/dt = kS(t), depends on the initial condition (here S(0) = 0.2), that is, for each initial
condition there is a different solution. The fact that this curve growths unbounded suggests
that it is not a realistic growth model.

For ∆t→ 0 these relations turn into differential equations

d

dt
S1 = −kS1

d

dt
S2 = kS1 .

We are now at a point where we need to discuss the units of the elements of our model.
The molar concentration [S] is given as mole per liter:

1
mol

L
≡ 1M

In general, in equations we denote the volume by V . Since a mole contains 6 · 1023

molecules, in order to get a count of the actual number of molecules #S we would have
to multiply the molar mass by the Avogadro constant

NA = 6.02205 · 1023mol−1 .

With a slight abuse of terminology, we hereafter occasionally use S to denote a “count”
of molecules in moles. Note, if it is clear from the context and explicitly stated, we may
also use S to denote a concentration, leaving away the square brackets [S] to simplify the
notation. We are thus assuming that concentrations are taking real values and change
smoothly. Using square brackets [S] to denote molar concentrations (M) for our example,
the unit of d[S]/dt is M per second and we have

[S] =
S

V
and #S = S ·NA .
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Although here the rate constant k is measured as ‘per second’, denoted sec−1, in general
the units of the rate constant will depend on the type of the reaction and whether we
are dealing with concentrations or counts.

Most if not all biochemical reactions in the living cell are reversible and so the next
step in making our approach to modelling biochemical reactions more comprehensive, is
to consider a reversible reaction in which compound S1 is transformed into compoundreversible reaction

S2, and vice versa:

S1
k1−⇀↽−
k2

S2

where k1 is called the forward rate constant and k2 reverse rate constant . If the reversible
reaction is in an equilibrium, the average concentrations remain constant2 and the ratesequilibrium

of changes are zero
d

dt
[S1] =

d

dt
[S2] = 0 ,

which is the same as to say
k1

k2
=

[S2]

[S1]
.

This relation is what C.M. Guldberg and P. Waage in 1864 described as the law of mass
action (LMA). The key to the differential equation model was the assumed propor-law of mass action

tionality in (2.1). From our initial discussion, the following set of differential equations
serves as a model for the reversible reaction above:

d

dt
[S1] = −k1[S1] + k2[S2] ,

d

dt
[S2] = k1[S1]− k2[S2] .

If we consider the total concentration of S1 and S2 together as constant, [S1]+ [S2] = ST
and substitute [S2] = ST − [S1] for [S2] in the equation for S1, we obtain

d[S1]

dt
= −(k1 + k2)[S1] + k2ST .

Simplifying the notation, let us denote S1
.
= x, α

.
= k1 + k2 and β

.
= k2ST so that the

differential equation looks tidier:

dx

dt
= β − αx . (2.4)

This model is then an example of the system considered in the previous chapter:

ẋ = φ(x, θ) ,

where θ = (α, β). This is a basic differential equation, for which there are various ways
to solve it. Here we simply state the result in order to compare it with (2.3) as a model
for population growth:

x(t) =
β

α
+

(
x(0)− β

α

)
e−αt .

2Note that this does not mean nothing happens. There is still a flux of material, although the reactions
are balanced such that macroscopically we do not observe changes.
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Figure 2.2: Numerical solution for the differential equation (2.4), which was derived as a model for a
reversible reaction. The solid line is for x(0) = 0, while the dashed line is for x(0) = 2 M.
α = 2sec−1, β = 3 M/sec.

Figure 2.2, shows simulation results for two different initial conditions. We observe that
although the growth depends heavily on the initial conditions, the growth is limited to
β/α.

2.1.1 Differential vs. difference equations

A justified criticism of the ODE model (2.2), as a representation of a biochemical reaction
could be that we did not aim for physical realism, modelling the collisions of molecules.
Instead we modelled what we observed: that at any time the change is proportional to
∆t and the current number of molecules. A reasonable interpretation of (2.2) is then
that S(t) represents the average population level at time t. In this case we can view k
as the difference between the formation rate k+ of S and the decay rate k− such that

dS(t)

dt
= (k+ − k−)S(t) with solution S(t) = S(0) · e(k+−k−)t . (2.5)

In the derivation of the differential equation we made another assumption of a large
population #S

.
= n such that discrete changes to the population are small enough to

assume overall changes to the population are continuous (see Figure 2.3 for an illustra-
tion). This assumption in effect describes a discrete process with a continuous model.
We can discuss this mathematically by approximating a difference equation by a differen-
tial equation. A simple intuitive example for this is the interest we receive for savings in
a bank account. Say a bank offers on savings a rate of return r, in percent, compounded
annually. If S(0) is the initial saving put in the bank, and S(t) its future value after t
years, then the following difference equation models the growth of our money: difference equation

S(t+ 1) = (1 + r)S(t) ,
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2 Biochemical Reaction Kinetics

with initial condition S(t0) = S(0). If we are interested in growth on a monthly basis,

S

(
t+

1

12

)
=
(

1 +
r

12

)
S(t) .

Here r is divided by 12 because it is by definition compounded annually (not monthly).
In general, if a year is divided into m equal intervals, the difference equation becomes

S

(
t+

1

m

)
=
(

1 +
r

m

)
S(t) ,

which can be written more conveniently

S
(
t+ 1

m

)
− S(t)

1
m

= rS(t) .

As m goes to infinity, denoted m→∞, the above difference equation becomes a differ-
ential equation

dS(t)

dt
= rS(t) , (2.6)

where t is now a continuous time variable. One reason for choosing a continuous time
representation with continuous changes is the rich set of analytical tools that is available
to investigate the properties of such equations.
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Figure 2.3: Approximation of discrete steps as continuous changes. For large numbers of molecules
changes to the population appear smooth and may be represented by a continuous model.

2.1.2 Numerical simulation

Here we look at another assumption made in our model (2.2), that of a small interval
of time ∆t. This question is closely related to finding solutions to differential equations.
For simple linear ordinary differential equations like the one above we can find exact
or analytical solutions. For more complicated cases, in particular nonlinear equations,
which we consider later, we can use numerical integration to obtain an approximation
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2.2 Biochemical Reaction Modelling

[AS72, PTVF93]. The simplest approach to obtain a numerical solution of a general
ordinary differential is called the forward Euler method :Euler method

dS

dt
≈ ∆S

∆t
=
S(t+ ∆t)− S(t)

∆t
, (2.7)

where ∆S and ∆t are small, but not infinitesimal. If this approximation to the derivative
is substituted into (2.5) and the equation is rearranged we get

S(t+ ∆t)− S(t)

∆t
≈ k+S(t)− k−S(t)

S(t+ ∆t) = S(t) + S(t)(k+ − k−)∆t .

The justification for the differential d/dt may be considered a mathematical explanation.
A physical argument is that in order to avoid surface effects, influencing the interactions
among molecules, we consider an infinitely large system limV →∞. To avoid that the
concentration goes to zero, the number of molecules must become very large in order to
move from a discrete sum to a continuous integral.

2.2 Biochemical Reaction Modelling

Following the above introduction to differential equation modelling, the present section
is to provide a more comprehensive survey of biochemical reaction modelling. The
theoretical and experimental description of chemical reactions is related to the field of
chemical kinetics. A primary objective in this area is to determine the rate of a chemical
reaction, i.e., describing the velocity of conversion of reactants to products. Another task
is the investigation of the influence of external factors, like temperature, pressure, and
other chemical species on the chemical reaction under consideration. The determination
of the reaction mechanism, the way the products are formed, which intermediates are
created, is a further field of chemical kinetics.

2.3 Fundamental Quantities and Definitions

The pivotal quantity in the description of chemical reactions is the reaction rate. The
general chemical reaction

|l1|S1 + |l2|S2 + . . .+ |li|Si → |li+1|Si+1 + |li+2|Si+2 + . . . (2.8)

can be summarised by

0 =
∑

i

liSi ,

where li denotes the stoichiometric coefficient for the i-th component of the chemical stoichiometric
coefficientreaction defined in (2.8). The reaction rate of this reaction is defined as
reaction rate

r(t) =
1

li

d#Si(t)

dt
, (2.9)
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2 Biochemical Reaction Kinetics

where #Si is the number of molecules of species Si in the considered volume. The
stoichiometric coefficients li are negative for reactants and positive for products. From
the definition (2.9) it follows that the reaction rate is a positive definite quantity identical
for all participating species Si.

In wet-lab experiments and in modeling reactions in a cell we usually assume a constant
volume, although in the cell this is surely not always a realistic assumption. For a system
with constant volume we can transform (2.9) into an equation for the concentration [Si]
of species Si

r(t) =
1

li

1

V

d#Si(t)

dt
=

1

li

d#Si/V

dt
=

1

li

d[Si](t)

dt
. (2.10)

In general one can use any quantity which is proportional to the number of molecules,
for instance the particle density or the partial pressure of gases but for practical consid-
erations the measurement of concentrations is often easier than the count of molecules.
But there is a more important difference between these quantities. The particle number
is an extensive property, i.e., it depends on the size of the system. The concentration,
particle density, . . . are intensive quantities independent from the particular system un-
der consideration. We hereafter assume a system with constant volume, in which case
we get for (2.8) a reaction rate

v(t) = − 1

|l1|
dS1(t)

dt
= − 1

|l2|
dS2(t)

dt
= . . . = − 1

|li|
dSi(t)

dt

=
1

|li+1|
dSi+1(t)

dt
=

1

|li+2|
dSi+2(t)

dt
= . . . , (2.11)

where Si(t) represents either a particle number or a proportional quantity. Degrading
species are characterised by a minus sign while an increase is indicated by a plus sign.
According to (2.11) the reaction rate is proportional to the change of concentration.
Another possibility to investigate the reaction rate is given by the advancement or extent
of an reaction ε(t). This quantity is a measure of the progress of the chemical reaction
under consideration. It is defined as

ε(t) =





1
li

(Si(t)− Si(0)) for products ,

1
li

(Si(0)− Si(t)) for reactants .
(2.12)

The extent ε(t) relates the initial conditions Si(0) to the time dependent variables Si(t)
and has the same value for all species. We are using it for the analytical integration of
time laws of higher orders later in the text. With the extent the reaction rate is

v(t) =
dε(t)

dt
=

1

li

dSi(t)

dt
(2.13)

and is interpreted as rate of change of the advancement of a reaction.
It is possible to formulate a conservation law which relates the reactants and the

products in a closed system:
S0 = S1(t) + S2(t) , (2.14)
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where S0 is the initial concentration of the reactant S1, where S1(t), S2(t) are time
dependent concentrations. Here, we assume that the initial concentration of the product
S2 is zero. Relation (2.14) describes the conservation of the number of atoms in a closed
system under the influence of the chemical process. One distinguishes between three closed system

types of systems according to their possibilities to exchange energy and matter with the
environment. The most restricted system is an isolated or fully closed system, where no
transfer of energy and matter is possible. If we allow the exchange of energy, but no
exchange of matter, the system is called closed. Such a system is often used for chemical
and biochemical experiments. In an open system also a transfer of matter is possible. closed/open system

Examples are flow reactors in the chemical industry and of course the cell in its natural
environment. The creation and the disappearance of atoms is not a chemical process.
Since the concentration is a function of the molecule number, we obtain a conservation
of concentrations. Often, this law is also called mass conservation. From a physicist’s conservation law

perspective this is wrong. The mass is not a conserved quantity in chemical systems.
As mentioned above, we can use any quantity proportional to the particle number. For
each of them one can formulate a specific conservation law of the form (2.14). To avoid
a restriction of systems in our treatment we will simply call it conservation law for this
reason.

The advantage of conservation laws is, that they simplify the description of the sys-
tem of interest and give conditions to narrow relevant solutions down. The simplification
arises from the fact, that each conservation law eliminates a variable and reduces the
order of a system of coupled differential equations. Further famous examples of conserva-
tion laws are energy conservation, momentum conservation and the angular momentum
conservation.

2.4 Basic Principles and Assumptions

In the previous section we defined the reaction rate as a differential equation that depends
on the change of participating species over time. In order to obtain the temporal behavior
of molecular species, we have to specify the functional relation of change. The class of
differential equations is not automatically restricted to ordinary differential equations. In
ODEs the rate of change is described by a continuous function. The chemical conversion
is however not a continuous process as it is postulated for the use of functions. If
one wishes to consider the discreteness of the process without a change of the general
framework, this is possible but requires the introduction of what are called the Dirac-δ-
function and the Heaviside step-function θ. In a strict mathematical sense these are not
functions but distributions and hence the differential equations are strictly speaking no
longer ‘ordinary’ differential equations. The fact that it is possible to describe discrete
changes in reactions with differential equations is worth mentioning. We are going to
return to this question when we introduce stochastic models. In the literature stochastic
models are frequently justified by stating that differential equations are not able to
capture discrete changes. A formal theoretical description of discrete changes in reactions
in terms of distributions is possible although non-trivial. One has to know the time of
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2 Biochemical Reaction Kinetics

each reaction within the considered system. But since a prediction of the exact time is
not possible, only statistical properties are known for chemical reactions. In particular
the probability of a reaction can be calculated. Stochastic simulations work in this way.
The simulations calculate the time of a reaction from probability distribution functions.
The result of a simulation run is one possible realisation of the temporal evolution of
systems and corresponds to the formal treatment described above. The calculation of
probabilities of a reaction requires a detailed information about the process of a chemical
reaction. Collision theory is a successful approach to justify experimental rate laws.
Two particles can only react if they interact which each other. In a classical view both
particles must collide, like two balls on the billiard table.

The description of a molecule as a hard sphere is motivated by the subsequently
feasible assumption of an interaction with a short contact time between the molecules.
This means the interaction range is much smaller than the average distance between
molecules. It is then possible to assume collisions as independent, an assumption useful
in the context of stochastic Markov models. Because of the finite interaction range
we also have a finite interaction time. This is the time, a molecule needs to move
through the potential of its collision partner. Within this time old bonds break and
new ones are established. Analogues to our assumption on the interaction length the
interaction time is small and negligible in comparison to the time between two collisions.
It follows from this that the number of reactions per time is related to the number of
collisions within the considered time interval. Statistical physics is one possible tool
for the solution of this problem. The main assumption made in statistical physics is,
that the properties of the investigated system are well described by the ‘expected value’
or mean value. Therefore, all results obtained in due course have to be interpreted
as averages. There are fluctuations around the expected value, but these are assumed
small in comparison to the average. Because of the use of averages we change from
a discrete description to a continuous formulation. Furthermore we assume an ideal
gas in thermodynamic equilibrium. Then, the velocity of the molecules is given by
the Maxwell-Boltzmann distribution function. In order to avoid surface effects3 one
assumes an infinitely expanded system. Because of the infinite system volume V one
has to increase the particle number #S to infinity to keep the right particle density.
All further treatments are in this thermodynamic limit, requiring that in the limit of
V,#S →∞ the ratio #S/V is constant and finite. Last but not least we have to make an
assumption each chemical reaction is independent from the others. In addition to these
assumptions we also restrict our treatment to a special class of systems called isothermal
and isochore reaction systems. This means that during the reaction no temperature
changes and no volume changes occur.

What follows is a short summary of chemical kinetics. From collision theory the
reaction rate is equal to the number of molecules participating in the chemical reaction
and the rate coefficient k. The rate coefficient4 k summaries details of the reaction andrate coefficient

3The presence of a reactive surface can dramatically change the properties of a (bio)chemical system.
The catalyst of cars works in this way.

4Often k is called rate constant because of its time independence. But k is dependent on system
parameters like the temperature or the pH-value and hence the term ‘coefficient’.
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is only fully known for very simple systems. This requires information about particle
motion and is therefore temperature dependent. Furthermore, not all collisions lead to
a chemical reaction. The collision energy can be too small to initiate the reaction. The
molecules have a false direction, for instance, the molecules do not hit their reactive sites
and cannot react. The molecules are too fast, it is not enough time to break the old
and establish the new chemical bindings. These are only few of the possible reasons for
a non-reactive collision. In summary, the theoretical calculation of the rate coefficient
is complicated. For this reason we have to resort to experimental or estimated values.
If identical species react, the rate coefficient also contains a symmetry factor avoiding a
double counting5.

A further common assumption for pathway modeling is, that we can decompose more
complicated chemical reactions into a sequence of elementary reactions, which we can
describe using chemicals kinetics. The most common classification is to distinguish
the reaction by the number of participating molecules. The simplest reaction is the
monomolecular reaction with only one molecule. In a bimolecular reaction two molecules
or substrates form a product. This is the most frequently occurring reaction in nature.
Trimolecular reactions are rare, because the probability for a collision of three particles
within a tiny time interval is rather small. We will deal with these elementary reactions
and more complicated reactions in the following sections.

2.5 Elementary Reactions

Pathways are networks of biochemical reactions. To describe the behavior of this re-
action networks it would then seem plausible to use chemical kinetics to derive the
mathematical equations. We shall later see that for many intracellular processes we will
in practice not be able to measure interactions in all detail, nor will we know all the
properties of the proteins involved. This will in effect mean that we aggregate informa-
tion about mechanistic detail. As a consequence, the model is not derived from “first
principles” (of physical mechanics) but of a “phenomenological nature”. The expression
“phenomenological” has negative associations, suggesting some arbitrariness in the con-
struction but this is not true. In fact, the very definition of a pathway implies a reduced
model. Virtually all pathways that are investigated in the context of biomedical research
are considering only a reduced set of proteins. In practice it is impossible to generate
data for all proteins of interest and one is forced to a selection. It is for this reason that
a thorough understanding of the assumptions in modelling is so important.

For the present section, we assume that a reaction network can be decomposed into
elementary reactions. For simple reactions it is possible to derive rate laws and determine
solutions to differential equations analytically.

5For instance, for a reaction of two identical molecules one have to introduce a symmetry factor 1/2
otherwise one counts each collision twice.
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2.5.1 Monomolecular reactions

The monomolecular reaction
S1

k−−→ S2 (2.15)

is the simplest elementary reaction, converting species S1 into S2. The variable k above
the arrow is the corresponding rate coefficient. For the monomolecular reaction themonomolecular

reaction rate coefficient has the unit time−1, independent from the units used for the species.
The quantity k dt is the probability that a reaction occurs within the time interval dt.
According to the common chemical kinetics the reaction rate isreaction rate

r(t) = −dS1(t)

dt
= k S1(t) (2.16)

which can integrated by separation of variables

dS1(t)

S1(t)
= −k dt . (2.17)

The integration within the limits S1(0) to S1(t) and from 0 to t in the time domain

S1(t)∫

S1(0)

dS1(t)

S1(t)
= −k

t∫

0

dt (2.18)

leads to

ln
S1(t)

S1(0)
= −kt . (2.19)

Solving this for S1(t) we obtain the familiar exponential law

S1(t) = S1(0) exp{−kt} , (2.20)

for the temporal evolution of S1. S1(0) is the initial condition at t = 0. The solution for
the product S2 is obtained from the conservation law

S2(t) = S1(0)− S1(t) + S2(0) (2.21)

as
S2(t) = S1(0) [1− exp{−kt}] + S2(0) , (2.22)

with the initial value S2(0).

2.5.1.1 Characteristic times

The ty-time is the time where the normalised quantity S1(t)/S1(0) has the value y.
Hence, possible values for y lie in the interval [0, 1]. From (2.20), it follows that

ty = − ln y

k
. (2.23)
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Figure 2.4: Monomolecular reaction (2.15) as function of the half life t1/2. The normalised concentration
S1(t)/S1(0) has the value 2−n at the n-th multiple of the half life.

The most commonly known ty-time is the half life t1/2. At this time point half of thehalf life

initial amount S1(0) is transformed into product S2. It follows from the general definition
(2.23)

t1/2 =
ln 2

k
≈ 0.69

k
, (2.24)

which is independent from S1. This means that it takes always t1/2 to halve the amount
of S1. This is illustrated in Figure 2.4, where S1(t), normalised by S1(0), is drawn as
function of the half life t1/2. At every multiple n of t1/2 the ratio S1(t)/S1(0) has the
value 1/2n as mentioned before.

2.5.1.2 Measurement of the rate coefficient

In case of a monomolecular reaction the rate coefficient can be measured in a simple
way. From (2.19) the equation

lnS1(t) = lnS1(0)− k t (2.25)

defines a straight line with slope −k and an intersection with the y-axes lnS1(0). If one
applies the logarithm of measured data, as function of time, then the rate coefficient k
is obtained from a linear fit. This is sketched in Figure 2.5.

2.5.2 Bimolecular reactions

Probably the most common reaction that occurs in cells is the bimolecular reaction.
There are two different ways by which two reactants combine to form one or more
products. In the reaction

S1 + S2
k−−→ products
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Figure 2.5: Measurement of the rate coefficient k for a monomolecular reaction. The logarithm of the
concentration S1 as function of time t is a straight line with slope −k. The initial concen-
tration S1(0) is given by the intersection with the y-axis. The parameters are obtained by a
linear fit to measured data.

two different species are transformed into products, but the reaction

2S1
k−−→ products

is also possible. We will discuss both types of bimolecular reactions in the following two
sections.

2.5.2.1 Bimolecular reactions of two different species

The bimolecular reaction of two different molecular species S1 and S2 is defined bybimolecular reaction

S1 + S2
k−−→ products , (2.26)

where k is the rate coefficient for the bimolecular reaction. The units are now dependent
on the units of S1 and S2. If S1 and S2 are concentrations, the rate coefficient has the
unit concentration per time. From collision theory we have for the reaction ratecollision theory

r(t) = −dS1(t)

dt
= −dS2(t)

dt
= k S1(t)S2(t) . (2.27)

With the help of the extent variable ε(t), (2.12), we can transform this equation to

r(t) =
dε(t)

dt
= k

[
S1(0)− ε(t)

][
S2(0)− ε(t)

]
, (2.28)
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with initial concentrations S1(0) and S2(0). The differential equation is now solvable by
separation of variables. The analytical solution of the integral

kt =

ε(t)∫

0

dε(t)[
S1(0)− ε(t)

][
S2(0)− ε(t)

] (2.29)

is obtained, if one uses the following expansion into partial fractions

1[
S1(0)− ε(t)

][
S2(0)− ε(t)

] =
1

S1(0)− S2(0)

[
1

S2(0)− ε(t) −
1

S1(0)− ε(t)

]
.

The result

kt =
1

S1(0)− S2(0)
ln
S2(0)

S1(0)

S1(0)− ε(t)
S2(0)− ε(t)

=
1

S1(0)− S2(0)
ln
S2(0)

S1(0)

S1(t)

S2(t)
(2.30)

is transposable to S1(t) and S2(t) using the relation ε = S1(0) − S1(t) = S2(0) − S2(t).
One obtains

S1(t) =
S2(0)− S1(0)

S2(0)/S1(0) exp{[S2(0)− S1(0)]kt} − 1
(2.31)

and

S2(t) =
S1(0)− S2(0)

S1(0)/S2(0) exp{[S1(0)− S2(0)]kt} − 1
(2.32)

as the time law for bimolecular reaction (2.26). The reactants decrease exponentially.
The component abounding at the beginning is left over at the end of the reaction. If one
plots the logarithmic term in (2.30) versus the reaction time t, one obtain a straight line
with slope −k (S1(0) − S2(0)) allowing the measurement of the rate coefficient k from
experiment and a linear regression.

Equations (2.31) and (2.32) can be simplified in the case of stoichiometric concentra-
tions S1(0) = S2(0). Under this conditions the relation S1(t) = S2(t) holds at every
time. The reaction rate (2.27) can rewritten as

r(t) = −dS1(t)

dt
= −dS2(t)

dt
= k [S1(t)]2 = k [S2(t)]2 , (2.33)

which is again solvable by separation of variables. In this special case the time law is

S1(t) =
S1(0)

S1(0)kt+ 1
=

S2(0)

S2(0)kt+ 1
= S2(t) . (2.34)

If one of the reacting species is in great excess, for instance S2(0)� S1(0), the time law
can be further simplified. The extent is controlled by the second component S1. For the
abounding species S2 holds

S2(t) = S2(0)− ε(t) ≈ S2(0) (2.35)
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while (2.12) is valid for S1(t). With these approximations we obtain the differential
equation

r(t) = −dS1(t)

dt
= k S1(t)S2(t) ≈ k S1(t)S2(0)

≈ k′ S1(t) , (2.36)

where the new effective coefficient k′ is the product of the original rate coefficient k and
the concentration S2(0). It follows, that for this case the time law can be reduced to
the monomolecular case treated in the previous section. Such reactions are referred to
as pseudo-monomolecular or kryptobimolecular.

2.5.3 Bimolecular reaction of identical species

If both reactants are from the same species

2S1
k−−→ products , (2.37)

we have a bimolecular reaction for two identical molecules. We write

r(t) = −1

2

dS1(t)

dt
= k [S1(t)]2 (2.38)

for the reaction rate. The prefactor 1/2 ensures that one gets the same rate for the
reactants and products. If one uses the change of concentration, this condition is, in
general, not fulfilled.

The differential equation can be solved by separation of variables. For the dynamic
concentration S1(t) one obtains

S1(t) =
S1(0)

2S1(0)kt+ 1
, (2.39)

which is similar to (2.34). Both equations differ in a factor two in the denominator.

2.5.4 Trimolecular reactions

The reaction of three molecules to products is rare because the probability that three
independent molecules collide at the same time or within a small time interval is very
small. There are three possible ways for such a reaction. The first one is the reaction of
three speciestrimolecular reaction

S1 + S2 + S3
k−−→ products

forming the products. In the second possibility

2S1 + S2
k−−→ products

two molecules of species S1 react with a third particle S2. Last but not least, three
identical particles

3S1
k−−→ products

can be transformed into the products.
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2.5.4.1 Trimolecular reactions of different species

For the trimolecular reaction

S1 + S2 + S3
k−−→ products (2.40)

of three different species the reaction rate is

r(t) = −dS1(t)

dt
= −dS2(t)

dt
= −dS3(t)

dt
= k S1(t)S2(t)S3(t) . (2.41)

If one introduces the extent variable ε into the last equation

r(t) =
dε(t)

dt
= k

[
S1(0)− ε(t)

][
S2(0)− ε(t)

][
S3(0)− ε(t)

]
, (2.42)

with initial concentrations S1(0), S2(0) and S3(0), it is possible to solve the differential
equation by separation of variables. One obtains

kt =
1[

S1(0)− S2(0)
][
S3(0)− S1(0)

] ln
S1(t)

S1(0)

+
1[

S1(0)− S2(0)
][
S2(0)− S3(0)

] ln
S2(t)

S2(0)
(2.43)

+
1[

S2(0)− S3(0)
][
S3(0)− S1(0)

] ln
S3(t)

S3(0)
.

If all participating species have stoichiometric concentrations6 we can simplify the ap-
proach (‘ansatz’). Another known example is the so called ‘product ansatz’, where we
assume that the solution of two parameter-dependent problem is separable into a prod-
uct of two terms depending on one parameter only. In contrast, collision theory is an
approach to the description of the temporal change of reacting species. For the reaction
rate (2.41) with the relation S1(t) = S2(t) = S3(t) holding for all time. The resulting
differential equation

r(t) = −dS1(t)

dt
= k [S1(t)]3 (2.44)

is easy to solve and one obtains for the concentrations

S1(t) =

√
S1(0)2

1 + 2S1(0)2kt
(2.45)

as function of time. The results for S2(t) and S3(t) follow, if we exchange S1 for S2 and
S3 in the same way.

6The ratio of concentrations is equal to the ratio of stoichiometric coefficients.
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2.5.4.2 Trimolecular reactions of two different species

The trimolecular reaction
2S1 + S2

k−−→ products (2.46)

describes the reaction of two molecules of species S1 with one particle of species S2 into
products. For the reaction rate

r(t) = −1

2

dS1(t)

dt
= −dS2(t)

dt
= k [S1(t)]2 S2(t) . (2.47)

Again, one substitutes the time dependent variables S1(t) and S2(t) by the corresponding
relation between the initial values and the extent ε(t). The resulting differential equation

r(t) =
dε(t)

dt
= k

[
S1(0)− ε(t)

]2 [
S2(0)− ε(t)

]
(2.48)

can be solved by separation of variables. The result

kt =
1

2S2(0)− S1(0)

[
S1(0)− S1(t)

S1(0)S1(t)
+

1

2S2(0)− S1(0)

]
(2.49)

can be simplified, if one assumes stoichiometric concentrations. Then the relation S1(t) =
2S2(t) has to be satisfied for all time. The differential equation is now

r(t) = −1

2

dS1(t)

dt
=
k [S1(t)]3

2
. (2.50)

Thus, the temporal evolution of the concentration of species S1 obeys the same time law
(2.45) as the species in the trimolecular reaction of three different particle for stoichio-
metric conditions. With the aim of the above relation between S1 and S2 one obtains

S2(t) =
1

2

√
S2(0)2

1 + S2(0)2kt/2
(2.51)

for the second species S2.

2.5.4.3 Trimolecular reactions of three identical molecules

The reaction of three molecules of the same species

3S1
k−−→ products, (2.52)

is the third possibility for a realisation of a trimolecular reaction. The reaction rate is
given as

r(t) = −1

3

dS1(t)

dt
= k [S1(t)]3 . (2.53)

It follows

S1(t) =

√
S1(0)2

1 + 6S1(0)2kt
(2.54)

for the concentration of species S1 as a function of time.
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2.5.5 Higher and rational reaction orders

Up to now, we treated elementary reactions with one, two or three participating molec-
ular species. The developed formalism shall expand to non-elementary reactions. For
this purpose we revert to the general chemical reaction

|l1|S1 + |l2|S2 + + . . .+ |li|Si k−−→ |li+1|Si+1 + |li+2|Si+2 + . . . (2.55)

and introduce the reaction rate as

r(t) = k [S1(t)]n1 [S2(t)]n2 . . . [Si(t)]
ni [Si+1(t)]ni+1 [Si+2(t)]ni+2 . . .

= k
∏

i

[Si(t)]
ni . (2.56)

The total reaction order then is defined as sum over partial orders

n =
∑

i

ni , (2.57)

which can take values greater than three, as well as rational values. Therefore, the
so described reaction is in general not an elementary reaction. The partial reaction
orders ni of each species, in general, do not coincide with the stoichiometric coefficients.
The reaction rate obtained is an approximation and does not reflect the true reaction
mechanism, but often it gives a first indication to the mechanism.

If one assumes stoichiometric concentrations, one is able to obtain some important
quantities. The reaction rate is then

1

l1

dS1(t)

dt
=

1

l2

dS2(t)

dt
= . . . =

dε(t)

dt
= k

[
S1(0)− ε(t)

]n
, (2.58)

where ε(t) is the extent variable. By separation of variables one obtains

S1(t)

S1(0)
=

(
1

1 + S1(0)n−1 (n− 1) kt

)1/(n−1)

, (2.59)

for the normalised or dimensionless concentration S1(t)/S1(0). The half life, defined as
the time, where the normalised concentration is S1(t)/S1(0) = 1/2, can be determined
from (2.59). After some algebraic transformations one obtains

t1/2 =
2n−1 − 1

(n− 1)k
S1(0)−n+1 . (2.60)

The dependence from the initial concentration S1(0) in (2.60) allows the determination
of the total reaction order n. In an experiment the half life can be measured as function
of the initial concentration. A double logarithmic representation of the data gives a
straight line with a slope m = −n+1, which can be used to determine the total reaction
order n. For such practical considerations and experimental techniques the reader is
referred to [AdP02, Seg93, CB04].

115



2 Biochemical Reaction Kinetics

reaction order half life t1/2
1 t1/2 = const.

2 t1/2 ∼ S1(0)−1

3 t1/2 ∼ S1(0)−2

1/2 t1/2 ∼
√
S1(0)

3/2 t1/2 ∼ 1/
√
S1(0)

Table 2.1: The dependency of the half life t1/2 from the initial concentration for the general chemical
reaction (2.55) with stoichiometric conditions. S1(0) is the initial concentration of reactant
S1.

2.5.5.1 Reactions of zeroth order

A special case of the generalised reaction is the reaction of “zeroth order”. For such
a reaction the reaction rate is independent from the concentration. Choosing a zeroth
order degradation of species S1 as an example, the differential equation

− dS1(t)

dt
= k (2.61)

is easy to integrate. The result is the linear function

S1(t) = S1(0)− kt , (2.62)

where the slope is given by the rate coefficient k. Reactions of zeroth order appear, if the
rate is governed by a temporal constant non-chemical process. Examples include reac-
tions on a surface, where the concentration of the reactant is constant by adsorption or
a constant external flow of matter. The saturation of the enzyme complex in the enzyme
kinetic reaction is a further example for such a behavior. Often, this approximation is
used to simplify kinetic equations. The transient time, the reaction takes to reach this
state and at the end of the reaction, is assumed as small compared to the saturated
state.

At the end of this section we have to made an important comment on this treatment of
(bio)chemical reactions. Within this framework one describes the dependency between
the reactants and the products without a proper model of the reaction mechanism.
Hence, the total order n cannot be interpreted as number of participating molecules in
an elementary reaction. But it is an easy and fast way to find a functional relation
between the reactants and the products.

2.6 Complex Reactions

In the previous section we introduced the concept of elementary reactions and demon-
strated their properties. As mentioned before, we assume that chemical reactions consist
of a set of elementary reactions. In the this section we want to classify some basic com-
plex reactions and describe their properties. Before we go into details, we distinguish
between three basic kinds of “complex reactions”:
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1. Reversible reactions,
S1 
 S2 ,

2. Parallel reactions,

S1

↗
→
↘

S2

S3

S4

3. Consecutive reactions,
S1 −→ S2 −→ S3 .

More complex reactions can be composed of these three basic classes. Some possible
reaction schemes are:

• Consecutive reactions with reversible parts

– pre-equilibrium
S1 
 S2 −→ S3 −→ S4

– downstream equilibrium
S1 −→ S2 
 S3

• Consecutive reactions combined with parallel reactions

S1 → S2

↗
→
↘

S3

S4

S5 → S6

• Competitive consecutive reactions

S1 + S2 → S3 + S4

S1 + S3 → S5 + S6

• Closed consecutive reactions (chain reactions)

S1 → 2X

S1 +X → S2 → S3 +X

We can continue this list with more complicated complex reactions, but in order to convey
an idea of the complexity of reaction mechanisms this short overview is sufficient.

Each step in a complex reaction scheme is represented by an elementary reaction,
which can be described by a differential equation. Because steps are not independent
of each other, we now obtain a system of coupled differential equations. In general,
there is no analytical solution for such systems. One has to use numerical methods to
solve, simulate, the differential equations. We provide some analytically solvable simple
examples to demonstrate the properties of more complex reactions.
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2.6.1 Reversible reactions

A reversible reaction consists of two elementary reactions, the forward reaction and thereversible reaction

reverse reaction. Both are characterised by rate coefficients. The simplest example for
such a reaction is the monomolecular reversible reaction

S1
k1−−⇀↽−−
k−1

S2 , (2.63)

where the forward and the backward reaction are first-order reactions. The rate coeffi-
cient of the forward reaction is k1 and the coefficient of the backward reaction is k−1. If
we assume the initial concentration S1(0)

.
= S0 and S2(0) = 0 the conservation law

S1(t) + S2(t) = S1(0) (2.64)

must hold for all times. The corresponding reaction rate is obtained from the difference

r(t) = r1(t)− r−1(t) (2.65)

of the forward and the backward reaction. With the use of the representation of elemen-
tary reactions we obtain the differential equations

r = −dS1(t)

dt
= k1 S1(t)− k−1 S2(t)

=
dS2(t)

dt
= k1 S1(t)− k−1 S2(t) = −dS1(t)

dt
(2.66)

=
dε(t)

dt
= k1

[
S1(0)− ε(t)

]
− k−1

[
S2(0) + ε(t)

]

for the reaction rate. The first term on the ride-hand-side corresponds to the production
of S2 in a monomolecular reaction from S1 and the second term to the analogue reverse
reaction. From (2.66) it follows, that there is a point, where the reaction rate is zero.
The forward and the backward reaction are balanced at this point, the same amount
of S2 is produced the same amount of S2 as is transformed back to S1. From this we
see that a reaction rate of zero does not mean, that nothing happens7. A net change of
concentration is not measurable from a macroscopic point of view, but in a microscopic
view the reactions are still going on. This special state is called chemical equilibrium.chemical equilibrium

For our example of a reversible reaction, this state is defined as

0 = k1S1(t)− k−1S2(t) . (2.67)

More general, the right-hand-side must be zero. This mathematical condition is a neces-
sary but not a sufficient constraint, especially for complex systems. It has to fulfill some
more physical conditions, by which we decide if it is a stable or an unstable state. Only

7Except at time t = 0, where the reaction was started. At this point, we postulate that nothing
happened before.
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the stable state is referred to as equilibrium state (see also Chapter 4.9). The solution
of equation (2.67) is

Keq =
k1

k−1
=
S2,eq

S1,eq
(2.68)

defines the equilibrium constant Keq as the ratio of the rate coefficient of the forward
and the rate coefficient of the backward reaction. This quantity measures the affinity
of S1 to transform to S2. The equation (2.68) is the famous “law of mass action” for
an monomolecular reaction. Equations (2.66) are kinetic rate equations. The law of
mass action is a result of these equations and the assumptions behind them. To call law of mass action

this representations ‘law of mass action’“ can however be misleading and one might
speak of a ‘generalised law of mass action’ is sometimes used. For S2 we define the
dissociation constant Kd describing the process of the backward transformation into the
reactants. It is the reciprocal of the equilibrium constant Keq. From (2.68) it follows
that in equilibrium the ratio of the concentrations match the equilibrium constant. The
corresponding concentrations are called equilibrium concentrations S1,eq and S2,eq. The
species with a higher production rate has the higher equilibrium concentration.

The temporal evolution of the reversible reaction (2.63) can be solved analytically
using the third differential equation in (2.66). The integration over the extent variable
ε(t) can be carried out by separation of variables. We obtain the integrals

ε(t)∫

0

dε(t)

[
(Keq + 1)

(
KeqS1(0)− S2(0)

Keq + 1
− ε
)]−1

=

t∫

0

k−1 dt . (2.69)

After integration and some manipulations we get the result

ε(t) =
k1S1(0)− k−1S2(0)

k1 + k−1

[
1− exp

{
− (k1 + k−1)t

}]
(2.70)

= εeq

[
1− exp

{
− (k1 + k−1)t

}]

for the extent variable. The extent increases exponentially to its equilibrium value.
The relaxation time τ = (k1 + k−1)−1 is a measure how fast the reaction tends to the
equilibrium. The time evolution for the reactant S1 follows as

S1(t) = S1,eq + (S1(0)− S1,eq) exp {−(k1 + k−1)t} , (2.71)

with initial concentration S1(0) and equilibrium concentration S1,eq. From the conser-
vation law

S1(t) + S2(t) = S1(0) ,

where we assume that S2(0) = 0, we obtain

S2(t) = (S1(0)− S1,eq)
[
1− exp

{
− (k1 + k−1)t

}]
(2.72)

for the product. Both, reactant and products, reach their equilibrium concentration,
exponentially. This behavior is shown in Figure 2.6. Additionally, the equilibrium values
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Figure 2.6: The monomolecular reversible reaction as function of the relaxation time τ . The solid line
represent the dynamic change of the reactant and the dashed line the change of the product
to their equilibrium states shown as horizontal lines. The ratio of the equilibrium states is
given by the law of mass action (2.68).

are drawn as horizontal lines for comparison. We choose k1 > k−1 for this example, hence
the equilibrium state of S2 is higher than the equilibrium state of the reactant S1.

The rate coefficients of a monomolecular reversible reaction can be determined from
a logarithmic representation of (S1(0)− S1,eq)/(S1(t)− S1,eq) and the equilibrium with
(2.68). The slope of the logarithmic plot is proportional to the inverse relaxation time
(k1 + k−1). The determination of the rate coefficients k1 and k−1 requires the mea-
surement of the dynamic change of concentrations and the measurement of equilibrium
data.

The treatment of reversible reactions can be generalised to higher reaction orders. As
an example we choose a bimolecular forward- and backward reaction

S1 + S2
k2−−⇀↽−−
k−2

S3 + S4 . (2.73)

We assume, that only the reactants are present in stoichiometric amounts at the begin-
ning of the reaction. Furthermore we use the extent variable ε(t) to simplify the kinetic
equation.

t S1 S2 S3 S4

0 S1(0) S1(0) 0 0
t S1(0)− ε(t) S1(0)− ε(t) ε(t) ε(t)
∞ S1(0)− εeq S1(0)− εeq εeq εeq

Table 2.2: Relations between the reactants and products to the extent variable ε for the reversible reaction
(2.73).
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From this follows the conservation law conservation law

S1(0) + S2(0) = 2S1(0) = 2 (S1,eq + εeq) . (2.74)

The time law is

r(t) = −dS1(t)

dt
= −dS2(t)

dt
=
dε(t)

dt
= k2 S1(t)S2(t)− k−2 S3(t)S4(t)

= k2 [S1(0)− ε(t)]2 − k−2 [ε(t)]2 (2.75)

is analytically solvable. The integration by expansion into partial fractions gives

ln
ε(t) [S1(0)− 2εeq] + S1(0)εeq

S1(0)
[
εeq − ε(t)

] =
2S1(0) [S1(0)− εeq]

εeq
k2t (2.76)

after numerous rearrangements. We can use it as an instruction for the determination
of the rate coefficient k2. The second coefficient is obtained again from the equilibrium
solution

Keq =
S3,eqS4,eq

S1,eqS2,eq
=

ε2eq

[S1(0)− εeq]2
=

k2

k−2
, (2.77)

as a generalisation of the law of mass action for the bimolecular reversible reaction (2.73).

2.6.2 Parallel reactions

In a parallel reaction, several reactions of the same reactants proceed side by side but parallel reaction

produce different end products. Each reaction mechanism can consist of an elementary
reaction, a reversible reaction, or a more complex mechanism. The reaction of one species
with several partners in the reaction volume is a competitive reaction and no parallel
reaction. We will discuss this towards the end of this section.

In order to illustrate some elementary properties of side reactions we consider the
first-order reaction

k1−→ S2

S1
k2−→ S3 (2.78)
k3−→ S4

composed of three irreversible monomolecular reactions. The species S1 is converted in
a monomolecular reaction into products S2, S3, and S4. The term ki dt is the probability
that the i-th reaction occurs in the time interval dt. The resulting kinetic equation is

r(t) = −dS1(t)

dt
= k1 S1(t) + k2 S1(t) + k3 S1(t)

= k S1(t) , (2.79)

121



2 Biochemical Reaction Kinetics

where k is the total rate coefficient

k =
∑

i

ki (2.80)

and k dt the probability, that one of the reactions takes place. The solution of such a
differential equation is known from the discussion of monomolecular reaction. In analogy,
we obtain for the temporal evolution an exponential expression

S1(t) = S1(0) exp{−kt} , (2.81)

where S1(0) is the initial concentration. The temporal evolution of the reactant is
indistinguishable from the evolution of a monomolecular reaction with the same rate
coefficient. More generally, the dynamic change of the reactants is for the same coefficient
k independent of the number of products.

The creation of products S2, S3, and S4 is governed by the kinetic equations

dS2(t)

dt
= k1 S1(t) ,

dS3(t)

dt
= k2 S1(t) ,

dS4(t)

dt
= k3 S1(t) , (2.82)

which can be transformed with (2.81) into

dS2(t)

dt
= k1 S1(0) exp{−kt} , . . . (2.83)

Integration leads the exponentials

S2(t) =
k1

k

[
1− exp{−kt}

]
S1(0) + S2(0) , (2.84)

S3(t) =
k2

k

[
1− exp{−kt}

]
S1(0) + S3(0) , (2.85)

S4(t) =
k3

k

[
1− exp{−kt}

]
S1(0) + S4(0) . (2.86)

The comparison of the transient concentrations8 shows a further important property of
parallel reactions. If we calculate the ratios of the dynamic concentrations

[S2(t)− S2(0)] : [S3(t)− S3(0)] : [S4(t)− S4(0)] = k1 : k2 : k3 (2.87)

we obtain the ‘Principle of Wegscheider’. It says, that the ratio is equal to the ratio of
the rate coefficients ki and constant.

The time evolution for the parallel reaction (2.78) is shown in Figure 2.7, for the
special case of S2(0) = S3(0) = S4(0) = 0. For these initial conditions we can expand
the conservation law to

S1(0) = S1(t) + S2(t) + S3(t) + S4(t) . (2.88)

8The prefix transient distinguishes between the produced concentration in the temporal process of the
reaction and the initial concentrations. In this sense the full concentration is given by a transient
and an initial part.

122



2.6 Complex Reactions

0 1 2 3 4 5 6 7
Time t [k−1]

S2,f

S3,f

S4,f

S1(0)

C
o
n
ce
n
tr
at
io
n

S1(t)

S2(t)

S3(t)
S4(t)

Figure 2.7: The temporal evolution of the reactant S1 and the products S2, S3, S4 of the parallel reac-
tion (2.78) in units of the initial concentration S1(0). The horizontal lines denote the final
concentration S2,f , S3,f , and S4,f of the products.

At the end of the reaction, species S1 is completely consumed and (2.88) is determined
by the final concentration S2,f , S3,f , and S4,f . We obtain with (2.84)-(2.86) for these
concentrations

S2,f =
k1

k
S1(0) ,

S3,f =
k2

k
S1(0) ,

S4,f =
k3

k
S1(0) .

The concentrations are determined by the ratio of the individual rate coefficient ki and
the total rate coefficient k (2.80). The exponential decrease of S1 and the exponential
increase of the product is clearly visible in the figure. For comparison, the product
concentrations at the end of the reaction are also shown. The reaction S1 → S2 is the
fastest reaction, hence it is the main product of the side reaction (2.78).

These results are valid for parallel reactions in general. Recapitulating, parallel reac-
tions have the following behavior

• The time evolution of the reactants is independent from the number of products
and has the same order as each elementary reaction. It is determined by the total
rate coefficient (2.80), only.

• The fastest side reaction is strongest participant on the extent. It controls the
main product.

• The products are build in the ratio of their rate coefficient (Principle of Wegschei-
der).
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2.6.2.1 Differentiation of parallel reactions and competitive reactions

In our discussion of parallel reactions we tried to show how a parallel reaction can
be separated from a competitive reaction in an experiment. In a parallel reaction the
same reactants can be transformed in different products. In a competitive reaction,
for instance, the reactant S1 participates in two independent reactions with different
partners. For instance, let us consider two bimolecular reactions

S1 + S2
k1−→ S4 + . . .

S1 + S3
k2−→ S5 + . . .

(2.89)

with the common reactant S1. The corresponding system of coupled differential equa-
tions is

dS1(t)

dt
= − (k1 S2(t) + k2 S3(t))S1(t) ,

dS2(t)

dt
= −k1 S1(t)S2(t) ,

dS3(t)

dt
= −k2 S1(t)S3(t) , (2.90)

dS4(t)

dt
= k1 S1(t)S2(t) ,

dS5(t)

dt
= k2 S1(t)S3(t) .

If we use Wegscheider’s principle in differential form, we obtain with

dS4(t)

dS5(t)
=
k1 S1(t)S2(t)

k2 S1(t)S3(t)
=
k1

k2

S2(t)

S3(t)
(2.91)

an expression that depends on the present concentration of S2 and S3. For a parallel
reaction this ratio has to be a constant.

2.6.3 Consecutive reactions

An important class of complex reactions are consecutive reactions. These reactions in-consecutive reaction

clude one or more unstable intermediates. Some partial reactions can be reversible and
there can be arborisation as a result of parallel reaction.

To simplify matters we consider an unidirectional and monomolecular sequence of
reactions

S1
k1−→ S2

k2−→ S3 , (2.92)

which is like a radioactive decay sequence, with initial condition S2(0) = S3(0) = 0. The
decay of S1 into the intermediate S2 is governed by the differential equation

dS1(t)

dt
= −k1 S1(t) , (2.93)
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with the known solution
S1(t) = S1(0) exp {−k1 t} . (2.94)

The differential equation for S2 is more complicated. It consists of two parts

dS2(t)

dt
= k1 S1(t)− k2 S2(t) , (2.95)

where the first term describes the production of S2 from S1 and the second term the
decay into the final product S3. With (2.94) we transform this equation into a first-order
linear differential equation that can be solved analytically:

dS2(t)

dt
= k1 S1(0) exp {−k1 t} − k2 S2(t) . (2.96)

We obtain for S2

S2(t) =
k1

k2 − k1
S1(0)

[
exp {−k1t} − exp {−k2t}

]
. (2.97)

The temporal evolution has a maximum at

tmax =
ln(k1/k2)

k1 − k2
. (2.98)

This is a typical property for an unstable intermediate. In the beginning S1 decays faster
due to its higher concentration, whereas S2 decays slowly. The result is an increase of
the intermediate. In the course of the reaction the rate of decay of S1 decreases. At tmax

the production rate and the decay rate of the intermediate are equal. After this time
the decay rate is faster and S2 decreases, too. The corresponding concentration is

S2,max = S2(tmax) =

(
k1

k2

) k2
k2−k1

. (2.99)

If we use (2.97) the differential equation for the final product is

dS3(t)

dt
= k2 S2(t)

=
k1 k2

k2 − k1
S1(0)

[
exp {−k1t } − exp {−k2t}

]
. (2.100)

It is proportional to the time law of S2. Hence, the reaction rate of S3 has a maximum
at tmax. Remember we assumed S2(0) = S3(0) = 0, the conservation law

S1(0) = S1(t) + S2(t) + S3(t) , (2.101)

permits an easier way to solve the temporal evolution. The result

S3(t) = S1(0)

[
1− k2 exp {−k1 t} − k1 exp {−k2 t}

k2 − k1

]
(2.102)
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Figure 2.8: The temporal evolution of consecutive reaction (2.92) as a function of the dimensionless time
k1 t. On the y-axis the normalised concentrations S1(t)/S1(0), S2(t)/S1(0), and S3(t)/S1(0)
are plotted. Additionally the time tmax (2.98) and the maximum value of the intermediate
S2,max (2.99) are shown.

changes the sign of its second derivative at tmax. This behavior results in a typical
sigmoidal shape of the time evolution of the final product, as shown in Figure 2.8. There
the time evolution for all three participating species is compared. The starting substance
S1 decreases with the exponential decay law (2.94). As mentioned before, intermediate
S2 first increases, goes through a maximum and finally decreases. The time at which
the maximum occurs and its value are plotted by thin dashed lines. Both are dependent
on the ratio of the rate coefficient k1 and k2. The time evolution of the final product S3

is a monotonously increasing function with the predicted inflection point at tmax.

The radioactive decay sequence (2.92) is a simple example for a consecutive reaction.
Reactions of higher order or/and higher complexity lead to more complicated kinetic
equations and are often only numerically or approximately solvable.

2.6.3.1 Rate-determining steps

If one reaction is much slower than subsequent ones, it can determine the overall rate
of the reaction. In some cases we can then simplify the formalism for a consecutive
reaction. We consider again the radioactive decay sequence (2.92). First, let us assumerate-determining step

the case where k1 � k2, i.e., the second reaction is slower than the first. Now we expand
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Figure 2.9: Comparison of the full solution for the consecutive reaction (2.92) and the approximation
of the rate-determining step for a slow second partial reaction. After a short starting time,
the approximation shows good agreement with the full solution. We choose k1 = 0.1 s−1 and
k2 = 0.01 s−1 for this example. The concentrations are normalised to the initial concentration
S1(0).

the prefactor9 in equation (2.97)

k1

k2 − k1
= − 1

1− k2/k1
≈
(
−1− k2

k1
−O

(
k2

2

k2
1

))
≈ −1 , (2.103)

where the symbol O(. . .) denotes the order in respect of the expansion parameter of first
neglected term of the expansion. The sign corresponds to the trend of contribution.
Furthermore we compare the exponential functions within the brackets. If k1 t is always
much greater then k2 t, we obtain

exp {−k2 t} � exp {−k1 t} (2.104)

and neglect the k1 dependent exponential function against the k2 dependent exponential.
With these approximations we obtain for the intermediate the new time law

S2,k2(t) = S1(0) exp {−k2 t} (2.105)

and for the final product

S3,k2(t) = S1(0)
[
1− exp {−k2 t}

]
. (2.106)

9

1

1− x ≈ 1 + x+ x2 + . . . for x� 1
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Within this approximation, the temporal evolution is determined by the slow decay
of the intermediate S2 into the product S3. The subscript k2 shall denote this property
and distinguish between the full and the approximative solution. We compare both
solutions in Figure 2.9, where our main focus is on the final product. The decay of S1

is kept unchanged. It is almost completely transformed into the intermediate before the
intermediate decays into S3. After a short starting time, the principle of the rate-limiting
step is a good approximation.

In a second part we now assume, that the decay of S1 is the slowest step of sequence
reaction (2.92). This means k1 � k2. We again expand the prefactor

k1

k2 − k1
=
k1

k2

1

1− k1/k2
≈ k1

k2

[
1 +

k1

k2
+O

(
k2

1

k2
2

)]
≈ k1

k2
(2.107)

and the comparison of the exponentials gets

exp {−k1 t} � exp {−k2 t} . (2.108)

We can now simplify equations (2.97) and (2.102), whereas the equation for S1 (2.94)
remains unchanged. Within this approximation the evolution of the intermediate is
governed by

S2,k1(t) = S1(0)
k1

k2
exp {−k1 t} (2.109)

and of the final product by

S3,k1(t) = S1(0)
[
1− exp {−k1 t}

]
= S1(0)− S1(t) . (2.110)

Again, the subscript denotes the rate-determining step. The comparison of the approxi-
mation and the full solution is shown in Figure 2.10. The production of the intermediate
is much slower than its decay. A molecule from species S2 is transformed practically
immediately into the final product. The concentration of the intermediate is always
small in comparison to S1 and S3. Also in this case, the approximation gives a good
description of the reaction except the very first time.

We now give a more general discussion of the rate limiting step. If one step of a
consecutive reaction is much slower than the others, it determines the total rate of
reaction or more precisely, the rate of all following steps. This reaction is called the
rate-determining step. The total reaction rate is the rate of the production of the final
product of the sequence. This statement includes a further property of consecutive
reactions. The reaction rate is not equal for each step. Each partial reaction before
the rate-determining step has its own rate depending on the specific reaction and the
steps before. The approximation of the rate-determining step defines a limiting total
reaction rate for the considered sequence. The reaction rate for the described system
cannot be faster than this limit. This is a direct consequence from the principle of cause
and effect. The effect cannot occur before the cause, you cannot create a new species
without its components. If there are faster steps before the rate-determining step we
obtain a congestion of its participating molecules. If the following steps are faster they
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Figure 2.10: Comparison of the full solution and the approximation for a fast second step. The rate
coefficients are k1 = 0.01 s−1 and k2 = 0.1 s−1. The concentration of the intermediate is
always small in comparison to other species. It is transformed practically immediately into
S3.

have to wait on the slower reaction. However, the rate-determining step is not just the
slowest step: it must be slow and be a crucial gateway for the formation of products. If a
faster step also lead to products, the slowest step is irrelevant because the slow reaction
can be sidestepped. To finish our discussion we have to give a criteria which step in a
consecutive reaction is the slowest.

For this purpose we discuss a more sophisticated model for an monomolecular reaction.
It was introduced by Lindemann and experimentally verified by Hinshelwood [AdP02].
Starting point for the model is the idea that a single molecule is excited by a collision.
The excited molecule can loose its energy by a new collision or decays in a monomolecular
step into the product.

S1 +M
k2−−⇀↽−−
k−2

S∗1 +M

S∗1
k1−−→ S2

The molecule M can be from species S1, S2 or an inert-gas. Here, an inert-gas is a
gas of other species, which do not react with the considered molecules S1,S2, and S∗1 .
Collisions between two excited molecules S∗1 are negligible in comparison to the others.
But a collision is a clear bimolecular process, how we can get a first-order kinetics from
this mechanism? The rates for the components follow the system of coupled differential
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equations

dS1(t)

dt
= −k2 S1(t)M(t) + k−2 S

∗
1(t)M(t) , (2.111)

dS∗1(t)

dt
= k2 S1(t)M(t)− k−2 S

∗
1(t)M(t)− k1 S

∗
1(t) (2.112)

dS2(t)

dt
= k1 S

∗
1(t) . (2.113)

A simplification arises, if we use a steady state approximation for the excited molecule
S∗1 . From (2.112), it follows

S∗1(t) =
k2 S1(t)M(t)

k−2M(t) + k1
, (2.114)

which we can insert into (2.111) or (2.113). The result for the reaction rate is

− dS1(t)

dt
=
dS2(t)

dt
=
k1 k2M(t)S1(t)

k−2M(t) + k1
(2.115)

for which no reaction order can be defined. For a closed system is M(t) ≈ const. and
the rate equation transforms to a pseudo-first order law

− dS1(t)

dt
=
dS2(t)

dt
= keff S1(t) , (2.116)

where the effective rate coefficient is

keff =
k1 k2M

k−2M + k1
. (2.117)

The effective constant depends on the collision partners M .
Now, we go back to our original question and determine the rate-determining step.

For that purpose we consider different amounts of M . First we assume k−2M � k1.
The rate law simplifies to

− dS1(t)

dt
=
dS2(t)

dt
= k2M S1(t) , (2.118)

which obeys second-order kinetics. The rate-determining step is the bimolecular collision
of S1 and M . On the other hand, if k−2M � k1 we obtain a rate of first order

− dS1(t)

dt
=
dS2(t)

dt
=
k1 k2

k−2
S1(t) . (2.119)

The rate-determining step is now the monomolecular decay of excited molecules into
products.

From this example we are able to define the rate-determining step. The rate-determining
step is the step with the smallest probability to occur within the time interval dt or the
with the smallest rate, respectively. The rate coefficient alone is not a proper criteria.
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Figure 2.11: Log-log plot for the effective rate constant keff as function of the collision partner M .
For k2 M � k1, see (2.117), the reaction follows second-order kinetics determined by the
bimolecular excitation of S1 and for k2 M � k1 first-order kinetics with the monomolecular
decay into the product S2 as product. We use the intersection of the asymptotes of keff to
separate the M -keff -plain into a bimolecular and monomolecular limited region.

Only in special cases it is the process with the smallest rate coefficient. Remember, the
rate for an elementary reaction is the product of the rate coefficient and the participating
species. As we demonstrated the rate-determining step depends on the current condi-
tions in the reaction volume. For complex reactions often one cannot define an unique
rate-determining step. Instead one has to consider different regimes as we have done it for
the sophisticated model of monomolecular reactions. Furthermore, the rate-determining
step can be time dependent. Complex reactions with (auto)catalytic reactions are a
typical example for such a behavior.

2.6.3.2 The (quasi-)steady state approximation

The second case of a preliminary rate-determining step can be expanded into a more
rigorous approximation. Let S2 an unstable intermediate with a short lifetime and small
concentration in comparison to the other participants on the sequence. Its consumption
more or less simultaneously with its production. In this case we can assume for its rate

dS2(t)

dt
≈ 0 . (2.120)

It follows that the balance equation is given as

dS2(t)

dt
= k1 S1(t)− k2 S2(t) ≈ 0 , (2.121)

leading to the relation
k1 S1(t) = k2 S2(t) . (2.122)
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From this we obtain

S2(t) =
k1

k2
S1(t) (2.123)

and finally from (2.100) the simplified time law

dS3(t)

dt
= k1 S1(t) (2.124)

for the final product. An integration leads again to 2.110.
At the end of this section we generalise the steady state approximation. Within this

approximation we assume, that during the major part of the reaction the rate of change
of intermediates are negligible small10. Thereby we neglect an initial time period, where
the intermediates rise from zero. In our previous examples, see Figure 2.9 and 2.10,
the first 25 seconds cannot be described with the approximation of the rate-determining
step. For the next minutes it is a good description. But a ratio of 10(0.1) is not a great
difference between the rate coefficient. We chose this ratio for demonstration purposes
only.

The amount of the intermediates does not need to be negligible in comparison to the
reactants and products as we assume in our example. This more restrictive approxima-
tion is often called a quasi-steady state.quasi-steady state

The steady state approximation is a very powerful tool in the analytic treatment of
complex reactions. Because of the increasing mathematical complexity reaction schemes
involving many steps is nearly always analytically unsolvable. One approach is a nu-
merical solution of the differential equation. An alternative approach is to make an
approximation. On the other hand, an approximation restricts the range of validity of
the model. For instance, the steady state approximation in (2.112) assumes that the
formation of the excited molecule and its decay back into the deactivated form are much
faster than the formation of the product. This is only possible if k−2 � k1, but not
when k−2 � k1.

Hence, the approximations of steady state and rate-determining step have to be used
carefully. Their validity is limited and has to recontrol for each specific reaction system
and its parameters. An usage far away from the validity region leads to wrong results.

2.6.4 Autocatalytic reactions

A particular class of reactions are catalytic reactions. A catalyst accelerates the reactioncatalyst

and is released unmodified as product. It occurs as reactant and as product. Note, a
catalyst can affect only reactions happening from alone. In other words, the reactions
have to be possible from thermodynamic reasons. It also does not change the equilibrium
properties. In this section we want to discuss a special kind of catalytic reactions, the
autocatalytic reaction. In these reactions a product accelerates its own production. In
contrast to the other catalytic reactions we have not to add an additional substance.
Known examples for such reactions are chain reactions11. Thereby, one distinguishes

10Here negligible small means small in comparison to the rates of the other participating species.
11In a chain reaction substances are involved recycling the reactants and starting a new reaction cycle.
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between two types of (auto)catalytic reactions12. The catalyst can increase the reaction
rate, unfortunately, this behavior is called (auto)catalysis, too. The inverse effect of a
decrease of reaction rate is called (auto)inhibition. The corresponding substance is an
(auto)inhibitor.

For an introduction to autocatalysis we choose the simplest possible model, an unidi- autocatalysis

rectional monomolecular reaction. The stoichiometric formula is

S1
k−−→
S2

S2 , (2.125)

where the subscript S2 denotes, that the product S2 acts as a autocatalyst. In a more
detailed representation one often uses the formula

S1 + S2
k−−→ 2S2 (2.126)

for an autocatalytic reaction. According to the second chemical formula the kinetic
equation is

r(t) = −dS1(t)

dt
=
dS2(t)

dt
=
dε(t)

dt
= k S1(t)S2(t) (2.127)

= k
[
S1(0)− ε(t)

][
S2(0) + ε(t)

]
.

The autocatalytic effect of the product S2 formally increase the reaction order. Be aware,
this is only an ‘Ansatz’, not a full description of the reaction mechanism. The mechanism
of catalytic reaction is often complicated, hence we forbear to specify it. Instead, we
discuss some basic properties in our model.

The autocatalytic reaction fulfills the conservation law

S1(0) = S1(t) + S2(t)− S2(0) , (2.128)

where we assume an initial concentration of the autocatalyst. Kinetic equations (2.127)
are solvable by separation of variables. The integral

kt =

ε(t)∫

0

dε(t)[
S1(0)− ε(t)

][
S2(0) + ε(t)

] (2.129)

is solved by an expansion into partial fractions. We obtain

kt =
1

S1(0) + S2(0)
ln
S1(0)

S2(0)

S2(t)

S1(t)
(2.130)

from which we get

S1(t) =
S1(0) + S2(0)

S2(0)/S1(0) exp
{ [
S1(0) + S2(0)

]
kt
}

+ 1
(2.131)

12An acceleration is a change of velocity, not necessarily an increase.
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Figure 2.12: The time evolution and the reaction as function of time for the autocatalytic reaction
(2.125). We use normalised units for the concentrations and the time dependent rate. The
time is plotted in units of the time of the inflection point (2.133). In contrast to uncatalyzed
monomolecular reaction the reaction rate is an increasing function for t < tip.

and

S2(t) =
S1(0) + S2(0)

S1(0)/S2(0) exp
{
−
[
S1(0) + S2(0)

]
kt
}

+ 1
(2.132)

for the reactant and the product as function of time. Both functions have an inflection
point typically for autocatalytic reactions at

tip =
1[

S1(0) + S2(0)
]
k

ln
S1(0)

S2(0)
. (2.133)

The associated concentrations are

S1,ip =
S1(0) + S2(0)

2
= S2,ip . (2.134)

Also, the reaction rate shows some interesting and typical properties. At the begin-
ning the rate is small, because of the small amount of the catalyst. With increasing
concentration of S2 the rate increases and reaches a maximum

rmax =
k

4
(S1(0) + S2(0))2 (2.135)

at the same time point (2.133), where the concentrations have their inflection point.
After this point the reaction gets slower because of the decreasing amount of the reactant
S1.

In Figure 2.12 the time-dependent normalised concentrations S1(t), S2(t) and the
normalised reaction rate are plotted. The time is in units of the inflection point. As
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2.7 The enzyme kinetic reaction

mentioned before the concentrations have an inflection point where the reaction rate
reaches its maximum.

The reaction starts with a small but finite initial concentration of the autocatalyst S2.
Without this condition the ansatz for the reaction rate does not work. We avoid this
non-physical behavior by invoking an extra uncatalyzed reaction converting S1 directly
to S2. How we mentioned before such a reaction must exist, but it can be very slow.
The rate equation is now

r = −dS1(t)

dt
=
dS2(t)

dt
=
[
k0 + k S2(t)

]
S1(t) , (2.136)

where k0 is the rate coefficient of the uncatalyzed monomolecular reaction. After an
initial time the second term within the brackets is dominant resulting in (2.127).

2.7 The enzyme kinetic reaction

The vast majority of reactions in the cell is facilitated by a catalyst. These type of
reactions have been studied for a long time in the context of enzyme kinetics and have
found many applications in modelling metabolic networks. The idea of a reaction that
is facilitated by another molecular species will also prove useful when we come to signal
transduction pathways, where the enzyme is called a kinase. The present section derives
the well known Michaelis-Menten representation in detail and considers several distinct
kinds of enzymatic reaction types, including competitive binding, inhibitors, reversible
Michaelis-Menten equation. We discuss the consequences of these different formulations
on the dynamics the models can capture.

2.7.1 The Michaelis-Menten equation

The starting point of our discussion of enzyme kinetics is the well-known Michaelis- enzyme kinetics

Menten equation [BH25]. Within this framework we assume that the conversion of the
substrate S into the product P is catalyzed by the enzyme E. The enzyme and the
substrate form an intermediate enzyme-substrate complex C which can degrade into the
reactants or into product and enzyme. The kinetic mechanism can be presented in the
usual graphical form

S + E
k1−−⇀↽−−
k−1

C
k2−→ E + P (2.137)

where the ki denote the rate coefficients for each elementary reaction. The kinetic rate
equations for that are now a system of four coupled differential equations

Ṡ = −k1E(t)S(t) + k−1C(t) , (2.138)

Ė = −k1E(t)S(t) + [k−1 + k2]C(t) , (2.139)

Ċ = k1E(t)S(t)− [k−1 + k2]C(t) = −Ė , (2.140)

Ṗ = k2C(t) . (2.141)
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There is a conservation law
E(0) = E(t) + C(t) (2.142)

for the enzyme, where E(0) is the initial concentration. A similar law can be found for
the substrate

S(0) = S(t) + C(t) + P (t) . (2.143)

Considering these conservation laws the system of coupled differential equations (2.138)-
(2.141) reduces from a fourth to a second-order system. Usually, the equations for the
substrate (2.138) and for the enzyme-substrate complex C (2.140) are kept. In the
further treatment, one obtains an expression for the rate of change of the substrate,
namely is the Michaelis-Menten equation. This result is identified as the reaction rate.
Formally, this is not correct, because of for a complex reaction scheme the reaction rate
is the rate of change for the product only. As we show for consecutive reactions, the
rate of change of the intermediate steps is different. Nevertheless, within the approach
of Michaelis and Menten, the rates of substrate and product are equal. Therefore, the
reaction rate can be derived from the substrate change.

To prove this we use only the conservation law (2.142) for the enzyme and obtain the
system of differential equations (2.138), (2.140) and (2.141). This system is not solvable
in terms of simple analytic functions [SM97], therefore we follow Michaelis and Menten
[MM13] and Briggs and Haldane [BH25] and introduce a steady state assumption13 for
the complex

Ċ ≈ 0 = k1E(t)S(t)− [k−1 + k2]C(t) . (2.144)

From this equation we obtain a constant concentration for the enzyme-substrate complex

C(t) =
k1

k−1 + k2
E(t)S(t) =

E(t)S(t)

KM
(2.145)

or for the enzyme
E(t)S(t) = KMC(t) . (2.146)

Insertion into equation (2.138) leads to

Ṡ = −Ṗ = −k2C(t) = −k2
E(t)S(t)

KM
. (2.147)

Within the steady state approximation the mechanism (2.137) formally reduces to a
bimolecular reaction of the substrate and the enzyme. Furthermore, we introduce the
Michaelis constant

KM =
k−1 + k2

k1
. (2.148)

Because the rate coefficients ki depend on temperature, pH-value, etc. the Michaelis
constant and the limiting rate are not constant quantities. Their values change with the
environmental conditions of the considered system.

13In their original work Michaelis and Menten consider only the reverse reaction into the complex and its
decay into substrate and enzyme and neglect the conversion into the product. Briggs and Haldane
generalised the steady state assumption into the given expression. The resulting relation for the
reaction rate has in both cases the same form.
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The reduction of the apparent reaction mechanism and the resulting mathematical
simplification is typical for the steady state assumption. It makes this approximation
a powerful tool in the analytical treatment of the complex biochemical reactions in
metabolism and inter- and intracellular communications.

Combining the conservation law (2.142) and the steady state complex concentration
(2.145), one gets

C(t) =
E(0)S(t)

KM + S(t)
(2.149)

for the enzyme. This result we insert into (2.147) and obtain

V = −Ṡ = Ṗ =
k2E(0)S(t)

KM + S(t)

=
Vmax S(t)

KM + S(t)
(2.150)

the well-known Michaelis-Menten equation, where Vmax = k2E(0) is the limiting rate
for the enzyme kinetic reaction.

For KM � S(t) equation (2.150) provides a linear dependence of the reaction rate

− Ṡ = Ṗ ≈ k2E(0)

KM
S(t) (2.151)

from the substrate concentration. The rate-determining step for low substrate concen-
trations is the bimolecular formation of the enzyme-substrate complex. In this approxi-
mation the limiting rate is reached if the substrate concentration is equal to the Michaelis
constant. For S(t)� KM the Michaelis-Menten equation (2.150) reduces to

− Ṡ = Ṗ = Vmax (2.152)

a constant rate. The pre-equilibria of enzyme, substrate and enzyme-substrate complex
rests completely with the side of the complex. All enzyme molecules are bound to a
substrate molecule, and according to the conservation law (2.142), the complex concen-
tration is equal to the initial enzyme concentration. The reaction rate is determined
by the decay of the complex into product and enzyme. This process is described by
the rate coefficient k2 and independent from the substrate concentration. Hence, the
reaction rate cannot be increased further by an increase of the substrate concentration.
According to IUPAC14 it is called ‘limiting rate’ and not maximum rate as in older limiting rate

books, and the usual notation Vmax is retained for this quantity.
The term introduced limiting regimes which allow an independent measurement of

the Michaelis constant and the limiting rate. For a known enzyme concentration we can
calculate the rate coefficient k2. The coefficients k1 and k−1 are not uniquely determined.
Only if one assumes k−1 � k2 the Michaelis constant reduces to the ratio

KM ≈
k−1

k1
, (2.153)

14IUPAC - International Union of Pure and Applied Chemistry
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as did the constant originally introduced by Michaelis and Menten.
While the present section introduced the basic treatment of enzyme kinetic reactions

we will use the following sections to consider more complex conversion schemes.

2.7.1.1 Dimensionless representation – Activity plot

The dimensionless representation of the Michaelis-Menten equation is a very useful tool
for comparison of results for more complex enzyme kinetic reactions. It gives a very
clear insight into the properties of the catalytic conversion of a substrate into the needed
product. It allows the comparison of more complex enzyme kinetic reactions, we will
introduce in the next chapters, with the Michaelis-Menten model. Furthermore its gen-
eral form allows an easy discussion of general properties of the enzymatic conversion of
a substrate into a product.

Therefore, we rearrange the Michaelis-Menten equation (2.150) into

A =
V

Vmax
=

S(t)/KM

1 + S(t)/KM
, (2.154)

where the new defined ratio of the current reaction rate V and the limiting rate Vmax

is called activity . The substrate concentration is now given in units of the Michaelisactivity

constant KM. The important activity A0.5, where the half limiting rate is reached, is
related to this constant. Because of the chosen dimensionless concentration it is now
obtained for a value S/KM = 1. The activity has its limiting value of A = 1, if the
reaction rate approaches to its limiting rate Vmax.

2.7.2 The enzyme kinetic reaction with second intermediate

Another possible reaction scheme for the catalytic conversion of a substrate is a mecha-
nism with an additional intermediate complex C2. The stoichiometric formula for such
a reaction is

S + E
k1−−⇀↽−−
k−1

C1
k2−−⇀↽−−
k−2

C2
k3−→ E + P (2.155)

where the transition between the intermediates is fully reversible. The corresponding
system of coupled differential equations is

Ṡ = −k1E(t)S(t) + k−1C1(t) , (2.156)

Ė = −k1E(t)S(t) + k−1C1(t) + k3C2(t) , (2.157)

Ċ1 = k1E(t)S(t)− [k−1 + k2]C1(t) + k−2C2(t) , (2.158)

Ċ2 = k2C1(t)− [k−2 + k3]C2(t) , (2.159)

Ṗ = k3C2(t) . (2.160)

For this reaction scheme, all equations are linear independent, in contrast to the system
of coupled differential equations (2.138)-(2.141) for the Michaelis-Menten model. For
the enzyme we find now the conservation law

E(0) = E(t) + C1(t) + C2(t) . (2.161)
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Figure 2.13: Activity (solid line) as function of the substrate concentration in a linear (left) and a
logarithmic (right) representation. In the linear representation, the small-concentration-
approximation is drawn as a dashed line. Additionally, the activity value for the concentra-
tion S/KM = 1 is indicated. In the logarithmic representation, the high-concentration-limit
is drawn with a dashed line. The thin solid lines corresponds to the Michaelis constant
and the half activity, respectively. The sigmoidal shape of the activity curve is a result
of the logarithmic representation. It shows the change of the rate-determining step with
increasing substrate concentration. For low concentrations the bimolecular formation of the
enzyme-substrate complex, and for high concentrations the decomposition of the complex
into product P and free enzyme E determines the reaction rate.
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2 Biochemical Reaction Kinetics

Again we assume the enzyme-substrate complexes C1 and C2 at steady states. Consid-
ering the conservation law (2.161) we obtain for the first complex C1

C1(t) =
k1E(0)S(t)− [k1 S − k−2]C2(t)

k−1 + k2 + k1S(t)
. (2.162)

This expression we insert into the equation for the second complex C2 resulting in the
steady state concentration

C2(t) =
k1k2E(0)S(t)

k−1k−2 + k−1k3 + k2k3 + [k1k2 + k1k−2 + k1k3]S(t)
. (2.163)

which we insert into the differential equation for the product (2.160). Finally, we obtain
for the reaction rate of this type of enzyme kinetic reaction the expression

V (t) = Ṗ =
k1k2k3E(0)S(t)

k−1k−2 + k−1k3 + k2k3 + [k1k2 + k1k−2 + k1k3]S(t)
. (2.164)

Introducing an apparent Michaelis constant

Kapp =
k−1k−2 + k−1k3 + k2k3

k1k2 + k1k−2 + k1k3
(2.165)

and an apparent limiting rate

V app =
k2k3

k2 + k−2 + k3
E(0) (2.166)

the expression (2.164) simplifies to

V (t) =
V app S(t)

Kapp + S(t)
, (2.167)

a Michaelis-Menten-like form. Whereas the Michaelis constant (2.148) is interpretable
as a dissociation constant, the apparent Michaelis constant prohibits such a physical
interpretation.

Analogous to the simpler Michaelis-Menten scheme the mechanism (2.155) formally
reduces to a bimolecular reverse reaction. To prove this, we transform Eq. (2.159) at
steady state into an expression for

k2C1(t) = [k−2 + k3]C2(t) (2.168)

and insert it into (2.158). The result

k−1C1 = k1 S(t)E(t)− k3C2(t) (2.169)

we use to simplify the rate of change of the substrate

Ṡ = −Ṗ = −k3C2 . (2.170)

The reaction rate is

V (t) = −Ṡ = Ṗ = k3C2(t)

=
k1k2k3E(0)S(t)

k1k2 + k2k−2 + k2k3 + (k2k−2 + k1k3)S(t)
. (2.171)
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2.7 The enzyme kinetic reaction

2.7.3 Constant substrate concentration

If we assume a constant substrate concentration, for instance because of external flows
or an external reservoir, we can further simplify the Michaelis-Menten equation (2.150).
In this special case the right hand side is a constant. The reaction rate

V = −Ṡ = Ṗ = keff (2.172)

follows zero-order kinetics. The introduced effective rate coefficient is defined as

keff =
k2E(0)S

KM + S
. (2.173)

For high substrate concentrations S � KM the rate (2.172) reduces to

V ≈ k2E(0) ,

the decay of the enzyme-substrate complex into product and enzyme is the rate-determining
step. On the other hand, for small substrate concentrations S � KM the rate

V ≈ k1E(0)S(t)

is limited by the bimolecular formation of the enzyme-substrate complex C1.

2.7.4 Interactions with other reaction mechanisms and reaction partners

Above we discussed the conversion of a substrate into a product by a catalyzing enzyme
for a single reaction channel and without the presence of further substances. The next
sections focus on the interaction of different reaction channels and the influences of
other substances to a specified conversion. We show some simple examples of inhibitory
mechanisms to the enzyme kinetic reaction (2.137). The term inhibition is misleading
here, because after the definition in chemistry a catalyst15 is an additional substance
changing the reaction rate in a positive or negative way. But for some types of inhibition
we have no additional substrates or enzymes.

2.7.4.1 Competitive substrates

A standard example for an inhibitory mechanism is the case of two competitive substrates. inhibition

The two different substrates are catalyzed by the same enzyme E. In the stoichiometric
representation

S + E
k1−−⇀↽−−
k−1

C1
k2−→ E + P1 ,

I + E
k3−−⇀↽−−
k−3

C2
k4−→ E + P2 ,

(2.174)

15Every additional substance influencing the reaction rate is a catalyst. If it increases the reaction rate
(positive catalysis) we call it catalyst. An inhibitor decreases the rate (negative catalysis).
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2 Biochemical Reaction Kinetics

we assume that both processes follow the model of Michaelis and Menten. The first
reaction in (2.174) is our desired conversion reaction from S to the product P1. It
is suppressed by the reaction of an inhibitor I with the enzyme, where we allow the
production of an unused product P2. This system of chemical reactions is described by
a system of seven coupled differential equations. The system

Ṡ = −k1 S(t)E(t) + k−1C1(t) (2.175)

İ = −k3 I(t)E(t) + k−3C2(t) (2.176)

Ė = − [k1 S(t) + k3 I(t)]E(t)

+ (k−1 + k2)C1(t) + (k−3 + k4)C2(t) (2.177)

Ċ1 = k1 S(t)E(t)− (k−1 + k2)C1(t) (2.178)

Ċ2 = k3 I(t)E(t)− (k−3 + k4)C2(t) (2.179)

Ṗ1 = k2C1(t) (2.180)

Ṗ2 = k4C2(t) (2.181)

can be reduced in the same manner as for the single enzyme kinetic reaction. The
conservation law for the enzyme

E(0) = E(t) + C1(t) + C2(t) (2.182)

and the steady state assumption for both complexes cancel three differential equations.
Furthermore we can show again, that the rate of degradation of substrate is equal to
the production rate of product P1 in this approximation. The same can be shown for
the inhibitor reaction. Only the differential equations for the substrate and the inhibitor
remain. It follows from (2.178) that

C1(t) =
E(0)S(t)

KMS [1 + I(t)/KMI] + S(t)
(2.183)

for the enzyme-substrate complex and

C2(t) =
E(0) I(t)

KMI [1 + S(t)/KMS] + I(t)
(2.184)

for the inhibitor-enzyme complex. The number of bound substrate molecules is reduced
in comparison to the single enzyme kinetic reaction, see equation (2.149). Because
this concentration determines the conversion rate into the product, a reduction of this
concentration leads to a decrease of the reaction rate. The enzyme kinetic reaction
(2.137) is suppressed by the presence of a second molecule reacting with the same enzyme.

For the reaction rate we obtain with (2.183)

V S(t) = − V S
max S(t)

KMS [1 + I(t)/KMI] + S(t)
(2.185)

and for the inhibitor

V I(t) = − V I
max I(t)

KMI [1 + S(t)/KMS] + I(t)
, (2.186)
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Figure 2.14: The reaction rate of the enzyme kinetic reaction in presence of an inhibitor I reacting with
the same enzyme to a second unused product as function of the substrate concentration
in logarithmic representation. The corresponding concentration of the Michaelis constant
KMS and the apparent Michaelis constant Kapp is shown by thin solid lines.

where V S
max = k2E(0) is the limiting rate for the substrate conversion and V I

max the
corresponding quantity for the inhibitory reaction. In the limit of S � KMS the reaction
rate reaches its limiting value and the inhibitor is negligible. In the contrary case, the
reaction rate is again proportional to the substrate concentration but it is reduced by a
factor 1 + I/KMI in comparison to the result from our previous discussion. Finally we
investigate the rate in dependence from substrate concentration and a given inhibitor
concentration. Then we can treat the inhibitor amount as constant and combine

Kapp = KMS [1 + I/KMI]

into the apparent Michaelis constant Kapp, which is greater than the Michaelis con-
stant KMS of the single enzyme kinetic reaction. The result is a Michaelis-Menten like
differential equation

V S(t) = − V S
max S(t)

Kapp + S(t)
. (2.187)

In Figure 2.14 the Michaelis-Menten equation (2.150) is compared with result in pres-
ence of an inhibitor I. Whereas for small substrate concentrations the inhibitor strongly
affects the reactions rate, for high substrate concentrations the inhibitor is negligible, as
mentioned before, and the reaction rate approaches to its limiting rate determined by
the decay rate of the enzyme-substrate complex.
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2 Biochemical Reaction Kinetics

2.7.4.2 Non-productive binding

Another mechanism of suppression is the existence of other reaction channels. In a
first example we want to discuss an enzyme kinetic reaction where the enzyme and
the substrate can bind to a second enzyme-substrate complex that cannot convert into
product and free enzyme. Because this second reaction channel does not form any
product this scheme is called non-productive binding16. The corresponding system of
stoichiometric equations is given as

S + E
k1−−⇀↽−−
k−1

C1
k2−→ E + P1 ,

S + E
k3−−⇀↽−−
k−3

C2 ,
(2.188)

where the second reaction is a reversible reaction between substrate and enzyme and
the enzyme-substrate complex. The rates of change are now given by the system of
differential equations

Ṡ = − (k1 + k3)E(t)S(t) + k−1C1(t) + k−3C2(t) , (2.189)

Ė = − [k1 + k3]E(t)S(t) + [k−1 + k2]C1(t) + k−3C2(t) , (2.190)

Ċ1 = k1E(t)S(t)− [k−1 + k2]C1(t) , (2.191)

Ċ2 = k3E(t)S(t)− k−3C2(t) , (2.192)

Ṗ = k2C1(t) (2.193)

with the conservation law

E(0) = E(t) + C1(t) + C2(t) . (2.194)

In a steady state approximation for the complexes we obtain

C1(t) =
E(t)S(t)

KM1
(2.195)

C2(t) =
E(t)S(t)

KD
(2.196)

for the complex concentration, where

KM1 =
k−1 + k2

k1
(2.197)

is the usual Michaelis constant and

KD =
k−3

k3
(2.198)

the dissociation constant of the non-productive complex. An analysis of the remaining
differential equations of substrate and product concentration shows again, that they are

16The enzyme-substrate complex is an unstable intermediate (transition state), it cannot exist alone.
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2.7 The enzyme kinetic reaction

the same except for the sign. Taking into account the conservation law (2.194) we obtain
for the enzyme concentration

E(t) =
E(0)

1 + S(t)/KM1 + S(t)/KD
, (2.199)

which leads to a reaction rate

V (t) = Ṗ = −Ṡ

=
Vmax S(t)

KM1 [1 + S(t)/KM1 + S(t)/KD]
, (2.200)

where Vmax = k2E(0) is the limiting rate known from previous sections. From (2.200)
one can see, that the reaction rate is decreased by the second non-productive parallel
reaction. The obtained expression for the rate we can transform into a Michaelis-Menten
like relation if we introduce effective constants. For the non-productive binding scheme
(2.188) we have the apparent limiting rate

V app
max =

Vmax

1 +KM1/KD
(2.201)

and an apparent Michaelis constant

Kapp =
KM1

1 +KM1/KD
. (2.202)

Both coefficients are smaller than their pendants in the Michaelis-Menten equation
(2.150). Again, we get a Michaelis-Menten like equation

V =
V app

max S(t)

Kapp
M + S(t)

, (2.203)

for the reaction rate. In comparison to a conversion according to (2.137) with the same
rate coefficients the non-productive reaction channel decelerates the conversion into P ,
because a fraction of the enzyme is bound in non-productive complex C2. This is shown
in Figure 2.15, where we compare the result of the Michaelis-Menten equation (2.150)
and the Michaelis-Menten like equation (2.203). In both cases we use the same rate
coefficients for the successful conversion reaction of the substrate.

An enzymatic reaction with a non-productive channel cannot be distinguished from a
reaction without such a channel by the measurement of substrate or product concentra-
tion, because the apparent constants depends only on rate coefficient. For this purpose
one has to identify the complexes.

2.7.4.3 Non-productive binding with an additional product

In this section we expand our previous treatment and introduce the second reaction as
a parallel reaction, where the produced product P2 is an unused by-product. From this
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Figure 2.15: Comparison of non-productive reaction scheme (2.188) with the Michaelis-Menten mech-
anism (2.137) in linear (left) and logarithmic (right) representation. In the presence of a
second complex which cannot lead to a product the reaction rate is reduced. Note, that
the apparent Michaelis constant and the apparent limiting rate are always smaller than the
corresponding parameter of the original Michaelis-Menten equation (2.150).

we can expect that the second reaction channel decelerates down the reaction rate and
decrease production of the desired product P1. The stoichiometric representation of such
a biochemical system is

S + E
k1−−⇀↽−−
k−1

C1
k2−→ E + P1 ,

S + E
k3−−⇀↽−−
k−3

C2
k4−→ E + P2 ,

(2.204)

from which follows the system of six coupled differential equations

Ṡ = − (k1 + k3)E(t)S(t) + k−1C1(t) + k−3C2(t) , (2.205)

Ė = − [k1 + k3]E(t)S(t) + [k−1 + k2]C1(t) + [k−3 + k4]C2(t) , (2.206)

Ċ1 = k1E(t)S(t)− [k−1 + k2]C1(t) , (2.207)

Ċ2 = k3E(t)S(t)− [k−3 + k4]C2(t) , (2.208)

Ṗ1 = k2C1(t) , (2.209)

Ṗ2 = k4C2(t) . (2.210)

Again, we have the conservation law

E(0) = E(t) + C1(t) + C2(t) (2.211)

which cancels the differential equation for the enzyme. A further simplification arises
from the steady state assumption for both complexes. Their steady state concentrations
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2.7 The enzyme kinetic reaction

are

C1(t) =
k1

k−1 + k2
E(t)S(t) =

E(t)S(t)

KM1
, (2.212)

C2(t) =
k3

k−3 + k4
E(t)S(t) =

E(t)S(t)

KM2
, (2.213)

where we introduced the Michaelis constants KM1 and KM2. With the conservation law
(2.211) and Vmax1 = k2E(0) the reaction rate for P1 is

V P1(t) = Ṗ1 =
Vmax1 S(t)

KM1 + S(t) (1 +KM1/KM2)
. (2.214)

With the apparent Michaelis constant

Kapp
1 =

KM1

1 +KM1/KM2
(2.215)

and the apparent limiting rate is

V app
max1 =

Vmax1

1 +KM1/KM2
(2.216)

we transform (2.214) into the Michaelis-Menten like form

V P1(t) =
V app

max1 S(t)

Kapp
1 + S(t)

. (2.217)

In the same manner we obtain for by-product P2 a similar relation, where the apparent
Michaelis constant is given as

Kapp
2 =

KM2

1 +KM2/KM1
(2.218)

and the apparent limiting rate

V app
max2 =

Vmax2

1 +KM2/KM1
, (2.219)

where the limiting rate is Vmax2 = k4E(0). Last, but not least we have to calculate the
rate of substrate depletion. From (2.212) follows

k1E(t)S(t) = (k−1 + k2)C1(t)

and from (2.213)
k3E(t)S(t) = (k−3 + k4)C1(t) .

If we insert both expressions into the rate of change of substrate S (2.205) the contri-
butions of reverse reaction of complexes C1 and C2 are compensated and we obtain the
rate

Ṡ = −k2C1(t)− k4C2(t) (2.220)
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depending only on the decay into the products and free enzyme. On the other hand, the
rate of production of P1 and P2 is determined by these two terms and we can rewrite
the last equation into

Ṡ = −
[
Ṗ1 + Ṗ2

]
. (2.221)

The rate of change of the substrate is the sum of the rates of change of the products. In
contrast to our previous reaction schemes, the rates are not equal, except for the sign,
any more. This is typical for a reaction with more than one product. The consumption of
the substrate is separated into two independent channels. Therefore, the concentrations
of substrate and product17 as a function of time should be measured in an experiment.
A comparison of the sum of the reaction rates of the products and the rate of change of
the substrate gives evidence if there are unknown reaction channels. Furthermore, the
differences arising from unknown channels can be used to estimate the portion of these
reactions on the consumption of the substrate. The insertion of the reaction rates for
the products (2.217) and its analogue for P2 leads to

Ṡ = −
(

V app
max1

Kapp
1 + S(t)

+
V app

max2

Kapp
2 + S(t)

)
S(t) (2.222)

a rate that is not presentable in a Michaelis-Menten-like form. Only in the special case
Kapp

M1 = Kapp
M2 the rate of substrate S can be transformed into such a form.

It is interesting to analyze some asymptotic properties of (2.222). First we consider
the limit of low substrate concentrations S � Kapp

M1 , Kapp
M2 . Then the rate of degradation

reduces to

Ṡ = −
(
Vmax1

KM1
+
Vmax2

KM2

)
S(t) , (2.223)

which is a linear relation similar to the result for the Michaelis-Menten equation (2.151).
In the other limit S � Kapp

M1 , Kapp
M2 one obtains with

Ṡ = − (V app
max1 + V app

max2) = V T
max (2.224)

a limiting rate, too. The formal differences appear only in an intermediate range of
concentrations. In figure 2.16 we use these asymptotes to compute a Michaelis-Menten
result for the substrate and compare it with (2.222).

2.7.4.4 Competitive Enzymes

Besides the inhibition by another substrate competing for the same enzyme, it is also
possible that a second enzyme E1 reacts with the substrate S. The reaction scheme then
is

S + E1
k1−−⇀↽−−
k−1

C1
k2−→ E1 + P1 ,

S + E2
k3−−⇀↽−−
k−3

C2
k4−→ E2 + P2 ,

(2.225)

17The known or desired product has to be measured.
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substrate concentration in comparison to a Michaelis-Menten curve with the same asymp-
totes. Whereas the products obey a Michaelis-Menten-like equation the substrate is not
transformable in such a form. The apparent Michaelis constants of the products and the
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where we assume, that the second reaction leads to a product P2 used for instance in
another pathway. The corresponding system of coupled differential equations consists of
seven equations. The system

Ṡ = − [k1E1(t) + k3E2(t)]S(t) + k−1C1(t) + k−3C2(t) , (2.226)

Ė1 = −k1E1(t)S(t) + [k−1 + k2]C1(t) , (2.227)

Ė2 = −k3E2(t)S(t) + [k−3 + k4]C2(t) , (2.228)

Ċ1 = k1E1(t)S(t)− [k−1 + k2]C1(t) , (2.229)

Ċ2 = k3E2(t)S(t)− [k−3 + k4]C2(t) , (2.230)

Ṗ1 = k2C1(t) , (2.231)

Ṗ2 = k4C2(t) (2.232)

can be simplified if we use the conservation laws for the enzymes

E1(0) = E1(t) + C1(t) (2.233)

E2(0) = E2(t) + C2(t) (2.234)

to cancel the differential equations for both enzymes (2.227) and (2.228). If the complexes
reside in a steady state the system reduces further. Analogous to the treatment of the
Michaelis-Menten model (2.137) we obtain for the products

Ṗ1 =
Vmax1 S(t)

KM1 + S(t)
(2.235)
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and

Ṗ2 =
Vmax2 S(t)

KM2 + S(t)
, (2.236)

where we define the limiting rate Vmax1, Vmax2, and the Michaelis constants KM1, KM2

in the usual way. The reaction rates of the products remain unaffected by the presence
of the other reaction. In steady state we have

k1E1 S = (k−1 + k2)C1(t)

k3E2 S = (k−3 + k4)C2(t)

from which follows for the substrate

Ṡ = − [k2C1(t) + k4C2(t)]

= −
(
Ṗ1 + Ṗ2

)
. (2.237)

With (2.235) and (2.236) we obtain for the substrate

Ṡ = −
(

Vmax1

KM1 + S(t)
+

Vmax2

KM2 + S(t)

)
S(t) (2.238)

an equation which is no more Michaelis-Menten like. Only in the case of KM1 = KM2 the
equation (2.238) reduces to such a relation, but because we assume that E1 and E2 are
different enzymes this is a hard restriction in the treatment of enzyme kinetic reactions.

Another possible reaction scheme is a competitive enzyme that cannot lead to a prod-
uct P2 and forms only a second complex C2. The stoichiometric equations than simplify
to

S + E1
k1−−⇀↽−−
k−1

C1
k2−→ E + P

S + E2
k3−−⇀↽−−
k−3

C2

(2.239)

and the corresponding system of differential equations is

Ṡ = −k1 S(t)E1(t)− k3 S(t)E2 + k−1C1(t) + k−3C2(t) , (2.240)

Ė1 = −k1 S(t)E1(t) + (k−1 + k2)C1(t) , (2.241)

Ė2 = −k3 S(t)E2(t) + k−3C2(t) , (2.242)

Ċ1 = k1 S(t)E1(t)− (k−1 + k2)C1(t) , (2.243)

Ċ2 = k3 S(t)E2(t)− k−3C2(t) , (2.244)

Ṗ = k2C1(t) . (2.245)

Taking into account the conservation laws

E1(0) = E1(t) + C1(t) ,

E2(0) = E2(t) + C2(t) ,
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2.7 The enzyme kinetic reaction

and the steady state assumption for complexes we obtain again the result of a single
enzyme kinetic reaction (2.150).

This result reflects some general properties in the discussed treatment of an enzyme
kinetic reaction. The reaction rate of products obeys in this framework, conservation
laws for enzymes and the steady state assumption for complexes, a Michaelis-Menten-
like relation. The different mechanisms lead to new apparent Michaelis constants and
limiting rates. Only if more than one product is converted, the absolute value of the
rate of change of substrate is not equal to the reaction rate. The rate of change does
not follow a Michaelis-Menten law in the case of more products.

2.7.5 Combination of enzyme kinetic reaction and an uncatalyzed
conversion reaction

In our previous discussion of the conversion of a substrate into a product we considered
only a catalyzed reaction. Because of thermodynamic reasons there is an uncatalyzed
reaction too. This is a general property of catalysis. A catalyst cannot make possible a
biochemical reaction, if the final state does not exist. But if such a state exists, there is
a certain transition probability which might be very small but is not zero, between the
initial state (substrate) and the final state (product). Furthermore, a catalyst only affects
the rate of change not the equilibrium. The equilibrium is determined by thermodynamic
quantities. For our investigation we choose an monomolecular reaction

S + E
k1−−⇀↽−−
k−1

C
k2−→ E + P ,

S
ku−→ P ,

(2.246)

as the uncatalyzed branch. In analogy to the treatment of Michaelis and Menten we
neglect a possible reverse reaction into the substrate. With these assumptions we obtain
the set of coupled differential equations

Ṡ = −k1E(t)S(t) + k−1C(t) − ku S(t), (2.247)

Ė = −k1E(t)S(t) + [k−1 + k2]C(t) , (2.248)

Ċ = k1E(t)S(t)− [k−1 + k2]C(t) = −Ė , (2.249)

Ṗ = k2C(t) + ku S(t), (2.250)

where the rate of change of the substrate and product have an additional term and the
equations for the enzyme remains unchanged in comparison to the model of Michaelis
and Menten. Taking into account the steady-state assumption for the complex C and
the conservation law for the enzyme we are able to reduce the system of differential
equations. We obtain that the degradation rate of the substrate and the conversion rate
of the product are equal,

Ṗ = −Ṡ (2.251)

=

(
Vmax

KM + S(t)
+ ku

)
S(t) , (2.252)
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2 Biochemical Reaction Kinetics

but now with an additional term within the reaction rate. There are two limiting cases.
If

ku �
Vmax

KM + S(t)
(2.253)

we can neglect the uncatalyzed reaction and the Michaelis-Menten equation is repro-
duced. The other asymptote we obtain in the limit

ku �
Vmax

KM + S(t)
. (2.254)

In contrast to the treatment of Michaelis and Menten the reaction rate linearly increases
with the substrate concentration. Because of the saturation of the enzyme kinetic re-
action the uncatalyzed reaction is now the dominant reaction. The transition between
both behaviors is characterised by the relation

ku =
Vmax

KM + S(t)
, (2.255)

where both branches have a rate of the same magnitude. For biochemical reactions we
can assume S � KM leading to the relation

ku S = Vmax . (2.256)

If the direct conversion rate is equal to the limiting rate Vmax the direct reaction becomes
more important.

In Figure 2.17 the reaction rate is shown in an activity plot as a function of the
substrate concentration. For demonstration purposes we vary the rate coefficient of the
uncatalyzed conversion by a multiple of the rate coefficient k2 of the Michaelis-Menten
model.

2.7.6 Reversible Michaelis-Menten equation

In the previous sections we neglected a possible reverse branch catalyzing the product
into the substrate. Such an approximation assumes that the reverse reaction is very
slow. Either the corresponding rate coefficient k−2 is nearly zero or the amount of the
product is small in comparison to substrate. In the first case, the activation energy for
the reverse way is very high. We can consider a small product concentration at the initial
phase of the enzyme kinetic reaction and that the product is immediately transferred
away. The simplest reaction mechanism of a reversible enzyme-kinetic reaction is

S + E
k1−−⇀↽−−
k−1

C
k2−−⇀↽−−
k−2

E + P , (2.257)

where we add an additional reverse reaction to mechanism of Michaelis and Menten
(2.137). The corresponding system of coupled differential equations is

Ṡ = −k1E(t)S(t) + k−1C(t) , (2.258)

Ė = −[k1 S(t) + k−2 P (t)]E(t) + [k−1 + k2]C(t) , (2.259)

Ċ = [k1 S(t) + k−2 P (t)]E(t)− [k−1 + k2]C(t) = −Ė , (2.260)

Ṗ = k2C(t)− k2 P (t)E(t) . (2.261)
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Figure 2.17: Activity for a combination of an enzyme kinetic reaction with a parallel uncatalyzed reaction
with the same product as a function of the substrate concentration. The rate coefficient of
the direct reaction is a multiple of the rate coefficient k2 of the Michaelis-Menten model. The
usual enzyme kinetic reaction is the dominant part in the conversion for small concentrations
fulfilling relation (2.253) and the direct conversion for high concentrations (relation (2.254)).
The dashed lines are the corresponding asymptotes.

The rate of change of enzyme, enzyme-substrate complex and product depends now on
the product concentration, too. Again, there is a conservation for the enzyme

E(0) = E(t) + C(t)

relating the transient enzyme and complex concentration to a total enzyme concentration
at t = 0. It enables us to reduce the system of differential equations. Considering the
enzyme-substrate complex in steady state we obtain the balance equation

0 = (k1 S(t) + k−2 P (t)) (E(0)− C(t))− (k−1 + k2)C(t) , (2.262)

where we apply the above conservation law to replace the transient enzyme concentra-
tion. After some straight forward transformation we obtain

C(t) =
E(0)

(
S/KF

M + P/KR
M

)

1 + S/KF
M + P/KR

M

(2.263)

for the steady state concentration of the complex. In this expression we introduce the
abbreviations

KF
M =

k−1 + k2

k1
(2.264)

and

KR
M =

k−1 + k2

k−2
. (2.265)
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With this result we get for the reaction rate

Ṗ = −Ṡ

=
k2E(0)S(t)/KF

M − k−1E(0)P (t)/KR
M

1 + S/KF
M + P/KR

M

=
V F

max S(t)/KF
M − V R

max P (t)/KR
M

1 + S/KF
M + P/KR

M

, (2.266)

with the limiting rates V F
max = k2E(0) and V R

max = k−1E(0). The reversible Michaelis-
Menten equation can be interpreted as a combination of two irreversible enzyme kinetic
reactions. The forward process converts the substrate to the product and the reverse re-
action degrades the product. The additional product-dependent terms increase the value
of the denominator and decrease the nominator. The sum of both changes decelerates
the reaction rate in comparison to the irreversible version.

Because we consider a reversible reaction scheme, the substrate is not completely
converted into the product. A chemical equilibrium is established after a certain time.
It is defined by the balance equation

0 =
V F

max Seq

KF
M

− V R
max Peq

KR
M

(2.267)

from which follows the equilibrium constant

Keq =
Peq

Seq
=
V F

maxK
R
M

V R
maxK

F
M

=
k2

k−1

k1

k−2
. (2.268)

2.8 Activation and Deactivation of Proteins by covalent
Modifications

Signalling proteins often exist in an inactive form W and an active form W∗. The
interconversion of the forms is catalyzed by two converter enzymes E1 and E2. If we
assume that the other substrates and products for modification and demodification are
present at constant levels we obtain the reaction scheme [GKJ81]

W + E1
a1−⇀↽−
d1

(WE1)
k1−→W ∗ + E1

W ∗ + E2
a2−⇀↽−
d2

(W ∗E2)
k2−→W + E2 .

(2.269)

In the signalling the modification system often consists of a phosphorylation and a de-
phosphorylation. In this case enzyme E1 is the kinase and enzyme E2 the phosphatase.
The kinase modifies protein W by attaching a phosphate group to an amino acid that
have a free hydroxyl group. The phosphate group is removed from ATP which is con-
verted to ADP during the process of phosphorylation. The phosphatase changes the
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state of the protein due to hydrolysis taking away the phosphate group from the hy-
droxyl group. Hence, the rate constants in reaction scheme (2.269) depends on the
concentrations of ATP and water.

Additionally to the usual conservation laws for enzymes

ET
1 = E1(t) + (WE1)(t)

ET
2 = E2(t) + (W ∗E2)(t) ,

we furthermore assume a conservation of the protein itself

WT = W (t) +W ∗(t) + (WE1)(t) + (W ∗E2)(t) . (2.270)

Due these relations we are able to reduce the system of coupled ordinary differential
equations from primary six equations to three equations. As usual, we cancel the equa-
tions for the enzymes and, additionally, the equation for the inactive protein W. The
remaining differential equations are

dW ∗(t)
dt

= −a2W
∗(t)E2(t) + d2 (W ∗E2)(t) + k1 (WE1)(t) (2.271)

d(WE1)(t)

dt
= a1W (t)E1(t)− [d1 + k1] (WE1)(t) (2.272)

d(W ∗E2)(t)

dt
= a2W

∗(t)E2(t)− [d2 + k2] (W ∗E2)(t) . (2.273)

A further simplification arises if we use the quasi-steady state approximation for the
intermediate enzyme-substrate complexes and assume that the complex concentrations
are negligible

W (t) +W ∗(t)� (WE1)(t) + (W ∗E2)(t) (2.274)

in comparison to the protein concentration. The above assumption gives us the op-
portunity to relate directly the concentrations of the active and inactive protein to its
overall concentration WT. Alternatively, a transformation of rate equation (2.271) into
expression in terms of the concentration of W∗ is not possible.

From (2.272) follows the balance equation for the first complex

0 = a1

[
WT −W ∗(t)

] [
ET

1 − (WE1)(t)
]
− [d1 + k1] (WE1)(t)

which has the quasi-steady state solution

(WE1)(t) =

[
WT −W ∗(t)

]
ET

1

KM1 +WT −W ∗(t) . (2.275)

In the same way we obtain with

(W ∗E2)(t) =
W ∗(t)ET

2

KM2 +W ∗(t)
. (2.276)
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a similar expression for the second intermediate complex. As in the previous section the
assumption of the quasi-steady state introduces the Michaelis constants

KM1 =
d1 + k1

a1
, KM2 =

d2 + k2

a2

into the mathematical representation. The rational form of solutions (2.275) and (2.276)
results from the used enzyme conservation. We now insert the obtained expressions for
both complexes into the differential equation (2.271) and obtain after some algebraic
transformation18 the dynamic Goldbeter-Koshland function

dW ∗(t)
dt

=
V1

[
WT −W ∗(t)

]

KM1 +WT −W ∗(t) −
V2W

∗(t)
KM2 +W ∗(t)

, (2.277)

where we introduce the abbreviations V1 = k1E
T
1 and V2 = k2E

T
2 . This expression

becomes slightly manageable, if we use dimensionless representations of the protein con-
centration and Michaelis constants

W ∗(t) =
W ∗(t)
WT

, K1,2 =
KM1,2

WT
.

The mole fraction of active protein W∗ is then determined by the differential equation

dW ∗(t)
dt

=
V1

[
1−W ∗(t)

]

K1 + 1−W ∗(t) −
V2W ∗(t)

K2 +W ∗(t)
. (2.278)

The corresponding steady state is defined by the balance equation

0 = (V1 − V2)W ∗
2

+ (V1K2 + V2K1 + V2 − V1)W ∗ − V1K2 (2.279)

which is a quadratic equation. An analysis of the solutions, see Figure 2.18, shows that
only one fulfills all physical restrictions. The concentration of active protein W∗ can lie
only in the range [0,WT] and of course, it can not be negative. To distinguish between
relevant and irrelevant solutions is a physical problem not a mathematical one.

The relevant solution

W ∗SS

WT
= G(V1, V2,K1,K2) (2.280)

=

(
V1
V2
− 1
)
−
(
V1
V2

+ K1
K2

)
K2 +

√[(
V1
V2
− 1
)
−
(
V1
V2

+ K1
K2

)
K2

]2
+ 4V1

V2

(
V1
V2
− 1
)
K2

2
(
V1
V2
− 1
)

is the so-called Goldbeter-Koshland function [GKJ81] which is often abbreviated asGoldbeter-Koshland
function G(. . .). The steady state is primarily determined by the ratio of V1 and V2. Because

of the signal transduction in and between cells is carried out by changes of protein
concentrations, this means that the ratio of the enzymes E1 and E2 or of kinase and

18Use the relation a2 KM2 = d2 + k2 to merge the degradation terms in (2.271).
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Figure 2.18: The two solutions of balance equation (2.279) as function of the ratio of the limiting rates
V1 and V2. Only the solution inside the range [0,WT] is relevant for biological systems. The
second one (dashed) breaks physical restrictions and is therefore irrelevant.

phosphatase, respectively, plays a major role in the determination of the signaling state of
a protein. The corresponding steady state (2.280) as function of the ratio of limiting rates
is investigated in Figure 2.19. If we follow the previous assumption of negligible complex
concentrations (2.274), the inactive protein can be calculated from the conservation
relation (2.270) as

W

WT
= 1− W ∗

WT
.

Hence, both forms of protein W are directly linked as shown in Figure 2.19, where
we use dashed lines for the inactive and solid lines for active state. The solution of
the Goldbeter-Koshland function (2.280) has a typical sigmoidal shape. If the rate of
deactivation is much greater than the activation corresponding to V1/V2 � 1 there is
only a small fraction of activated protein W∗. On the other hand, in the limit of a
much faster production rate almost all proteins are in the active form. The steady
state as function of the ratio V1/V2 shows a switch-like behavior [FJ96]. Thereby the
sharpness of the transition between a low level and a high level protein concentration
or the ‘off’ and ‘on’-state, respectively, is determined by the values of the Michaelis
constants K1 and K2. As shown in Figure 2.19 small values lead to a sharp transition.
Such a behavior is called ultrasensitivity. Because of the reason is a rate law following
asymptotically a zero order kinetics19 this special feature of the covalent modification
scheme is called zero-order ultrasensitivity. Apart from the discussed mechanism, there
are further mechanisms leading to an ultrasensitive behavior, e.g. cooperativity and
allosteric regulation (see for instance [CB04, Seg93]).

19In the limits W ∗ � W ≈ WT and W � W ∗ ≈ WT we can reduce the dynamic Goldbeter-Koshland
function (2.277) to a zero order kinetic expression whereby we made the assumption WT � KM1,2

and neglect the term corresponding to the degradation of the protein form with small concentration.
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Figure 2.19: Steady state of active (solid lines) and inactive (dashed lines) form of protein W as function
of the ratio V1/V2 for different Michaelis constants.

In Figure 2.19 we made with K1 = K2 a very special assumption. In fact, it is very
improbably that two reactions have the same kinetic parameters. The steady state is
a symmetric function of V1/V2. The transition can be characterised by the inflection
point located at V1/V2 = 1 and W = W ∗ = 0.5. The consequences of different constants
are shown in Figure 2.20 where we vary the ratio K1/K2. In the left plot we kept the
parameter K1 constant and in the right the parameter K2. Differences in the plots
occur due to the fact that K1 enters only through the ratio K1/K2 into the Goldbeter-
Koshland function (2.280) whereas K2 is also a multiplicative factor. The ratio of both
parameters affects shape and position of the curves. The transition between a low level
and a high level of activated protein is shifted as function of K1 and K2. Furthermore
the ultrasensitive properties are strongly influenced. Whereas some parameter values
produce ultrasensitive behavior, this feature disappears for another combination of K1

and K2.
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Figure 2.20: Steady state of active protein W∗ as function of the ratio V1/V2. In contrast to Figure 2.19
we now assume different Michaelis constants K1 and K2. In the left plot we vary K2 and
in the right plot K1. The red dashed line corresponds to a symmetric set of parameters as
in Figure 2.19.
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3.1 Why stochastic modelling?

At a coarse level, cell functions are largely determined by spatio-temporal changes in the
abundance of molecular components. At a finer level, cellular events are triggered by dis-
crete and random encounters of molecules [PE06]. The discreteness is typical of processes
with only a few molecules. Gene transcription is an example of such discrete processes.
Each gene is present in only one or two copies in a single cell. That cellular events are dis-
crete and random is supported by many recent experiments [ARM98, ELSS02, RWA02]
that have revealed cell-cell variations, even in isogenic cell populations, of transcription
(when a gene is copied in the foam of an mRNA transcript) and translation (when the
mRNA is used as a template to build proteins).

The above discussion may suggest a deterministic modelling approach at the coarse
level (cell function) and a stochastic one at the finer level (gene regulation) [KEBC05,
RO05]. However, stochastic modelling is necessary when noise propagation from pro-
cesses at the fine level changes cellular behaviour at the coarse level.

Stochasticity is not limited to low copy numbers. The binding and dissociation events
during transcription initiation are the result of random encounters between molecules
[KEBC05]. If molecules are present in large numbers and the molecular events occur
frequently, as in Figure 3.1 (left), the randomness would cancel out (both within a single
cell and from cell to cell) and the average cellular behaviour could be described by a
deterministic model. However, many subcellular processes, including gene expression,
are characterised by infrequent (rare) molecular events involving small copy numbers
of molecules, as in Figure 3.1 (right), [KEBC05, PE06]. Most proteins in metabolic
pathways and signalling networks, realising cell functions, are present in the range 10-
1000 copies per cell [BPE00, LKM07, Pau05]. For such moderate/large copy numbers,
noise can be significant when the system dynamics are driven towards critical points in
cellular systems which operate far from equilibrium [EE03, TJD05, ZYDQ06].

The notion of noise: The term noise can be confusing because it is not uniquely
defined for all systems. Similarly the classification of noise (e.g. internal/external) can
have different meanings for different system. However, noise and its various kinds in gene
expression have been clearly defined in [KEBC05, RO05, Pau05]. Following [RO05], noise
in gene expression refers to the stochastic variation of a (expressed) protein concentration
within isogenic cells having the same history and conditions (environment). Placing two
gene reporters in the same cell and quantifying their gene expression (by the abundance of
their target proteins) allows the following categorisation of noise (see Figure 2 in [RO05]).
Intrinsic noise arises from sources that create differences (in the gene expression) between
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short

long

Figure 3.1: Discrete and random nature of chemical reactions. Left : large copy numbers and frequent
reactions allows for a continuous approximation, which, for an infinitely large system, ap-
proaches deterministic rate equations. Right : small copy numbers and infrequent reactions
requires discrete stochastic approaches leading to the chemical master equation and stochastic
simulations. The Figure first appeared in our earlier work [UW09].

the two reporters in the same cell, and extrinsic noise arises from sources that have
equal effect on the two reporters in the same cell but create differences between two
cells. Stochastic events during gene expression would then emerge as intrinsic noise
whereas differences between cells will appear as extrinsic noise. Extrinsic noise can be
global when fluctuations in basic reaction rates affect expressions of all genes, or it can
be pathway-specific. It is important to realise that extrinsic noise can be theoretically
isolated from the system but intrinsic noise is the very essence (discrete nature) of the
underlying molecular events and cannot be separated (even hypothetically) from the
system. Finally, we like to add that the word “noise” has often negative associations as
something undesirable, something that should be removed or avoided. In biology, noise
can also have a role and “randomness” may be a better word. In this text the term
(noise) is used with the understanding that it may well be something desirable.

3.2 Networks of reactions and species

Imagine molecules of s chemical species homogeneously distributed in a compartment of
constant volume V at thermal equilibrium and interacting through r irreversible reaction
channels. A reaction channel is either elementary, or may represent a simplification of
multiple elementary steps into a single step. Any reversible (bidirectional) reaction can
be listed as two irreversible reactions. We symbolise the ith species with Xi and the
jth reaction channel with Rj . The abundance of Xi present in the system at time t
can be described by the copy number Ni(t). The total copy number ntot of all species
indicates how large is the system. Since ntot is always large for large volumes (and small
for smaller volumes), the volume V can also indicate the size of the system. Any such
parameter can be used as the system size and is usually denoted by Ω . The copy number
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is usually divide by the system size and the quantity thus obtained

Xi(t) =
Ni(t)

Ω

is referred to as the concentration. The choice of the system size Ω depends on the kind
of concentration one would line to define.

Molar concentrations: For molar concentrations, in units M ≡mol/L, the system size is
chosen as Ω = NAV where the Avogadro’s constant

NA = 6.022× 1023 mol−1

(correct to 4 significant digits) is the number of molecules (or any elementary entities)
in one mole. If the volume is given in litres (L) and concentration in molar (M), then
the unit of system size Ω is mol−1 × L = M−1. The molar unit (M) is too large for
very Small concentrations which are better specified in smaller units, namely nanomolar
(nM), with the correspond unit (nM)−1 for the system size. Suppose the proteins in a
cell of volume V = 30 fL are measured in nanomolar (nM)−1, then the computation of
the system size proceeds like this:

Ω = NAV =
(
6.022× 1014 (n mol)−1

)
×
(
3× 10−14 L

)
≈ 18 (nM)−1 .

Sometime, the volume is chosen so that Ω = 1 (nM)−1 for the resulting convenience that
each concentration is numerically equal to the corresponding copy number. It is left as
an exercise to show that such a volume is V ≈ 1.66 fL.

Relative concentrations: For relative concentrations the system size is chosen to give
dimensionless concentrations. One simpler way to obtain relative concentrations is by
choosing Ω = ntot so that each concentration is just a fraction of two copy numbers.
Take the isomerisation reaction as an example where proteins are converted back and
forth between the unmodified form U and the modified form W such that the total
number ntot of protein molecules remains constant. The relative concentrations in this
example are the fractions,

XU(t) =
NU(t)

ntot
and XW(t) =

ntot −NU(t)

ntot

of proteins in the inactive and active form, respectively. For some systems it is more
appropriate to introduce different scaling parameter Ωi for each component i if the copy
numbers Ni differ in magnitude to keep Xi of the same order O(1). That can be obtained
by defining relative concentration as

Xi =
Ni

CiΩ

that is the concentration Ni/Ω divided by a characteristic concentration Ci. In that case,
each scaling parameter can be expressed as Ωi = CiΩ . This will of concern to us in the
following chapter. In this chapter, we stick to the simpler case.
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The reaction channel Rj will be represented by the general scheme

¯
S1jX1 + · · ·+

¯
SsjXs

kj−−−−−→ S̄1jX1 + · · ·+ S̄sjXs . (3.1)

The participation of individual species in the reaction is indicated by stoichiometries
or stoichiometric coefficients written beside them. Thus the coefficient

¯
Sij (on the left)

represents the participation of Xi as reactant and S̄ij (on the right) is the corresponding
participation as product. The rate constant, or coefficient, kj , written over the reaction
arrow informs us about the assumed reaction kinetics, and will be explained later. The
coefficient will be omitted when we do not want to attach any assumed reaction kinetics
to the above reaction scheme. The progress of channel Rj is quantified by the reaction
count Zj(t) defined as the number of occurrences of Rj during the time interval [0, t].
Another term used for Zj(t) is the degree of advancement. One occurrence of Rj changes
the copy number of Xi by Sij = S̄ij−

¯
Sij , the (i, j)th element of the stoichiometry matrix

S. During the time interval [0, t], the change in the copy number of Xi contributed by
Rj is thus SijZj(t). The total change in the copy number is the sum of contributions
from all reactions:

Ni(t) = Ni(0) +

r∑

j=1

SijZj(t) . (3.2)

Thus changes in copy numbers are determined by stoichiometries and reaction counts.
Following the usual vector notation, we write N(t) for the s-vector of copy numbers,
X(t) for the s-vector of concentrations and Z(t) for the r-vector of reaction counts. The
above conservation relation can be written in the vector notation:

N(t) = N(0) + S Z(t) . (3.3)

Dividing by Ω gives the corresponding relation in concentrations:

X(t) = X(0) +
S Z(t)

Ω
. (3.4)

The copy number N(t), the concentration X(t) and the reaction count Z(t) are alter-
native ways to describe our system. Description in terms of these macroscopic variables
is done in the hope that they approximately satisfy an autonomous set of deterministic
equations. Two problems stand in making such an effort. First, the reactions are discrete
events in time which means that the copy numbers do not vary continuously with time.
Secondly, the occurrence time of a reaction is a random quantity because it is determined
by a large number of microscopic factors (e.g. positions and momenta of the molecules
involved). Therefore, the deterministic description needs a few simplifying assumptions.
Alternatively the macroscopic variables are formulated as stochastic processes. Such a
stochastic description in terms of macroscopic variables is mesoscopic.

Throughout this chapter, we will use the following academic examples. They are
chosen to demonstrate different ideas and methods in the discussion.
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3.2 Networks of reactions and species

Standard modification: Consider a protein that can exist in two different conforma-
tions or forms, an unmodified form U and a modified form W. The protein changes
between the two forms by the reversible isomerisation reaction

U
kw−−−−−⇀↽−−−−−
ku

W (3.5)

composed of a modification (forward) channel with rate constant ku and a demodification
(reverse) channel with rate constant kw. The reaction scheme (3.5) also represents the
opening and closing of an ion-channel and similar systems with two-state conformational
change. Since the two reactions are not influenced by any external catalyst (e.g. an
enzyme), the scheme (3.5) will be referred to as the standard modification.

Heterodimerisation: Consider the reversible heterodimerisation

X1 + X2
k1−−−−−⇀↽−−−−−
k2

X3 . (3.6)

Here the forward reaction is the association of a receptor X1 and a ligand X2 to form a
heterodimer (complex) X3. The backward reaction is the dissociation of the heterodimer
back into the two monomers. The parameters k1 and k2 are the respective association
and dissociation rate constants. This example is the simplest one with a bimolecular
reaction.

Lotka-Volterra model: Consider a system consisting of two interacting species: X1

and X2. The species can either be animals, chemical species or any interacting entities
of two kinds. A large amount of a substance A is available for X1 which reproduces
immediately after consuming one unit A. An encounter between the two species results
in the disappearance of X1 and the replication of X2. This is the only way X1 dies
(degrades) whereas X2 has a natural death (degradation). The system can be represented
by the following scheme

X1 + A
k1−−−−−→ 2X1 + A

X1 + X2
k2−−−−−→ 2X2

X2
k3−−−−−→ ∅





(3.7)

with rate constants k1, k2 and k3. The symbol ∅ represents the dead (degraded) form
of X2. In general, ∅ represents any species not included in the model and is referred to
as the “null species”. The substance A is assumed to be constantly replenished so that
the copy number nA remains constant. This system was first investigated in the context
of population biology by [Lot20] and [Vol26] where X1 was considered as a prey to the
predator X2 in the same sense that a goat falls a prey to a tiger in a forrest.
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Figure 3.2: Enzyme catalysed conversion of a substrate to product. The enzyme binds to the substrate
to make its conversion to product energetically favourable. Figured based on an illustration
in [AJL+02].

Enzyme kinetic reaction: In biological systems, the conversion of a substrate to a
product may not be a thermodynamically feasible reaction. However, specialised proteins
called enzymes ease the job by binding to the substrate and lower the activation energy
required for conversion to the product, as depicted in Figure 3.2. Represented in reaction
notation

E + S −→ E + P,

the the enzymatic reaction is thought to be accomplished in three elementary steps:

E + S
k1−−−−−⇀↽−−−−−
k2

ES
k3−−−−−→ E + P . (3.8)

Here the enzyme E catalyses a substrate S into a product P that involves an intermediary
complex ES. Note that we have not placed any rate constant over the arrow in the
original reaction because we do not specify any assumed kinetics in that notation. Later
we will learn that it is possible to approximate the three elementary reactions by a single
reaction,

S
keff−−−−−−→ P

with an effective rate coefficient keff that represents the assumed approximate kinetics.
Intuitively, keff will be a function of the enzyme abundance. We include this example
because this type of reaction appears frequently in the literature. It also serves the pur-
pose of a simple system containing a bimolecular reaction and how a mass conservation
leads to a simplified model.

Schlögl model: An autocatalytic, trimolecular reaction scheme, first proposed by [Sch72]

A + 2X
k1−−−−−⇀↽−−−−−
k2

3X, B
k3−−−−−⇀↽−−−−−
k4

X (3.9)
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Figure 3.3: Gene regulation: a simpified model. Left : cartoon representation. Right : reaction pathways.
Modified from documentation of the SimBiology toolbox from [Mat].

Here the concentrations A and B are kept constant (buffered). This example serves to
illustrate the need for a stochastic approach to model systems with bistability and the
associated behaviour known as “stochastic switching”.

Gene regulation: This example is included to illustrate gene regulation at the simplest
level where the protein product from translation controls (represses) transcription. The
regulatory mechamism is simplified by not showing the contributions of RNA polymerase
and any cofactors. The protein product from gene expression binds to a regulatory region
on the DNA and represses trabscrption. Figure 3.3 illustrates a cartoon representation
(on the left) side by side with the corresponding reaction pathways. The reaction scheme
for the system is

G
km−−−−−→ G + M (transcription)

M
kp−−−−−→ M + P (translation)

G + P
kb−−−−−⇀↽−−−−−
ku

GP (binding/unbinding)

M
k−m−−→ ∅, P

k−p−−→ ∅ (degradation)





(3.10)

where the gene G is transcribed to the mRNA M with rate constant km, the mRNA is
translated to the protein P with rate constant kp, the protein binds to (and represses)
the gene with rate constant kb and unbinds back with rate constant ku. The mRNA and
protein are degraded with respective rate constants k−m and k−p .

3.3 Deterministic description

Suppose that the reactions occur so frequently that the reaction count Z(t) can be ap-
proximated by a continuous quantity z(t). This assumption requires that a large number
of reactant molecules are freely available (no crowding) in a large volume so that they
can react easily. It also requires that the energy and orientation of reactant molecules
favour the reaction, a fact summarised in a rate constant. Large numbers of molecules
also mean that a change resulted from a single occurrence of a reaction is relatively small.
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3 Stochastic modelling

That means that the copy number N(t) can be approximated by a continuous quantity
n(t). The concentration X(t) is similarly approximated by a continuous quantity x(t).
In deterministic description, equations (3.3) and (3.4) respectively translate to

n(t) = n(0) + S z(t) . (3.11)

and

x(t) = x(0) +
S z(t)

Ω
. (3.12)

Taking the time-derivatives we arrive at the deterministic chemical kinetic equations:

ṅ(t) = ΩS v

(
n(t)

Ω

)
and ẋ(t) = S v (x(t)) , (3.13)

where v = ż/Ω is the reaction rate vector whose jth element vj is the reaction rate of
channel Rj . The reaction rate vj is the Rj reaction count per unit time divided by the
system size. The notation v (x(t)) is based on the assumption that the reaction rate
depends only on the concentrations of the reactants. This is a realistic assumption in
many reactions at constant temperature. In general, the reaction rate can depend on
temperature, pressure, and the concentrations or partial pressures of the substances in
the system.

The functional form vj(·) of the rate of Rj is called the rate law (or kinetic law) which
is a result of the modelling assumptions about the particular reaction channels. It is
only after specifying a rate law that the above ODEs can characterise a particular bio-
chemical reaction network. Without that specification, the above ODEs only represent
a consistency condition imposed by mass conservation of reactants and products. There
is a large class of chemical reactions in which the reaction rate is proportional to the
concentration of each reactant raised to some power:

vj(x) = kj

s∏

i=1

x
gij
i , (3.14)

which is called a rate law with definite orders [Mor08]. The rate constant kj summarises
factors such as activation energy and proper orientation of the reactant molecules for
an encounter leading to the reaction. The exponent gij is the order with respect to the
species Xi. The sum of orders for a particular reaction channel is the overall order. For
elementary reactions, the orders gij are the same as the reactant stoichiometries

¯
Sij :

vj(x) = kj

s∏

i=1

x¯
Sij
i . (3.15)

This rate law is called mass action kinetics [HS96] and is justified by collision theory and
transition state theory [Wri04, Hou07, Mor08]. The mass action kinetics should not be
confused with the closely related law of mass action which is obtained by equating the
forward and backward reaction rates (according to the above rate law) of a reversible
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3.3 Deterministic description

reaction. Reactions that cannot be described by rate laws like (3.14) are said not to have
a definite order. For such a reaction, the rate law depends on the assumptions involved
in the approximation of the constituent reaction channels. Examples of rate laws for
the reactions are Michaelis-Menten kinetics, Hill kinetics and competitive inhibition
[Fel97, CB04, HS96].

MATLAB implementation: To implement rate laws of the form (3.14) in MATLAB
[Mat], the standard MATLAB data type function handle can be employed. We will need
MATLAB representations of our mathematical quantities. Let us collect the species
concentrations xi (at a certain time) in an s × 1 column vector x, the reaction rate
constants kj in an 1× r row vector k, the reaction rates vj in an 1× r row vector v and
the exponents gij of the rate-law (3.14) in an s× r matrix G. Then the MATLAB repre-
sentation of the rate law (3.14), using function handle notation @, has the following form:

v = @(x) k.*prod(repmat(x,1,r).^G);

Note the MATLAB notations .* and .^ for element-wise operations, multiplication and
exponentiation. In general, a rate law may not be expressible in the form (3.14). In that
case, MATLAB data types nested function or subfunction could be employed instead of
function handles. A nested function representation of the above code will look like the
following:

function vout = v(x)

vout = k.*prod(repmat(x,1,r).^G);

end

which requires, in the MATLAB workspace, values of variables k, r and G, corresponding
respectively to the rate constant k, the number r of reaction channels and the matrix
G of exponents gij . Once such a function (or handle) has been written for the rate law,
a MATLAB representation of the chemical kinetic equations (3.13) can be written and
numerically solved with the following piece of MATLAB code:

dxdt = @(t,x) S*v(x)’; % concentration ODE

[tout ,xout] = ode15s(dxdt , [0 tf], x0); % solution

Here x0 is a column vector of initial concentrations and tf is the final (stop) time of
simulation. The solver ode15s returns the column vector tout of time points and the
solution array xout with a row of concentrations for each time point.

Standard modification: The reaction scheme (3.5) depicts the (de)modification of pro-
tein between two forms. Suppose there are ntot copies of this protein in a container, n(t)
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3 Stochastic modelling

of them being unmodified (in form U) at time t. The two reaction channels progress at
the following rates (list on the right)

U
kw−−−−−→W

W
ku−−−−−→ U

∣∣∣∣∣
żw = kwn

żu = (ntot − n)ku

and their difference gives the rate equation

ṅ = −żw + żu = kun
tot − (kw + ku)n . (3.16)

With a non-dimensional, τ = (kw + ku)t, the ODE takes the form

dn

dτ
=

kun
tot

(kw + ku)
− n .

The MATLAB implementation of this differential equation and its numerical solution
will look like the following piece of code:

dndt = @(t,n) k(2)* ntot/(k(1)+k(2))-n; % ODE

[tout ,nout] = ode15s(dndt , [0 tf], n0); % solution

which understands that values of variables k, ntot, tf and n0, corresponding respectively
to the rate constant k = [kw, ku], the total copy number ntot, the simulation stop time
and the initial copy number ninit, are available in the MATLAB workspace.

When the modification rate żw is balanced by the demodification rate żu, the chemical
equilibrium is said to have occurred. In other words, the reversible reaction equilibrates
or reaches the steady state. Setting the right hand side of (3.16) to zero gives us the
steady state copy number

nss =
kun

tot

(kw + ku)
.

Thus, in the steady state, a fraction PU = ku/(ku+kw) of proteins are in the unmodified
form and a fraction PW = kw/(ku+kw) of them in the modified form. We can also say
that a protein spends, on the average, a fraction PW of time in the modified form and
a fraction PU of time in the unmodified form. This interpretation proves very useful
in reducing complicated reactions into single steps. Suppose the W form participates

in another reaction W
kb−→ B which occurs on a much slower time scale than two-state

conformational changes between U and W, then the complicated reaction scheme

U
kw−−−−−⇀↽−−−−−
ku

W
kb−→ B

can be reduced to a single step ∅ kbPWntot

−−−−−−→ B under the fast equilibration assumption
for the reversible reaction.
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3.3 Deterministic description

Heterodimerisation: The reaction scheme (3.6) depicts the reversible heterodimerisa-
tion: the forward reaction is the association of a receptor X1 and a ligand X2 to form
the heterodimer X3; the reverse reaction is the dissociation of the heterodimer back into
the monomers. Let x1(t), x2(t) and x3(t) denote the respective time-dependent molar
concentrations of X1, X2 and X3.nThe reaction network has to satisfy two conservation
relations

x1 + x3 = q1, x2 + x3 = q2 (3.17)

where q1 and q2 are constants determined by the initial conditions. Using these to
express x1 and x2 in terms of x3, the system state can be represented by tracking only
species X3. The reaction rates according to the mass action kinetics follow from (3.15)
to be (each listed to the right of the corresponding reaction channel)

X1 + X2
k1−−−−−→ X3

X3
k2−−−−−→ X1 + X2

∣∣∣∣∣
v1 = k1 (q1 − x3) (q2 − x3)

v2 = k2x3 .

The concentration x3(t) of the complex thus evolves according to

dx3

dt
= v1 − v2 = k1 (q1 − x3) (q2 − x3)− k2x3 .

The MATLAB implementation of this differential equation and its numerical solution
will look like the following piece of code:

dxdt = @(t,x) k(1)*(q(1)-x)*(q(2)-x)-k(2)*x; % ODE

[tout ,xout] = ode15s(dxdt , [0 tf], x0); % solution

where values of variables k, q , tf and x0 corresponding respectively to the rate constant
k, the conservation constants q, the simulation stop time and the initial copy number
xinit, are supposedly available in the MATLAB workspace.

Lotka-Volterra model: The reaction scheme (3.7) depicts the mutual interactions be-
tween two kinds of entities X1 and X2. Let n1(t) and n2(t) denote the copy number of
X1 and X2, respectively. The copy number of the substance A is assumed to be so large
that it is not changed by consumption during the time scale of our interest. The reaction
rates according to the mass action kinetics follow from (3.15) to be (listed to the right)

X1 + A
k1−−−−−→ 2X1

X1 + X2
k2−−−−−→ 2X2

X2
k3−−−−−→ ∅

∣∣∣∣∣∣∣

v1 = k1nAn1

v2 = k2n1n2

v3 = k3n2

Algebraic combination of these reaction rates according to stoichiometry leads the ODEs
governing the time courses of n1(t) and n2(t):

dn1

dt
= v1 − v2 =

(
k1nA

− k2n2

)
n1,

dn2

dt
= v2 − v3 = (k2n1 − k3)n2 .





(3.18)
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Figure 3.4: Deterministic simulation of the Lotka-Volterra model. Left : time course, Right : phase plot.
Parameters (in sec−1): k1 = 1, k2 = 0.005, k3 = 0.6, Initial population is taken as 50
individuals of prey for 100 individuals of predator.

The MATLAB implementation of this system of ODEs and its numerical solution will
look like the following piece of code:

k = [1 ,0.005 ,0.6]; % rate constants

nA = 1; % substance for consumption

dndt = @(t,n) [k(1)*nA-k(2)*n(2);...

k(2)*n(1)-k(3)].*n; % ODE

tf = 30; % stop time

n0 = [20;20]; % initial copy number

[tout ,nout] = ode45(dndt , [0 tf], n0); % solution

Here the first line assigns value to (the array) k which corresponds to the rate constant
k. The 2nd line assigns an arbitrary value to nA, which corresponds to the amount of
the available substance nA. This value is equivalent to incorporating nA in k1. The next
line defines the function handle dndt to represent the system of ODEs in question. The
next lines assign values to tf, corresponding to the stop time, and n0, corresponding to
the initial copy number ninit. The last line calls an ODE solver to solve the problem and
returns the outputs arrays tout of time points and nout of states (copy numbers) n.
With these outputs, the time plot is shown in Figure 3.4 side by side with the associated
phase plot.

Enzyme kinetic reaction: For the enzyme kinetic reaction (3.8), write xE(t), xS(t),
xES(t) and xP(t) for the respective time-dependent molar concentrations of E, S, ES and
P. The solution is usually assumed to respect two conservation laws

xE(t) + xES(t) = xtot
E , and xS(t) + xES(t) + xP(t) = xtot

S (3.19)

where xtot
E and xtot

S are, respectively, the total concentrations of the enzyme and substrate
determined by the initial conditions. We can choose x = (xS, xES)T as the state vector
sufficient to describe the system because the remaining two variables can be determined
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Figure 3.5: Deterministic time-course of the enzyme kinetic reaction. Parameters: k1 = 10−3 (nM sec)−1,
k2 = 10−4 sec−1, k3 = 0.1 sec−1, Initial concentrations: xS = 500 nM, xE = 200 nM, xES =
xP = 0 nM.

from the conservation relations above. The channel-wise mass action kinetic law for the
reaction scheme (3.8) are (list on the right):

E + S
k1−−−−−→ ES

ES
k2−−−−−→ E + S

ES
k3−−−−−→ E + P

∣∣∣∣∣∣∣

v1 =
(
xtot

E − xES

)
k1xS

v2 = k2xES

v3 = k3xES .

The concentrations evolve according to the following set of nonlinear coupled ODEs

dxS

dt
= v2 − v1 = k2xES −

(
xtot

E − xES

)
k1xS,

dxES

dt
= v1 − v2 − v3 =

(
xtot

E − xES

)
k1xS − (k2 + k3)xES .

(3.20)

The MATLAB implementation of system of ODEs (3.20) and its numerical solution will
look like the following piece of code:

k = [1e-3,1e-4 ,0.1]; % rate constants

xEtot = 200; % total enzyme concentration

dxdt = @(t,x) [-(xEtot -x(2))*k(1), k(2);...

(xEtot -x(2))*k(1),-(k(2)+k(3))]*x; % ODE

tf = 50;

xStot = 500; % total enzyme concentration

x0 = [xStot ;0]; %initial concentrations

[tout ,xout] = ode15s(dxdt , [0 tf], x0); % solution

Here the first line assigns value to k which corresponds to the rate constant k. The
2nd line assigns to xEtot, which corresponds to the total enzyme concentration xtot

E .
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The next line defines the function handle dxdt to represent the system of ODEs in
question. The next lines assign values to tf, corresponding to the stop time, to xStot,
corresponding to the total enzyme concentration xtot

E , and to x0, corresponding to the
initial concentration xinit. The last line calls an ODE solver to solve the problem and
returns the outputs arrays tout of time points and xout of states (concentrations) x.
Once we have these outputs, we can produce the time plot in Figure 3.5.

Schlögl model: For the Schlögl reaction scheme (3.9), write xA and xB for the con-
stant respective concentrations of chemicals A and B, and x(t) for the time-dependent
concentration of chemical X. The reaction rates according to the mass action kinetics
follow from (3.15) to be (listed on the right)

A + 2X
k1−−−−−→ 3X

3X
k2−−−−−→ A + 2X

B
k3−−−−−→ X

X
k4−−−−−→ B

∣∣∣∣∣∣∣∣∣∣

v1 = k1xAx
2

v2 = k2x
3

v3 = k3xB

v4 = k4x

The deterministic ODE then follows to read

dx

dt
= v1 − v2 + v3 − v4 = k1xAx

2 − k2x
3 + k3xB − k4x . (3.21)

The MATLAB implementation of this ODE and its numerical solution will look like the
following piece of code:

dxdt = @(t,x) k(1)*xA*x^2-k(2)*x^3+k(3)*xB -k(4)*x; % ODE

[tout ,xout] = ode15s(dxdt , [0 tf], x0); % solution

which assumes that values of variables k, xA, xB, tf and x0, corresponding respectively
to the rate constant k, the fixed concentrations xA, xB, the simulation stop time and
the initial concentration xinit, are available in the MATLAB workspace.

Gene regulation: For the gene regulation scheme (3.10):

G
km−−−−−→ G + M (transcription)

M
kp−−−−−→ M + P (translation)

G + P
kb−−−−−⇀↽−−−−−
ku

GP (binding/unbinding)

M
k−m−−→ ∅, P

k−p−−→ ∅ (degradation)

write xM(t), xG(t) and xP(t) for the respective time-dependent molar concentrations of
mRNA M, the unbound gene G and protein P. The total gene concentration xtot

G is
assumed to be constant so that the bound (repressed) protein concentration is simply
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xtot
G − xG. The reaction rates based on mass action kinetics are kmxG for transcription,
kpxM for translation, kbxGxP for the gene-protein binding, ku

(
xtot

G − xG

)
for the gene-

protein unbinding, k−mxM for mRNA degradation and k−p xP for protein degradation. The
deterministic system of ODEs for the system can now be written:

dxM

dt
= kmxG − k−mxM,

dxG

dt
= ku

(
xtot

G − xG

)
− kbxGxP,

dxP

dt
= kpxM + ku

(
xtot

G − xG

)
−
(
kbxG + k−p

)
xP .





(3.22)

In this chapter, we present a stochastic framework for modelling subcellular biochem-
ical systems. In particular, we make an effort to show how the notion of propensity,
the chemical master equation (CME) and the stochastic simulation algorithm arise as
consequences of the Markov property. This connection is not obvious from the relevant
literature in systems biology. We review various analytical approximations of the CME,
leaving out stochastic simulation approaches reviewed in [TSB04, Pah08]. Moreover, we
sketch interrelationships between various stochastic approaches. The books by [PP01]
and [Wil06] inspired section.

3.4 Stochastic formulation

The validity of deterministic macroscopic approaches for description of the averages is
limited because the average of a nonlinear function is generally not the same as the
function of the average. This was first demonstrated for bimolecular reactions in [Rn53].

Since the occurrence of reactions involve discrete events at the microscopic level, it is
impossible to deterministically predict the progress of reactions in terms of the macro-
scopic variables such as N(t) and Z(t). To account for this uncertainty, one of the
macroscopic quantities N(t), Z(t), X(t) is formulated as a stochastic process. Choosing
the copy number N(t), a sample value n of the process is the state of our biochemical
system under consideration.

How does the process N(t) of copy numbers evolve in time? Starting at time t = 0
from some initial state N(0), every sample path of the process remains in state N(0)
for a random amount of time W1 until the occurrence of a reaction takes the process to
a new state N(W1); it remains in state N(W1) for another random amount of time W2

until the occurrence of another reaction takes the process to a new state N(W1 +W2),
and so on as shown in Figure 3.6. In other words, the time-dependent copy number N(t)
is a jump process.

The stochastic process N(t) is characterised by a collection of state probabilities and
transition probabilities. The state probability

P (n, t) = Pr
[
N(t) = n

]
,
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Figure 3.6: A time course realisation of a jump process. Labels Wi on the time axis denote the waiting
times.

is the probability that the process N(t) is in state n at time t. The transition probability

Pr
[
N(t0 + t) = n |N(t0) = m

]

is the conditional probability that process N(t) has moved from state m to state n
during the time interval [t0, t0 + t]. The analysis of a stochastic process becomes greatly
simplified when the above transition probability depends on: (i) the starting state m but
not on the states before time t0 and (ii) the interval-length t but not on the start time t0.
Property (i) is the well-known Markov property and the process with this property is said
to be a Markov process. The process holding property (ii) is said to be a homogeneous
process. If the molecules are well mixed and are available everywhere for a reaction
(space can be ignored), then the copy number N(t) can be approximately formulated as
a homogeneous Markov process in continuous time. In this text, all Markov processes will
be assumed to be homogeneous unless stated otherwise. Now we use a simple notation
for the above transition probability

P (n|m, t) = Pr
[
N(t0 + t) = n |N(t0) = m

]
= Pr

[
N(t) = n |N(0) = m

]
. (3.23)

It should be remembered that t in the above equation is the length of the time inter-
val. The initial condition is usually fixed and the state probability can be written as a
transition probability

P (n, t) = P (n|n0, t) = Pr
[
N(t) = n |N(0) = n0

]
.

The Markov property has two important consequences, explained in the following two
sections.
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3.4 Stochastic formulation

3.4.1 Chapman-Kolmogorov equation

The Markov property places a consistency condition on the transition probabilities. To
see that, decompose the transition probability

Pr
[
X(t+ w) = n |X(0) = m

]

=
∑

n′
Pr
[
X(t+ w) = n |X(t) = n′ ∩ X(0) = m

]
Pr
[
X(t) = n′ |X(0) = m

]

=
∑

n′
Pr
[
X(t+ w) = n |X(t) = n′

]
Pr
[
X(t) = n′ |X(0) = m

]

where the Markov property allows a simplification of the 2nd line leading to the 3rd line.
In the compact notation for transition probabilities, the above consistency condition
takes the form

P (n|m, t+ w) =
∑

n′
P (n|n′, w)P (n′|m, t), (3.24)

which is known as the “Chapman-Kolmogorov equation” (CKE) for continuous-time
Markov processes. This equation expresses the probability of a transition (m → n) as
the summation of probabilities of all transitions (m → n′ → n) via the intermediate
states n′. Figure 3.7 illustrates the idea conveyed by the CKE. It is important to clarify
that the CKE is only a consistency condition imposed on every stochastic process by
Markov property and cannot characterise a particular process. We need dependence
relations between random variables of the process to characterise it. Typically that is
achieved by investigating the local behaviour of transition probabilities in a short time
interval. Replacing the length w of the time interval of the transition probabilities in
(3.24) by ∆t and fixing the initial condition, the CKE (3.24) reduces to

P (n, t+ ∆t) =
∑

n′
P (n|n′,∆t)P (n′, t), (3.25)

where the transition probabilities away from the fixed initial state have been replaced
by the state probabilities. Later we will see that the short-time transition probabilities
P (n|n′,∆t) can be expressed in terms of parameters of the particular process under con-
sideration when certain modelling assumptions about the underlying chemical reactions
are made. This will open the door for an analytical characterisation of a particular
Markov process.

3.4.2 Memoryless property

Suppose the Markov process N(t) is in state n at time t0 and let Tj(n) denote the time,
in state n, until the occurrence of a reaction Rj takes the process to state n+S�j . If the
reaction has not occurred during [t0, t0 + w], we can write Tj(n) > w. This knowledge,
however, does not change the uncertainty in time until the next reaction. In other
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time

m
t0

t

n

n′

t + w

Figure 3.7: Graphical interpretation of the Chapman-Kolmogorov equation. The probability of a transi-
tion m→ n can be obtained by summing up the probabilities of all transitions m→ n′ → n,
via intermediate states n′. Drawing adopted from [Gil92].

words, the process is memoryless and its subsequent behaviour is independent of w. The
memoryless property can be expressed mathematically as

Pr
[
Tj(n) > w + t |Tj(n) > w

]
= Pr

[
Tj(n) > t

]
.

and holds true only for the exponential distribution.
The memoryless property, and hence the fact that the times between reactions are ex-

ponentially distributed, opens the door for stochastic simulations of biochemical reaction
networks. That will be our focus in the following section.

3.5 Propensity as the transition rate

It follows from the previous section that the time Tj(n) until the occurrence of reaction
Rj has an exponential distribution with a parameter, say aj(n). We can thus write

Pr
[
Tj(n) > t

]
= exp

(
−aj(n)t

)
, (3.26)

for the probability that an Rj reaction will not occur in the next time interval of length t.
Using a Taylor expansion, for arbitrarily short interval of length ∆t, the above probability
can be written as

Pr
[
Tj(n) > ∆t

]
= exp

(
−aj(n)∆t

)
= 1− aj(n)∆t+ o(∆t) . (3.27)

The probability of occurrence of an Rj reaction during the same short interval is com-
plimentary to the above:

Pr
[
Tj(n) ≤ ∆t

]
= aj(n)∆t+ o(∆t) . (3.28)
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3.5 Propensity as the transition rate

The parameter aj(n), which gives the probability per unit time of the occurrence of an
Rj reaction in state n, is referred to as the reaction propensity.

In a vanishingly short interval, it is highly improbable that a particular reaction will
occur more than once. To see that, the probability of two occurrences of Rj during a
time interval [t, t+ ∆t] is the joint probability of its first occurrence during [t, t+ α∆t]
and a second occurrence during (t+ α∆t, t+ ∆t]:

Pr
[
Tj(n) ≤ α∆t

]
Pr
[
Tj (n+ S�j) ≤ (1− α)∆t

]

=
(
aj(n)α∆t+ o(∆t)

)(
aj (n+ S�j) (1− α)∆t+ o(∆t)

)
= o(∆t),

where 0 < α < 1. Therefore, the probability in (3.28) is equivalent to the probability,
in state n, of one occurrence (i.e. a unit increment in the reaction count) of Rj during
[t, t+ ∆t]:

Pr
[
Zj(t+ ∆t)− Zj(t) = 1 |N(t) = n

]
= aj(n)∆t+ o(∆t) .

The probability distribution, in state n, of the short-time Rj reaction count increment
∆Zj = Zj(t+ ∆t)− Zj(t) during [t, t+ ∆t) is

Pr
[
∆Zj = zj |N(t) = n

]
= o(∆t) +





aj(n)∆t if zj = 1

1− aj(n)∆t if zj = 0

0 if zj > 1

(3.29)

The expected value, conditioned on N(t) = n, of this short-time Rj reaction count
increment is

〈∆Zj |N(t) = n〉 =

r∑

j=0

zj Pr
[
∆Zj = zj |N(t) = n

]

=

zj=1︷ ︸︸ ︷
aj(n)∆t+

zj>1︷ ︸︸ ︷
o(∆t) .

The unconditional expectation of the short-time Rj reaction count increment can be
obtained by summing the probabilities P (n, t) weighted by the above conditional expec-
tation over all possible states n:

〈
∆Zj

〉
=
∑

n

〈
∆Zj |N(t) = n

〉
P (n, t)

=
∑

n

aj(n)P (n, t)∆t+ o(∆t)

=
〈
aj
(
N(t)

)〉
∆t+ o(∆t)

which for vanishingly small ∆t leads to the ODE

d

dt
〈Zj(t)〉 =

〈
aj
(
N(t)

)〉
, (3.30)
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Thus the mean propensity of a particular reaction can be interpreted as the average
reaction count per unit time.

The state transition, when in state n, associated with channel Rj will be written as

n
aj(n)−−−−−−−−→ n+ S�j

because the completion of one Rj reaction simply adds the jth column of the stoichiom-
etry matrix to the state. The completion of one Rj reaction could also bring the system
in state n from another state. That state transition can be written as

n− S�j
aj (n− S�j)−−−−−−−−−−−−→ n .

The dependence relation of the propensity on the state n is determined by the system
being modelled and reflects the assumptions made about the system. If Rj is an ele-
mentary reaction in a well-mixed system, it is reasonable to assume that each possible
combination of the Rj reactant molecules has the same probability per unit time, cj ,
to react. In other words cjdt gives the probability that a particular combination of Rj
reactant molecules will react in a short time interval (t, t + dt]. In the literature, cj
is referred to as stochastic (reaction) rate constant. If there are hj(n) different possi-
ble combinations of Rj reactant molecules in state n, then the propensity aj(n) can be
written as

aj(n) = cjhj(n) . (3.31)

The form of hj(n) depends on the order of the reaction Rj .

Zero-order reaction (∅→ X): Since the reaction rate does not depend on the reactant,
the propensity is a constant a(n) = cj if the reaction is a single step. If the reaction
is non-elementary, then the propensity is function of copy numbers of any enzymatic
chemical species involved.

First-order reaction (X →): The stochastic reaction rate cj of this reaction is the
probability per unit time of a particular reactant molecule undergoing the reaction.
Given n reactant molecules, the probability per unit time of any reactant molecule
undergoing the reaction is obtained by summing up the individual probabilities of all n
reactant molecules, that is aj(n) = cjn.

Bimolecular reaction with different species (X1 + X2 →): The stochastic reaction
rate cj of this reaction is the probability per unit time of a particular pair of reactant
molecules undergoing the reaction. Given n1 copies of reactant X1 and n2 copies of
reactant X2, there are n1n2 distinct possible pairs of reactant molecules available for the
reaction. The probability per unit time of any pair of reactant molecules undergoing
the reaction is obtained by summing up the individual probabilities of all n1n2 pairs of
reactant molecules, that is aj(n) = cjn1n2.
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3.5 Propensity as the transition rate

Bimolecular reaction with repeating species (2X1 →): The stochastic reaction rate cj
of this reaction is the probability per unit time of a particular pair of reactant molecules
undergoing the reaction. Given n copies of reactant X, there are (n−1)n/2 distinct possible
pairs of reactant molecules available for the reaction. The reaction propensity is thus
aj(n) = cj(n−1)n/2.

For an elementary reaction channel Rj of the general form (3.1), with
¯
Sij molecules

of reactant species Xi, we can write the combinatorial function

hj(n) =

s∏

i=1

(
ni

¯
Sij

)
. (3.32)

However, it is highly unlikely that a reaction of order higher than two will result from
all its reactants coming together and reacting in one step, for example by collision.
A more realistic model will decompose the high order reaction into two or more one
step reactions. For non-elementary reactions, the propensity can be computed from the
reaction rate by using (3.33). For elementary reactions, the stochastic rate constant c is
closely related to the deterministic rate constant, as shown below.

Deterministic and stochastic reaction rates: Using the interpretation of propensity as
the mean reaction count per unit time from (3.30), the propensity divided by the system
size is analogous to the reaction rate vj defined earlier in the deterministic framework.
Hence, in the stochastic framework, the stochastic reaction rate can be defined as

â(x) =
a(n)

Ω
. (3.33)

which is analogous to the deterministic reaction rate v(x). The stochastic rate of a given
elementary reaction can be computed from (3.33), (3.31) and (3.32) whereas (3.15) can
be used for the deterministic reaction rate. The two kinds of reaction rates are given for
a few example elementary reactions in Table 3.1. The condition under which the two
reaction rates are equal is shown in the corresponding entry of the last column. This also
provides the relationship between the stochastic rate constant cj and the deterministic
rate constant kj . That relationship can be generalised in the following way.

Relationship between the deterministic and stochastic rate constants: Let us find
the conditions under which the deterministic and stochastic reaction rates of a general
elementary reaction are approximately the same. From (3.15), (3.33), (3.31) and (3.32)
we can propose:

kj

s∏

i=1

x¯
Sij
i = vj(x) ≈ âj(x) =

aj(n)

Ω
=
cj
Ω

s∏

i=1

(
ni

¯
Sij

)
.

The left-most expression is valid only in the deterministic framework which requires
large system size, Ω � 1. To the extent that this assumption is valid, the combinatorial
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3 Stochastic modelling

Table 3.1: Examples of elementary reactions Rj listed with their propensities aj(n), stochastic reaction
rates âj(x) and deterministic reaction rates vj(x). The last column shows the condition for
equality of the two types of reaction rates. Note that the repeating reactant species require
large system size, Ω � 1.

Rj aj(n) âj(x) vj(x) âj = vj if

∅
kj−−→ X cj

cj
Ω kj cj = Ωkj

X
kj−−→? cjn

cjn
Ω kjx cj = kj

X1 +X2
kj−−→? cjn1n2

cjn1n2

Ω kjx1x2 cj =
kj
Ω

2X
kj−−→? cj

(n−1)n
2 cj

(n−1)n
2Ω kjx

2 cj =
2kj
Ω

X1 +X2 +X3
kj−−→? cjn1n2n3 cj

n1n2n3
Ω kjx1x2x3 cj =

kj
Ω2

X1 + 2X2
kj−−→? cjn1

(n2−1)n2

2 cj
(n2−1)n2n1

2Ω kjx1x
2
2 cj =

2kj
Ω2

function can be approximated as

(
ni

¯
Sij

)
=

(ni −
¯
Sij + 1) · · · (ni − 1)ni

¯
Sij !

=

(
Ω¯
Sij

¯
Sij !

)(
xi − ¯

Sij − 1

Ω

)
· · ·
(
xi −

1

Ω

)
xi

≈
(

Ω¯
Sij

¯
Sij !

)
x¯
Sij
i for Ω � 1

Inserted into the previous equation leads to the stochastic rate constant

cj =
kj

ΩKj−1

s∏

i=1

(
¯
Sij !) (3.34)

where Kj =
∑s

i=1 ¯
Sij is the number of Rj reactant molecules required to collide and

possibly result in a single occurrence of the reaction. The above derivation is a refinement
of our earlier attempt in [WUKC04].

Relation between the deterministic and stochastic reaction rates: We saw that in
general, the stochastic and deterministic reaction rates are not equal. Since the two are
equal for infinitely large Ω , the difference between the two is of the order of Ω−1, namely
[Elf04]

âj(x) = vj(x) +O
(
Ω−1

)
. (3.35)

Standard modification revisited: In the standard modification (3.5), the copy number
N(t) of the unmodified proteins is a simple birth-death process. Each copy of the
unmodified protein U is modified at a rate kw. Similarly, each copy of the modified
protein W is demodified at a rate ku. Both the modification and the demodification are
monomolecular reactions. With 0 < n < ntot unmodified proteins, expressions for the
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3.5 Propensity as the transition rate

reaction propensities a(n) are listed here (on the right) together with the corresponding
reactions (on the left)

U
kw−−−−−→W

W
ku−−−−−→ U

∣∣∣∣∣
aw(n) = kwn

au(n) = (ntot − n)ku

}
(3.36)

Heterodimerisation revisited: The reversible heterodimerisation (3.6) can be formu-
lated as a 3-component 2-reaction network. Let N1(t),N2(t) and N3(t) denote, the
respective copy numbers of the components X1, X2 and X3. The full state has to respect
the two conservation relations (3.17) which translate to:

N1(t) +N3(t) = Ωq1, and N2(t) +N3(t) = Ωq2

where q1 and q2 are the conserved concentrations and Ω = NAV is the system size. The
Markov process N(t) = N3(t) having states n = n3 is sufficient to describe the system,
because the remaining two variables can be determined from the conservation relations
above. Subject to those conservation relations, expressions for the channel propensities
a(n) in state n = n3 are listed here (on the right) together with the corresponding
reactions (on the left):

X1 + X2
k1−−−−−→ X3

X3
k2−−−−−→ X1 + X2

∣∣∣∣∣∣
a1(n) = k1

(
q1 −

n

Ω

)(
q2 −

n

Ω

)

a2(n) = k2n .



 (3.37)

Lotka-Volterra model revisited: The mutual interaction between two kinds of entities
depicted in (3.7) is a 2-component 3-reaction network. Let N1(t) denote the population
of the first kind X1, and N2(t) that of the 2nd kind X2. The prey replication and
the predation, are of the 2nd order, whereas the predator death is of the first order.
Expressions for the channel propensities a(n) in state n = (n1, n2)T are listed here (on
the right) together with the corresponding reactions (on the left):

X1 + A
k1−−−−−→ 2X1

X1 + X2
k2−−−−−→ 2X2

X2
k3−−−−−→ ∅

∣∣∣∣∣∣∣

a1(n) = k1nAn1

a2(n) = k2n1n2

a3(n) = k3n2





(3.38)

Enzyme kinetic reaction revisited: The enzyme kinetic model (3.8) is a 4-component
3-reaction network. Let N

E
(t) denote the copy number of the enzyme, N

S
(t) that of the

substrate, N
ES

(t) that of the complex and N
P

(t) that of the product. The full state has
to respect the two conservation relations (3.19) which translate to:

N
E

(t) +N
ES

(t) = Ωxtot
E , and N

S
(t) +N

ES
(t) +N

P
(t) = Ωxtot

S ,

where xtot
E and xtot

S are the conserved concentrations and Ω = NAV . The Markov
process

N(t) =
(
N

S
(t), N

ES
(t)
)T
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having states n = (nS, nES)T is sufficient to describe the system, because the remaining
two variables can be determined from the conservation relations above. The (enzyme-
substrate) complex formation is a bimolecular reaction whereas the complex dissociation
and the product formation are monomolecular reactions. Expressions for the reaction
propensities a(n) in state n = (nS, nES)T are listed here (on the right) together with the
corresponding reactions (on the left):

E + S
k1−−−−−→ ES

ES
k2−−−−−→ E + S

ES
k3−−−−−→ E + P

∣∣∣∣∣∣∣∣

a1(n) = k1

(
xtot

E −
nES

Ω

)
nS

a2(n) = k2nES

a3(n) = k3nES .





(3.39)

Schlögl model revisited: For the Schlögl reaction scheme (3.9), write xA and xB denote
the constant respective concentrations of chemicals A and B, and N(t) for the time-
dependent copy number of chemical X. The first two reaction channels, the autocatalysis
and its backward dissociation, are trimolecular reactions with two and three identical
species, respectively. The last two reaction channels, the synthesis/dissociation of X
from/to B, are monomolecular reactions. Expressions for the reaction propensities a(n)
in state n = (n1, n2)T are listed here (on the right) together with the corresponding
reactions (on the left):

A + 2X
k1−−−−−→ 3X

3X
k2−−−−−→ A + 2X

B
k3−−−−−→ X

X
k4−−−−−→ B

∣∣∣∣∣∣∣∣∣∣

a1(n) = k̂1n (n− 1)

a2(n) = k̂2n (n− 1) (n− 2)

a3(n) = k̂3

a4(n) = k4n





(3.40)

where the new rate parameters are defined as

k̂1 =
k1xA

Ω
, k̂2 =

k2

Ω2
, k̂3 = k3xBΩ ,

in terms of the system size Ω = NAV .

Reaction network reduction: The last example shows an interesting feature of some
biochemical reaction networks. In this example, reaction channels R1 and R3 both
have the same stoichiometry as far as the abundance N(t), the only state variable, is
concerned. A reaction of either of the two channels will take the system from state n to
state n + 1. Similarly, a reaction of either channel R1 or R4 will take the system from
state n to state n − 1. Thus, as far the state transitions are concerned, the reaction
network (3.40) can be reduced to a birth-death process with birth rate a+(n) and death
rate a−(n) given by

a+(n) = k̂1n (n− 1) + k̂3,

a−(n) = k̂2n (n− 1) (n− 2) + k4n .

}
(3.41)
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In general, if the stoichiometry matrix S of a reaction network has identical columns,
the network can be reduced by merging the set of reaction channels corresponding to
those columns in the above manner.

Gene regulation: For the gene regulation scheme (3.10) write nM(t), nG(t) and nP(t)
for the respective time-dependent copy numbers of mRNA M, the unbound gene G and
protein P. The total gene copy number ntot

G is assumed to be constant so that the bound
(repressed) protein concentration is simply ntot

G − nG. The reaction propensities based
on mass action kinetics are (each to the right of the corresponding channel):

G
km−−−−−→ G + M

M
kp−−−−−→ M + P

G + P
kb−−−−−→ GP

GP
ku−−−−−→ G + P

M
k−m−−−−−→ ∅

P
k−p−−−−−→ ∅

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am(n) = kmnG

ap(n) = kpnM

ab(n) = kbnGnP

au(n) = ku
(
ntot

G − nG

)

a−m(n) = k−mnM

a−p (n) = k−p nP





(3.42)

3.6 Stochastic simulation

Time until the next reaction: The probability in state n that no reaction has occurred
in an interval of length t follows from (3.26) and independence of reaction channels:

Pr


⋂

j

Tj(n) > t


 =

∏

j

exp (−aj(n)t) = exp


−t

∑

j

aj(n)


 .

Hence the time T0(n) until next reaction taking the process away from state n is expo-
nential with rate parameter

a0(n) =
∑

j

aj(n),

which is the exit rate (of the system away) from state n.

Index of the next reaction channel: If it is known that a reaction has occurred in
state n, the (conditional) probability that it was an Rj reaction is determined as

lim
∆t→0

Pr
[
Tj(n) ≤ ∆t |T0(n) ≤ ∆t

]
= lim

∆t→0

Pr
[
Tj(n) ≤ ∆t

]

Pr
[
T0(n) ≤ ∆t

]

= lim
∆t→0

aj(n)∆t+ o(∆t)

a0(n)∆t+ o(∆t)

=
aj(n)

a0(n)
.
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Thus the index J(n) of the next reaction known to have occurred in state n is a discrete
random variable taking values j with probability

Pr
[
J(n) = j

]
=
aj(n)

a0(n)
. (3.43)

This result, together with the exponentially of T0, allows a simple procedure to simulate
the Markov process: 1) Pick a sample τ from the exponential distribution with rate
a0(n) to realise the time until the next reaction will occur, and 2) pick a sample j from
the discrete distribution with probabilities (3.43) to realise the reaction channel.

Simulating the time until the next reaction: The time T0(n) until the next reaction
in state n is an exponential random variable with right-tail distribution function

G(t) = Pr
[
T0(n) > t

]
= exp

(
−a0(n)t

)
.

If u1 is a uniform random number picked from [0, 1], then

τ = G−1(u1) = − log u1

a0(n)
(3.44)

is a sample of the time until the next reaction.

Simulating the Index of the next reaction channel: The index J(n) of the next reac-
tion known to have occurred in state n is a discrete random variable with a probability
mass function (3.43) and a cumulative distribution function

F (j) = Pr
[
J(n) ≤ j

]
=

j∑

l=1

al(n)

a0(n)
.

If u2 is a uniform random number picked from [0, 1] then,

j = F−1(u2) = min
w
{w : F (w) ≥ u2}

is a sample of the random index J(n). For the range of values taken by J , the above
condition is equivalent to

F (j − 1) < u2 ≤ F (j) .

Multiplying both sides by a0(n) and plugging values for F (j) gives the following criteria

j−1∑

l=1

al(n) < u2a0(n) ≤
j∑

l=1

al(n) . (3.45)

for j to be a sample of the index J(n) of the next reaction known to have occurred in
state n.
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Algorithm 1 Gillespie stochastic simulation algorithm (direct method)

1. Initialise the system at t = 0 with initial numbers of molecules for each species,
n1, . . . , ns.

2. For each j = 1, . . . , r, calculate aj(n) based on the current state n.

3. Calculate the exit rate a0(n) =
r∑
j=1

aj(n). Terminate if a0(n) = 0.

4. Compute a sample τ of the time until the next reaction using (3.44).

5. Update the time t = t+ τ .

6. Compute a sample j of the reaction index using (3.45).

7. Update the state n according to Rj . That is put n = n + S�j , where S�j denotes
jth column of the stoichiometry matrix S.

8. If t < tmax, return to Step 2.

Gillespie algorithm [Gil77]: The above two results (3.44) and (3.45) are at the core of
the stochastic simulation algorithm also known as the “Gillespie algorithm”. The steps
involved are listed in Algorithm 1. Over time, many improvements to the original SSA
have been made for efficient computation. See [TSB04, Pah08] for extensive reviews.

MATLAB implementation of SSA: To implement the above SSA in MATLAB, we
need a MATLAB representation of reactions and species. Suppose we have collected
information about our chemical reaction network in a MATLAB structure R with fields:
R.S represents the stoichiometry matrix (the static information - network topology) and
R.a as a function handle to return the reaction propensity (the kinetic information - rate
laws) when given the state n as an argument. If we pass this reaction object into a nested
function makessa written in the M-code 3.1, a function handle ssa is returned which can
be used as a function to generate sample trajectories according to the Gillespie SSA for
the given chemical reaction network. This MATLAB implementation is only for illus-
tration. Efficient implementations of the SSA and its variants is available in MATLAB
SimBiology toolbox in the form of a stochastic solver. Numerous stochastic simulation
packages (implemented in other programming languages) have been developed over time,
including [BCF+07, BADG08, RLP07]. An alternative software, which allows arbitrary
rate laws (and hence non-elementary reactions), is Cains http://cain.sourceforge.net, a
free tool that specialises in computational efficient stochastic simulations.

Standard modification revisited: To use the function handle returned by the function
makessa in M-code 3.1, we need to specify the fields of the reaction structure R. For the

187

http://cain.sourceforge.net


3 Stochastic modelling

M-code 3.1: A MATLAB implementation of Gillespie SSA (direct method).

function ssa = makessa(R)

rand(’state ’, sum (100* clock ));

S = R.S;

s = size(S,1);

a = R.a;

ssa = @gillespie;

function [tt,nn] = gillespie(t,n,steps)

tt = zeros(steps ,1);

nn = zeros(s,steps );

tt(1) = t;

nn(:,1) = n;

for i=1: steps

a0 = sum(a(n));

if a0==0

tt(i+1: end) = [];

nn(:,i+1: end) = [];

break;

end

tau = exprnd (1./a0);

tt(i+1) = tt(i) + tau;

j = find(cumsum(a(n))>a0*rand ,1);

n = n + S(:,j);

nn(:,i+1) = n;

end

nn = nn.’;

end

end
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Figure 3.8: Stochastic simulation for the standard modification. Left : A single run of the SSA, mean over
1000 runs together with mean±SD (red thread), and solution of the deterministic ODE model
(dashed). Right : End-point histogram. Parameters: kw = ku = 2 sec−1, Initial conditions:
n = 20.

isomerisation reaction (3.5) with propensities in (3.36), fields of the reactions structure
are specified in the following piece of code:

R.S = [-1 1];

R.a = @(n)[k(1)*n; k(2)*( ntot -n)];

where we note that the propensity field is specified as a function handle unlike the stoi-
chiometry field which is a matrix. Another point to note is that the state variable n here
is a scalar which is the copy number of unmodified proteins because the copy number of
modified proteins is just ntot-n. Of course, values of k and ntot respectively correspond-
ing to the rate constant vector k and the total copy number ntot must be available in
the MATLAB workspace. The stochastic simulation results for the 2-species, 2-reaction
network (3.5), with propensities (3.36), are shown in Figure 3.8. Identifiability of pa-
rameters from time-course data can be demonstrated through stochastic simulation, see
the four cases in Figure wherein five sample trajectories are plotted, together with the
associated deterministic time-course, for a each parameter value pair.
We see different patterns as the difference kw−ku of parameters is changed, while keep-

ing the sum kw+ku the same. It can be shown that the sum kw+ku determines the mean
trajectory whereas the difference kw − ku determines the spread of trajectories around
the mean. The time-course measurements of mean alone provide information about one
fraction ku/(kw+ku) only. To get information about the other fraction (kw−ku)/(kw+ku) we
need time-course measurements of variance as well.

Heterodimerisation revisited: The stochastic simulation results for the reversible het-
erodimerisation (3.6), with propensities (3.37), are shown in Figure 3.10.
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Figure 3.9: Identifiability illustrated through stochastic simulation. Five sample trajectories are shown,
together with the associated deterministic time-course, for each parameter value pair. The
parameter pairs (kw, ku) in sec−1 have been selected to satisfy kw+ku = 4. The total number
of protein molecules was chosen to be ntot = 10, initially all unmodified, that is N(0) = 10 .
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Figure 3.10: Stochastic simulation for the heterodimerisation. Left : A single run of the SSA (black
stairs), mean over 1000 runs together with mean±SD (red thread), and solution of the
deterministic ODE model (grean dashed). Right : End-point histogram. Parameters: k1 =
1 sec−1 (nM)−1, k2 = 1 sec−1, V = 1.66 fL (chosen so that Ω = 1 (nM)−1), q1 = q2 = 30 nL,
Initial concentrations: x1 = x2 = x3 = 15 nM.

190



3.6 Stochastic simulation

0 10 20 30
0

100

200

300

400

prey   

   predator

time

po
pu

la
tio

n

0 100 200 300
0

100

200

300

400

prey population

pr
ed

at
or

 p
op

ul
at

io
n

Figure 3.11: Stochastic simulation of the Lotka-Volterra model obtained by one SSA run. Left : time
course, Right : phase plot. Parameters (in sec−1): k1 = 1, k2 = 0.005, k3 = 0.6, Initial
populations is taken as 50 individuals of prey and 100 individual of predator.

Lotka-Volterra model revisited: For the Lotka-Volterra system (3.7) with propensities
in (3.38), fields of the R structure are specified in the following piece of code:

R.S = [1,-1,0; 0,1,-1];

R.a = @(n)[k(1)*nA*n(1); k(2)*n(1)*n(2); k(3)*n(2)];

with the values of the variables k and nA, respectively corresponding to the rate constant
vector k and the constant copy number nA, available in the MATLAB workspace. Five
sample trajectories are shown in Figure 3.11 side by side with the associated phase plot.
To see the possibility of species extinction, sample trajectories starting from different
initial populations are plotted in Figure 3.12. It can be seen that for some initial popu-
lations, species extinction occurs quickly.

Enzyme kinetic reaction revisited: For the 4-species, 3-reaction enzymatic reaction
(3.8) with propensities in (3.39), fields of the R structure are specified in the following
piece of code:

R.S = [-1,1,0; 1,-1,-1];

R.a = @(n)[c(1)*n(1)*( nStot -n(2)); c(2)*n(2); c(3)*n(2)];

which assumes that the values of the variables c and nStot, respectively corresponding
to the stochastic rate constant vector c and the total copy number ntot

S of molecules
involving the substrate, are available in the MATLAB workspace. Remember that the
stochastic rate constant c has to be computed from the deterministic rate constant k
according to the relation (3.34). Since, in this example, only the first reaction channel
is bimolecular, we have

c1 =
k1

Ω
, c2 = k2, c3 = k3

with the MATLAB representation
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Figure 3.12: Stochastic trajectories of the Lotka-Volterra model of interacting species (3.7) for differ-
ent initial species populations. The prey and predator population is plotted in solid and
dashed lines, respectively. Note how extinction quickly occurs for some initial populations.
Parameters are taken from Figure 3.11.

ssz = NA*V; % system size

c = [k(1)/ssz , k(2), k(3)];

which understands that values of variable V and NA respectively corresponding to the
volume V and the Avogadro’s number NA are available in the MATLAB workspace.
The volume is chosen to be V == 1.66 fL so that Ω = 1 (nM)−1 to have numerically
identical values for a species concentrations and the corresponding copy number. To
see how the variability among realisations, five different sample trajectories are shown
in Figure 3.13 for two scenarios: small/large initial populations on the left/right. The
mean species abundance, together with the error bars according to mean±SD, computed
over an ensemble of 10000 realisations, are plotted side by side with the species-wise end-
point empirical distribution (PMF) in 3.14. Note that the distributions for enzyme and
enzyme-substrate complex have exactly the same shapes and differ only in their means.
This is not a coincidence, but a direct consequence of the conservation relation (3.19).

Schlögl model revisited: The Schlögl model (3.9) with propensities in (3.41) is a
bistable system with two stable steady states separated by an unstable steady state.
In a deterministic framework, such a system settles to that steady state whose basin
of attraction is nearer to the initial condition. In a stochastic framework, however, the
behaviour is more complex: either steady state may be reached in different realisations
regardless of the initial condition. This behaviour, referred to as “stochastic switching”
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Figure 3.13: Five sample trajectories of species abundance in the enzymatic reaction (3.8). The volume
is chosen as V = 1.66 fL so that Ω = 1 (nM)−1 and, hence, a species concentration is
numerically the same as the corresponding copy number. Parameters are taken from Figure
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Figure 3.14: Ensemble of 10000 stochastic simulations for the enzymatic reaction (3.8). The parameters
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Figure 3.15: Stochastic simulation of the Schlögl model (3.9). Five sample trajectories together with the
deterministic time-course (dashed). While the deterministic time-course settles to one of
the two stable fixed points, some of the SSA trajectories spread out to other states. Left :
Initial copy number N(0) = 100 is in the basin of attraction of the first stable fixed point
n = 300. Right : Initial copy number N(0) = 80 is in the basin of attraction of the 2nd
stable fixed point n = 17.

in [UIYS06, GUV07], is illustrated here in Figure 3.15 wherein two sets of five sample tra-
jectories starting from, each set starting from a different initial copy number are plotted
side by side. The associated deterministic time-course is overlaid on each set. It is easy
to see that, while the deterministic time-course settles to one of the stable fixed points,
some of the stochastic trajectories spread out to other states. This can be more easily
seen in the histogram 3.16. The time varying histogram, which was obtained from 10000
realisations, is unimodal initially and has a bimodal pattern at the end. The MATLAB
implementation of the Schlögl model (3.9) with propensities in (3.41), in terms of fields
of the R structure is left as an exercise for the reader.

Gene regulation revisited: For the gene regulation scheme 3.10 with propensities
in (3.42), stochastic simulation results are shown in Figures 3.17-3.18 for two different
system sizes. The increased noise can be attributed to the low system size. A clearer
picture is depicted in Figure 3.19 where three different measures of noise - the standard
deviation, the coefficient of variation and the Fanno factor, are plotted side by side.
The gene regulation model (3.10) with propensities in (3.42).

3.7 Chemical master equation

The occurrence of each reaction moves the system from one state to another in the state
space. The possible state transitions from/to state n are usually sketched in a state
transition diagrams like the one in 3.20, where a transition from one state to another
is represented by an arrow that is labelled with the corresponding transition rate. The
transition rate of a state transition resulting from a single reaction channel is equal to
the reaction propensity of that channel. The transition rate of a state transition result-
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Figure 3.16: Temporal progress of the histogram for the Schlögl reaction.
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Figure 3.17: Protein abundance arising from large gene abundance (3.10). Left : A single run of the SSA.
Right : End-point histogram.
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Figure 3.18: Protein abundance arising from small gene abundance (3.10). Left : A single run of the SSA.
Right : End-point histogram.
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Figure 3.19: Measures of noise in gene regulation model.

Figure 3.20: State transitions of a generic r-reaction network with network structure encoded in the
stoichiometry matrix S and reaction kinetics encoded in the propensity function a(n).

196



3.7 Chemical master equation

ing from more than one reaction channels is the sum of propensities of those reaction
channels.

How does the state probability P (n, t) change with time? To answer this, we need
to find an expression for P (n, t + ∆t), the probability to be in state n after a short
time-interval of length ∆t. How can the system fall in state n at time t + ∆t? One
possibility is that the system was in state n at time t and no reaction occurred during
the interval. Otherwise, as obvious from the state transition diagram in Figure 3.20, the
state n was reached after the occurrence of one of r possible reactions. Mathematically
we can write

P (n|n′,∆t) = o(∆t) +





1− a0(n)∆t ifn′ = n

a1 (n− S�1) ∆t ifn′ = n− S�1
...

ar (n− S�r) ∆t ifn′ = n− S�r
0 elsewhere.

The term o(∆t) represents the probability of arriving in state n by the occurrence of
more than one reaction during the interval. Recall that a0(n) =

∑
j aj(n) is the exit

rate from state n. Substituting the above expressions into (3.25) gives

P (n, t+ ∆t) = P (n, t)


1−

r∑

j=1

aj(n)∆t


+

r∑

j=1

P (n− S�j , t) aj (n− S�j) ∆t+ o(∆t),

which for vanishingly short ∆t can be re-arranged as the chemical master equation
(CME):

∂

∂t
P (n, t) =

r∑

j=1

[
aj (n− S�j)P (n− S�j , t)− aj(n)P (n, t)

]
. (3.46)

We will switch between the two alternative notations d
dtφ(t) and dφ

dt for any scalar quan-
tity φ(t). We will prefer the later when dependence on time variable is implicitly clear.

Remember that the CME above has been written with an understanding that the
functional form of the propensities aj(n) has been specified for the process under study.
Without that specification, the CME, similar to the CKE, merely represents a consis-
tency condition imposed by the Markov property.

Using a negative-shift operator Ej for each reaction channel defined by its effect

Ej f(n) = f (n+ S�j)

on an arbitrary scalar function f(n) of s-vector n, the CME can be written in the
alternative form

∂

∂t
P (n, t) =

r∑

j=1

(
E−1
j −1

)
aj(n)P (n, t) . (3.47)
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Figure 3.21: State transitions of the standard modification (3.5).

The CME is a differential-difference equation (differential in time t and difference in
states n). In other words, there is one equation for each state n. Since there is potentially
a large number of possible states, it is any attempt to solve the CME analytically or
even numerically will be impractical, unless one is dealing with a very simple system
such as the isomerisation reaction (3.5) that has just one state variable n and only two
channels (state transitions).

Standard modification revisited: For the standard modification (3.5) with propensities
in (3.36), the state transition diagram is given in Figure 3.21. Based on these state
transitions, the CME for this example reads:

∂

∂t
P (n, t) = kw

[
(n+ 1)P (n+ 1, t)− nP (n, t)

]

+ ku

[(
ntot − n+ 1

)
P (n− 1, t)−

(
ntot − n

)
P (n, t)

]
. (3.48)

Note that this CME must respect the boundary conditions with respect to n = 0, 1, . . . , ntot.
That is, P (n, t) = 0 for 0 > n > ntot. We can gain some insight into the dynam-
ics described in the above CME by setting ntot = 1, which corresponds to a single
molecule (in isolation) that can exist either in the unmodified form U with probability

PU(t)
def
= P (1, t), or in the modified form W with probability PW(t)

def
= P (0, t) = 1−PU(t)

. The single molecule version of the above CME turns out to be

d

dt
PU(t) = −kwPU(t) + ku (1− PU(t)) = ku − (kw + ku)PU(t)

where we have used the boundary condition P (2, t) = 0. Suppose that the protein
molecule is initially unmodified, that is PU(0) = 1. Then the above single molecule
CME can be solved for PU(t) to yield

PU(t) =
ku + kwe−(kw+ku)t

kw + ku
. (3.49)

The probability P ss
U of ending up in the unmodified state can now be determined by

setting t infinitely large (corresponding to the steady state distribution):

P ss
U = PU(∞) =

ku
kw + ku

. (3.50)

The probability P ss
W of ending up in the modified state is complementary to the above:

P ss
W = 1− P ss

U =
kw

kw + ku
. (3.51)
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Figure 3.22: Temporal progress of the probability distribution for the standard modification. The PMF
P (n, t), for the copy number of unmodified proteins, is plotted during two time subintervals:
0 < t < 1 (left) and 1 < t < 5 (right). The parameters were chosen as kw = 3 and ku = 1
both in sec−1. Initially, all the proteins are assumed to be unmodified.

Figure 3.23: State transitions of the heterodimerisation reaction (3.6).

The last two results make intuitive sense when chemical equilibrium is assumed: the
respective fractions of time the protein spends in the unmodified and modified states are
ku/(ku+kw) and kw/(ku+kw). Having determined the probability PU of a single molecule to
be unmodified, the probability P (n, t) that n out of all the available ntot are unmodified
is simply the PMF of the binomial distribution namely

P (n, t) =

(
ntot

n

)
(PU(t))n (1− PU(t))n

tot−n . (3.52)

We have thus found the solution (3.52) to the original CME (3.48) through an indirect,
but insightful, procedure. This will, however, not be tractable for every case. The
progress, in time, of the probability distribution of the copy number N(t) (of molecules
in inactive form) is shown in Figure 3.22, wherein the PMF is plotted during two time
subintervals.

Hetrodimerisation revisited: For the reversible hetrodimerisation (3.6) with propensi-
ties (3.37), the state transition diagram is shown in Figure 3.23. Based on these state
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Figure 3.24: State transitions of the enzyme kinetic reaction (3.8).

transitions, the CME for this example reads:

∂

∂t
P (n, t) = k1

(
q1 −

n− 1

Ω

)(
q2 −

n− 1

Ω

)
P (n− 1, t)

− k1

(
q1 −

n

Ω

)(
q2 −

n

Ω

)
P (n, t)

+ k2

[
(n+ 1)P (n+ 1, t)− nP (n, t)

]
.

Enzyme kinetic reaction revisited: For the enzymatic reaction (3.8) with propensities
in (3.39), the state transition diagram is given in Figure 3.24. Following these state
transitions, the CME can be written as:

∂

∂t
P (nS, nES, t) = k1

(
xtot

S −
nES − 1

Ω

)
(nS + 1)P (nS + 1, nES − 1, t)

− k1

(
xtot

S −
nES

Ω

)
nSP (nS, nES, t)

+ k2

[
(nES + 1)P (nS − 1, nES + 1, t)− nESP (nS, nES, t)

]

+ k3

[
(nES + 1)P (nS, nES + 1, t)− nESP (nS, nES, t)

]
.

Lotka-Volterra model revisited: For the Lotka-Volterra model (3.7) with propensi-
ties in (3.38), the state transition diagram is given in Figure 3.25. From these state
transitions, the CME for this example reads:

∂

∂t
P (n1, n2, t) = k1

[
(n1 − 1)P (n1 − 1, n2, t)− n1P (n1, n2, t)

]

+ k2

[
(n1 + 1) (n2 − 1)P (n1 + 1, n2 − 1, t)− n1n2P (n1, n2, t)

]

+ k3

[
(n2 + 1)P (n1, n2 + 1, t)− n2P (n1, n2, t)

]
.
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Figure 3.25: State transitions of the Lotka-Volterra model (3.7).

Figure 3.26: State transitions of the Schlögl model (3.9).

Schlögl model revisited: For the Schlögl model (3.9) with propensities in (3.40), the
state transition diagram is given in Figure 3.26. But recall that the same transition
diagram also corresponds to the reduced reaction network (3.41). Following these state
transitions, the CME for both the original Schlögl reaction (3.40) and the reduced reac-
tion network (3.41) reads the same:

∂

∂t
P (n, t) =

[
k̂1(n− 2)(n− 1) + k̂3

]
P (n− 1, t)−

[
k̂1(n− 1)n+ k̂3

]
P (n, t)

+ k̂2

[
(n+ 1)P (n+ 1, t)− (n− 2)P (n, t)

]
(n− 1)n+ k4

[
(n+ 1)P (n+ 1, t)− nP (n, t)

]
.

While the stochastic simulation algorithm and extensions provide a way to generate
sample paths of copy numbers for a biochemical system, the need for repeating many
simulation runs to get an idea of the probability distribution in terms of its moments
(mean and (co)variance) become increasing time consuming and even impractical for
larger systems. Therefore attempts have been made towards continuous approximations
of the CME [Gil96, HJ04? , MK06].

Gene regulation revisited: For the gene regulation scheme 3.10 with propensities in
(3.42), the state transition diagram is given in Figure 3.27. Following these state trans-
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Figure 3.27: State transitions of the gene regulation 3.10.

itions, the CME can be written as:

∂

∂t
P (nG, nM, nP, t) = kmnG [P (nG, nM − 1, nP, t)− P (nG, nM, nP, t)]

+ k−m [(nM + 1)P (nG, nM + 1, nP, t)− nMP (nG, nM, nP, t)]

+ kpnM [P (nG, nM, nP − 1, t)− P (nG, nM, nP, t)]

+ k−p [(nP + 1)P (nG, nM, nP + 1, t)− nPP (nG, nM, nP, t)]

+ ku
[(
ntot

G − nG + 1
)
P (nG − 1, nM, nP − 1, t)−

(
ntot

G − nG

)
P (nG, nM, nP, t)

]

+ kb [(nG + 1) (nP + 1)P (nG + 1, nM, nP + 1, t)− nGnPP (nG, nM, nP, t)]
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4 Modelling of Cell Communication
Networks

The life of multicellular animals begins with the fertilisation of an oocyte (egg cell) by a
sperm cell. Thereafter the fertilised egg undergoes a series of cell divisions. In the early
stages of development, individual cells in the embryo are totipotent, i.e., each cell retains
the capacity to differentiate into any one of the many different cell types in the body.
As development proceeds cells become pluripotent, i.e., they become more restricted in
their capacity to generate different types of descendent cells.

The processes of cell differentiation lead to individual cells acquiring specialised struc- cell differentiation

tures and functions. Some mature and terminally differentiated cells do not undergo cell
division, while others (e.g. osteoblasts, chondroblasts, myoblasts,...) divide actively and
thereby act as precursors of terminally differentiated cells. Those precursor cells that are
also capable of self-renewal are known as stem cells (e.g. pluripotent hematopoietic stem stem cells

cells in the bone marrow). The process of differentiation is closely related to morpho-
genesis, the process by which the structure of the cell is modified through regulated morphogenesis

growth.

While genes clearly have a role in these fundamental processes, by which cells grow,
divide and differentiate, this role is primarily to provide information for the molecules
whose dynamic interactions determine the structure and function of cells. The cell cycle cell cycle

is a sequence of events take the cell from division to division (mitosis). Progression mitosis
through the cell cycle determines proliferation (the increase of the number of cells in a proliferation

population). For example, the essence of cancer is that cells no longer act and react in
a regulated fashion within the context of the organ that defines their environment.

The concept by which interactions of proteins in cell functions are organised are path-
ways. A pathway map exhibits the names of the molecular components, whose inter- pathway map

actions govern the basic cell functions. This leads us to a definition of pathways as
biochemical networks. One motivation for systems biology is to bring these static dia-
grams to life by modelling and simulating the biochemical reactions that underlie cell
function, development, and disease. To combine into networks that realise higher levels
of organisation, such as tissue and organs, cells must communicate. The physical in-
terface between the inside and outside of a cell is comprised, amongst other things, of
receptors, which can sense extracellular signals and transduce a signal to the genome
where it can effect the transcription of genetic information. The biochemical reactions
that relay signals are organised as signal transduction pathways in which regulatory
feedback loops play a central role. Many cancer and neurodegenerative diseases are
considered a failure of communication at molecular level.

This chapter is to consider mathematical modelling and simulation of pathways, i.e.,
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networks of biochemical reactions, focussing on dynamic or transient changes.networks

We have so far encountered a range of representations including the biologist’s graph-
ical pathway map and the biochemist’s formal reaction equations that describe the inter-
actions of those components referred to in a pathway map. We hereafter seek a similar
approach, devising a graphical representation in form of block diagrams as a repres-
entation of mathematical equations. The behavior of a formal system is then in turn
visualised through simulation plots, phase planes, and bifurcation diagrams. In many
ways both, the experimentalists and theoretician rely on visualisations to help an under-
standing. This does not come as a surprise if one accepts the philosophical arguments
put forward in the first chapters of this text.

Biological System Pathway Map

Visualizations Mathematical Equations

Figure 4.1: Visualisation plays an important role in all sciences. The biologist visualises his understand-
ing with a pathway map. Properties of mathematical models are visualised as simulation
plots, phase plane and bifurcation diagrams.

4.1 Pathways as Dynamic Systems

Systems theory and cell biology have enjoyed a long relationship that has received re-
newed interest in recent years in the context of systems biology. The term ‘systems’ in
systems biology comes from systems theory or dynamic systems theory : Systems biology
is defined through the application of systems- and signal-oriented approaches for an un-
derstanding of inter- and intra-cellular dynamic processes. The aim of the present text
is to review the systems and control perspective of dynamic systems. The biologist’s
conceptual framework for representing the variables of a biochemical reaction network,
and for describing their relationships, are pathway maps. A principal goal of systems
biology is to turn these static maps into dynamic models which can provide insight into
the temporal evolution of biochemical reaction networks. Towards this end we review the
case for differential equation models as a ‘natural’ representation of causal entailment in
pathways. Block-diagrams, commonly used in the engineering sciences, are introduced
and compared to pathway maps. The stimulus-response representation of a molecular
system is a necessary condition for an understanding of dynamic interactions among
the components that make up a pathway. Using simple examples, we show how bio-
chemical reactions are modelled in the dynamic systems framework and visualised using
block-diagrams.

Pathway maps used are for most cases a graphical representation that lacks a standard
and for which it is not clear which mathematical model should/could be used to simulate

204



4.1 Pathways as Dynamic Systems

the system. We here introduce a block diagram representation of nonlinear dynamic sys-
tems, which is an unambiguous translation of the mathematical model. Admittedly it is
therefore only suitable for differential equations. The biologist’s conception of a pathway
map is similar to block diagrams that are widely used in the physical- and engineering
sciences. Arbitrary complex systems can be built up from four basic building blocks:

Integrator:

u

KI

y
y(t) = KI

∫ t

0
u(t)dt

Gain:

u

KP

y
y(t) = KPu(t)

Differentiator:

u

KD

y
y(t) = KD

d

dt
u(t)

Transport Delay:

u

1 Td

y
y(t) = u(t− Td)

The most important block we are going to focus on is that of an integrator, which
describes an accumulation or growth process. The differentiator is simply the reverse
operation to the integrator. As alluded to above, the transport delay block is of par-
ticular importance in simulating the effect of protein translocation, nucleocytoplasmic
export and related spatial effects. Block diagrams differ to pathway maps in that they
show the processing of signals. Block-diagrams are thus a signal-oriented approach, an
arrow in these diagrams is associated with a variable that is changing over time. The
arrows are thus not simply defining ‘associations’, plus/minus signs indicating amplific-
ation/inhibition but instead they are numbers that are added or subtracted. Towards
this end, blocks or subsystems are connected through signals via the following nodes:

junction addition/subtraction

−
×

multiplication

For the addition/subtraction node, if there is no sign, a “+” is assumed. These ba-
sic building blocks form a de facto standard for graphical modelling of control systems
circuits. While the value and use of diagrammatic representations of pathway models
and tools to visualise them are discussed, for example1, in [Kit02, A+04, Laz02], there
are no established standards for pathway maps. Given that we are discussing the value
of control concepts in pathway modelling, we hereafter consider a couple of well studied
examples of biochemical systems and investigate (a) how control block diagram repres-
entations might be used and (b) how a control analyst might incorporate feedback loops
in pathway models. A discussion of how the more conventional pathway maps can serve
as information organisers and simulation guides is discussed in [Koh01].

1See also http://discover.nci.nih.gov/kohnk/interaction_maps.html
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4 Modelling of Cell Communication Networks

4.2 The Role of Feedback

Differential equations models are particulary suited to study the role of feedback loops.
One of the first biologists who recognised the importance of biological feedback was René
Thomas [TD90]. For any process that is to maintain, optimise or adapt a condition or
value, information about the ‘is-state’ has to be fed back into the decision on any change
that should occur. In other words, feedback loops are the basis for any form of regulation
and/or control.

Control engineers distinguish between two principal kinds of control systems with
different purposes: a) reference tracking, and b) disturbance rejection. We hereafter refer
to the first case, where the system is sensitive to inputs, as the ability to make changes as
required, e.g., to track or follow a reference signal, as control. On the other hand, we refer
to regulation as the maintenance of a regular or desirable state, making the system robust
against perturbations. Regulation that maintains the level of a variable is also referred
to as homoeostasis. Here we should distinguish two forms of robustness in a control
system. The first is robustness against external disturbances (disturbance regulation).
In a biochemical pathway, a disturbance might be caused by unwanted cross-talk from
a neighboring signalling pathway. The second form of robustness, is one which tolerates
parameter changes in a system, without significantly changing the system performance.
Both forms of robustness are important properties in understanding pathways.

u(t)

0
t

“step”

u(t)

0
t

“ramp”

u(t)

0
t

“impulse”

u(t)

0
t

“exponential”

Figure 4.2: Test signals that can be used to investigate the dynamic behavior of pathways.

A central objective of systems biology is to devise methods that allow the detection
and description of feedback loops in pathways [K+02, SK04]. An important result from
systems theory is that this is only possible through perturbation studies, where the
system is stimulated with a well defined signal. Unfortunately, experiments in molecular
and cell biology are difficult to set up in a way that suits systems-theoretic approaches.
A major hurdle for the success of systems biology arises therefore from the need to
conduct expensive, time consuming, complex perturbation experiments.

A superficial view of feedback would say that positive feedback is bad (destabilising)
and negative feedback is good (stabilising). Indeed, the description of the role of feedback
often implies that in the absence of negative feedback, a system is unbounded, unstable
and not resistant to perturbations. In fact this is not the case, most dynamical systems
exist in a stable manner without the need for feedback. A better way in which to describe
the role of feedback is as a modifier of the dynamical behavior of a system. Depending
upon the nature of the feedback, it can either stabilise, destabilise, sensitise or de-
sensitise the behavior of a process. While positive feedback is conventionally associated
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with destabilisation the truth is more complex, and in many circumstances negative
feedback can have unwelcome effects. However, in the context of the special dynamical
model forms found in pathway modelling, there are certain special dynamical features
induced by feedback that are important to understand. The following simple models of
accumulation or growth processes will illustrate some of these features as they manifest
themselves within cells.

As an initial demonstration of the features associated with feedback, consider the
simple model of growth (e.g. of a cell or of a population of molecules in the cell). Let
u(k) denote the stimulus of the system at time k and y the response. Let us take the
view that the present depends not only on the current state but also on the past, leading
to a discrete version of a differential equation, called difference equation:

y(k) = f
(
y(k − 1), u(k)

)
. (4.1)

where f describes the detailed functional relationship between the stimulus, the past of
y and the current response y(k). One way to illustrate this is by the following block-
diagram:

u(k) f y(k)

1 1

+

y(k − 1)

In the diagram the two numbers above the transport delay block denote an amplific-
ation of the signal, respectively the unit sampling time delay. For instance, let us look
at a linear system, where f is realised by the following law

y(k) = u(k) + y(k − 1) .

For initial conditions y0 = 0, u0 = 0 if we stimulate the system with a step input,
u(k) = 1 for k ≥ 1, a simulation reveals a linearly increasing, unbounded signal (Figure
4.3(a)). Whatever the initial conditions, y0 ≥ 0, the system is unstable and an unreal-
istic model for most purposes. Let us therefore see what happens if we add a negative
feedback loop to the system:

f y(k)

1 1

+
u(k)

KP

−
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Figure 4.3: Illustration of the stabilising effect of a negative feedback loop in a discrete-time system.
Left: Unstable system with a positive feedback loop. Right: Negative feedback loop with
KP = 1. In both cases the response to unit step input signal is shown.

The temporal evolution of the response signal is modelled by the following equation

y(k) =
(
u(k)−KP · y(k)

)
+ y(k − 1) .

A simulation reveals a bounded signal (Figure 4.3(b)).

4.3 Tutorial Examples

In the following we present very simple examples of biochemical reactions, which are
subsequently translated into a set of mathematical (differential) equations. These in
turn maybe related to a standard positive/negative feedback representation drawn from
control engineering. In general, we say a component or variable of a system is subject to
negative feedback when it inhibits its own level of activity. For example, a gene product
that acts as a repressor for its own gene is applying negative feedback. Likewise, a
component of a system is subject to positive feedback when it increases its own level of
activity. Through these examples we are going to review the concepts of the biochemist’s
reaction equation, pathway maps, differential equations and block diagrams.

Returning to our proteolysis example from the introductory section, we generalise it in
the context of the framework outlined above. Consider a simple monomolecular reaction
where chemical species X is transformed. The change in concentration of X at time
t depends on the concentration of X at time t in that the rate by which the reaction
proceeds is proportional to the concentration at each time instant,

dx(t)

dt
∝ x(t)

with a certain positive rate constant k. A diagrammatic representation of this biochem-
ical process illustrates the fact that chemical species X “feeds back” on itself:
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X X

A linear mathematical ODE model of the process is given by

d

dt
x(t) = k · x(t) .

Here X acts as a substrate being converted and the product. There is positive feedback
in that the larger the product X, the greater the rate of change by which substrate X
is transformed. A simulation of this system reveals the expected unbounded growth in
the concentration of X,

x(t) = x0 · ekt ,
where x0 = x(t = 0) denotes the initial condition. With increasing x, the growth rate
dx/dt also increases in this system, leading to an unbounded growth. Next we look at
the autocatalytic reaction

X +A
k1−⇀↽−
k2

2X

where for a given X molecule, A facilitates the doubling. A pathway map of this process
would be

X X

In pathway maps we use a bar at the end of the arrow to denote an inhibition or
negative feedback loop. If A is considered to have a constant concentration, generalising
the law of mass action, we arrive at the following differential equation model:

d

dt
x(t) = k1ax(t)− k2x

2(t)

= k1ax(t)

(
1− k2

ak1
x(t)

)
.

Why we rewrote the equation in the form given in the second line will be clarified below.
In this autocatalytic reaction the ‘product’ has a strong inhibitory effect on the rate
at which X is transformed. In order to indicate the internal feedback mechanisms at
work in this system, we will label the right-hand bracketed term (1− k2x(t)/(ak1)) as a
control input variable u(t)

d

dt
x(t) = k1au(t)x(t) .

Because of the product term on the right-hand side this equation is also referred to as a
model of a bilinear system. If we consider variable x to represent the state of the system,
and we write dx(t)/dt = ẋ for short, this system becomes

ẋ = f(x) + g(x)u , x(t0) = x0 ,

y = h(x) .
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Figure 4.4: Unbounded and limited growth. Left: Simulation of the monomolecular reaction with positive
feedback. Right: Simulation of an autocatalytic reaction (logistic equation) with negative
feedback. For the solid line x0 = 2, a = 2, b = 1/2.5 and for the dashed line x0 = 10, a = 2,
b = 1/3.

We can alternatively write:
u(x) = α− βx ,

where the constant α is called the intrinsic growth rate of the population and α/β cor-
responds to the maximum attainable population. The model we thus obtain is specified
by the equation

dx

dt
= αx

(
α/β − x
α/β

)
(4.2)

= αx(t)

(
1− β

α
x(t)

)
.

This model form is called the logistic growth model and is equivalent to the autocatalytic
reaction introduced above. The model describes the real growth rate as a proportion
of the intrinsic growth rate. This proportion however decreases with an increase in the
population, leading to a more realistic scenario of a system that remains within bounds
(Figure 4.4). Both previous examples, echo the observations made in the discrete-time
example of a simple growth process with added negative feedback.

For two molecular species we can generalise the control of the system into

ẋ1 = u1(x1, x2)x1 ,

ẋ2 = u2(x1, x2)x2 .

If we specify for u1 and u2,

u1(x1, x2) = k1a− k2x2 ,

u2(x1, x2) = k2x1 − k3 ,
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we obtain the well known Lotka-Volterra model of two competing populations. If vari-
ables x1 and x2 correspond to the chemical species X1 and X2, the biochemical repres-
entation of this system is

X1 +A
k1−→ 2X1

X1 +X2
k2−→ 2X2

X2
k3−→ B

where A is maintained at a constant concentration and B corresponds to the degradation
of X2. The first two reactions are autocatalytic. Compared to the limited growth model
from above, this system is capable of showing oscillatory behavior. The block diagram
for the Lotka-Volterra model can be drawn directly from those equations:

k1a

+

−
u1 × x1(t)

k2

k2

k3

+

−
u2 × x2(t)

The Lotka-Volterra model of competing species gives an opportunity to discuss the
purpose of mathematical models as a mechanism for illuminating basic principles, while
not necessarily describing the details of a particular case. Specifically, the Lotka-Volterra
model would nowadays be considered an unrealistic model for modelling animal popula-
tion dynamics. However as an abstraction it has proven very useful, helping scientists to
establish a conceptual approach and ask the right questions [Mur02]. It is in this spirit
that models of intracellular dynamics are, or should be, developed in systems biology.
The systems considered here are frequently used for an introduction to differential equa-
tions. The prototypical biological example of a regulatory system is the protein synthesis
model of Jacob and Monod [JM61]. The conceptual model explains how the production
of mRNA (x1), is feedback controlled by a repressor (x3). A simplified pathway map of
this process is shown in the following diagram:
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DNA
(gene)

transcription
mRNA (x1)

translation
enzyme (x2)

precursor
“substrate”

enzymatic
reaction

co-repressor (x3)
“product”

A differential equation model of this regulatory mechanism of protein synthesis is:

d

dt
x1 =

k1

k2 + k3x3(t)
− k4x1(t)

d

dt
x2 = k5x1(t)− k6x2(t)

d

dt
x3 = k7x2(t)− k8x3(t) .

For each of these equations, the last term describes degradation of the molecules. k5 is
the rate of synthesis for the protein that facilitates the production of the co-repressor.
Note that there is no minus sign to indicate the negative feedback as in previous ex-
amples. The greater x3 in the numerator of the first term of the rate equation for x1,
the smaller its contribution towards the rate of change of x1. In contrast to the previous
example where the feedback was linear, i.e., a simple additive or negative term, in this
example the feedback is nonlinear. To illustrate the use of block-diagrams more clearly,
let us consider the block-diagram for the Jacob-Monod model of protein synthesis.

x1

k4

−

k5
x2

k6

−

k7

x3

k8

−

k1
k2 + k3x3(t)

We are now alerted to the fact that negative feedback does not necessarily coincide
with an explicit form of negative feedback loop. Specifically, we have in the block diagram
arbitrarily chosen to arrange the figure such that x3(t) appears as the term fed-back to
x1(t) and that because of the nonlinear form of the feedback it will in fact for small
perturbations be negative. The arbitrary nature of the feedback variable is because there
is no explicit control input. In such autonomous systems, it is the physical/biological
structure that will determine what we (the analyst) chose to call the feedback signal.
When the differential equation for x1 is linearised by Taylor series expansion the x3(t)
appears as a negative feedback term. Whether or not linearisation is feasible depends
on the system considered. A more comprehensive discussion of this system and further
references can be found in [Mur02].

In the block diagram above we have also noticed that degradation is represented by
an integrator with a negative feedback loop around it. This motif we can summarise
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into a single block:

k

− ⇒
k

Note that this is not just an arbitrary graphical simplification, the inner structure
of the block remains unambiguously defined. That is, we do not lose information or
accuracy in presentation by scaling the block diagram in this way. Finally, the protein
synthesis model can be simplified to

x1
k4 k5

x2
k6 k7

x3

k8

k1
k2 + k3x3(t)

Although the systems we have considered here are fairly simplistic, the consequences
of feedback loops we have observed remain akin for more complex processes. For a
related instructive discussion of the dynamic systems approach in biochemical pathway
modelling we recommend [TO78, FMWT02, TCN03].

4.4 Discussion

Although a pathway or pathway map describes molecules, their physical state and in-
teractions, it is an abstraction, with no physical embodiment. A pathway map is thus
a model; which proteins and what physical states of the molecules should be considered
for experiments and the model is what we call the art of modelling.

Feedback loops are the essence of control and regulation, for only if information about
the consequences of some output is fed back, the system can adjust itself or respond
in an appropriate way. Using ordinary differential equations to model biochemical net-
works, we have shown that feedback loops can stabilise and destabilise a system, keep its
variables and signals bounded, they can make the system robust against perturbations,
they allow the system to adapt to changes, or track an input stimulus.

Another relevant feature of control systems is that they have specific intent, and con-
trol systems analysts have theories for understanding intent and methods for achieving
a required intent or purpose [YHS00]. In a modelling framework, the causal structure of
a control system provides a framework for the dynamical manipulation of information
with a purposeful objective. This is topical and relevant in the light of recent discus-
sion of the value of systems biology compared with mathematical biology [Lan04]. In
this same spirit, feedback loops lie at the heart of the causal/purposeful mechanisms of
control and regulation in dynamic systems. Specifically, it is only if information about
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the consequences or some output is fed back, can the system automatically adjust itself
or respond in an appropriate way. Feedback is not always beneficial, for feedback loops
can stabilise or destabilise a system. Feedback can keep a system’s variables and signals
bounded, or it can induce oscillations or unbounded growth. Likewise, feedback loops
can make a system robust against perturbations, but at the same time they allow the
system to adapt to changes, or track an input stimulus.

Apart from the role of feedback loops, we surveyed alternative and complementary
representations and visualisations, including the biochemist’s reaction equations, the
mathematician’s differential equation models, the control engineer’s block diagrams and
the biologist’s pathway maps. Block diagrams are well established in the engineering
sciences as a means of describing dynamic systems in general. Through the integrat-
ors used, these diagrams are inherently linked to differential equation models and are
therefore less general than those molecular interaction maps [A+04], commonly used to
visualise relationships in pathways. On the other hand, block diagrams are a direct
and unambiguous visualisation of the mathematical model. These diagrams also do not
explicitly represent spatial aspects. While the transport of a protein from the nucleus
to the cytosol can be modelled, compartments are realised by introducing more than
one variable in the model for the same molecular species in different regions of the cell.
For the analysis of the nonlinear differential equations models we only used time plots.
Visualisation is no less important to theoreticians than it is to biologists and so there
are a range of tools available we have not mentioned here, including stimulus-response
curves, phase-plane and bifurcation analysis (e.g. [GH83, KG95, Mur02, TCN03]). For
an application of these mathematical tools applied to a model of the yeast cell cycle,
we refer to the expositions of Novak and Tyson [Tys01, TN01, TCN03]. The building
block approach to an understanding of systems, when associated with purpose, is very
similar to the causality principles that are embedded in the dynamical system modelling
methods of control engineering. One question we investigated here was whether the
control engineer’s proficiency with block diagram models and modular representations
can contribute to systems biology by facilitating the translation of biological concepts
into mathematical representations.

The cell is made up of molecules, like a car is made up from plastic and metal. But
a soup of molecules is no more a cell than a heap of plastic and metal is a car. To
understand the functioning and function of a cell we need to know the relations and
interactions of the components that constitute it. If the central dogma of systems biology
is that it is dynamics that determines biological function, we would refine this statement
and argue that the dynamical manifestation of feedback determines the development and
maintenance of biological processes.

4.5 Phase-Plane Analysis

Phase-plane analysis is an important technique in studying the behavior of linear and
nonlinear dynamic systems. It is a graphical approach which allows the study of the
behavior of the system for a large range of initial conditions. It is for this reason that
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this method is referred to as providing a qualitative analysis of the dynamic system. For
linear systems the approach is truly global, while for nonlinear systems it is only locally
applicable. The main purpose of this section is to illustrate the diversity of behavior
nonlinear dynamics can generate and to introduce a tool for its analysis in the plane.
For a more comprehensive description of phase-plane analysis see one of the many books
available on differential equations (e.g. [BD01, EP01]).

The general form of systems considered for phase-plane analysis is

dx

dt
= f(x, y) ,

dy

dt
= g(x, y) . (4.3)

A system in which t does not explicitly occur in f and g is called an autonomous system.
The two differential equations determine the velocity of two variables x and y moving in
the xy-plane referred to as the phase-plane. As time increases, the system state moves
along a curve in the xy-plane, called the trajectory. While for non-autonomous systems
trajectories could cross in the plane, for autonomous systems the trajectories cannot
cross. The totality of all trajectories describes the phase portrait . Points (x, y) of the phase portrait

trajectory for which
f(x, y) = g(x, y) = 0

are called critical points or fixed points, often also referred to as steady-states or equi- critical point

librium points2. To see the appearance the phase portrait, we consider a direction field
on a grid of points in the R2 plane and determine velocity vectors defined by

dy

dx
=

dy
dt
dx
dt

=
g(x, y)

f(x, y)
.

As a first simple example let us consider the system

dx

dt
= y and

dy

dt
= 4x .

The only fixed point for this system is the origin, (0, 0), of the plane. We can solve the
system by separation of variables:

dy

dx
=

dy
dt
dx
dt

=
4x

y

which implies ∫
y dy =

∫
4x dx i.e.,

y2

2
= 2x2 + c

leading to trajectories that are hyperbolas:

4x2 − y2 = c .

The phase-plane and some sample solutions are shown in Figure 4.5.

2In the engineering literature fixed points are also referred to as equilibrium points. In the context of
biochemical networks in cells this can however lead to confusion.
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Figure 4.5: Left: Phase portrait of the system dx/dt = y, dy/dt = 4x. The fixed point (0, 0) is said
to be unstable because trajectories close to the fixed point move away from it. From the
appearance of graph, the fixed point is also referred to as a saddle point. Right: Sample
solutions for x(t) for different initial conditions.

A second motivating example, leading to trajectories that are circles is

dx

dt
= y and

dy

dt
= −x ,

The only fixed point is again (0, 0). By separation of variables

dy

dx
=

dy
dt
dx
dt

=
−x
y

which implies ∫
y dy = −

∫
x dx i.e.,

y2

2
= −x

2

2
+ c

leading to circular trajectories:
x2 + y2 = c .

The phase-portraits is shown in Figure 4.6.
From these two examples we now consider a more comprehensive survey of linear

dynamics, followed by nonlinear systems. If the derivatives are linear functions of the
variables, we deal with a linear (autonomous) system:

dx

dt
= a · x+ b · y

dy

dt
= c · x+ d · y





(4.4)

In matrix form we can rewrite this system as
[
ẋ
ẏ

]
=

[
a b
c d

] [
x
y

]
.
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Figure 4.6: Phase portrait of the system dx/dt = y, dy/dt = −x. The fixed point (0, 0) of this system
is stable, i.e., all trajectories close to it remain close for all t. This fixed point is called a
centerpoint.

The matrix

A =

[
a b
c d

]

is called the system matrix of coefficients. If the determinant of A system matrix

det(A) ≡ |A| = ad− bc ,

is nonzero, there is a unique solution to the equations. For a linear system, the origin
of the phase-plane is this fixed point. If det(A) = 0 there either aren’t any solutions
or there are infinitely many. In this case have to solve the system of linear algebraic
equations

a · x+ b · y = 0

c · x+ d · y = 0 .

The solutions to the linear system differential equations are

[
x
y

]
= c1~v1e

λ1t + c2~v2e
λ2t ,

where ~v1 and ~v2 are the eigenvectors of matrix A corresponding to eigenvalues λ1 and eigenvalues/vectors

λ2 of A. The eigenvectors and eigenvalues are found by asking whether there are exists
a nonzero vector ~v such that the result A~v is a simple scalar multiple of ~v. With the
eigenvalues on the diagonal of a diagonal matrix Λ and the corresponding eigenvectors
~v forming the columns of a matrix L, we have

AL = ΛL
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If L is nonsingular3, this becomes the eigenvalue decomposition of A:

A = LΛL−1 .

The eigenvectors and values have a geometric interpretation. The length |A~v| of vector
A~v is ±λ|~v|. The multiplication of ~v by the matrix A expands or contracts vector ~v, while
a positive eigenvalue preserves its direction, a negative value reverses it. In application of
dynamic systems in the plane, the eigenvalue corresponds to the speed of response, while
the eigenvector determines the principal direction. A line in the phase-plane that is not
crossed by any trajectory is called a separatrix . Eigenvectors determine the separatrices.separatrix

The eigenvalues λ1 and λ2 of A are determined as solutions of the characteristic
equationcharacteristic

equation
det(A− λI) = det

[
a− λ b
c d− λ

]
= 0

where I is the identity matrix with ones on the diagonal and zeros elsewhere. The
eigenvalues are thus the roots of the characteristic polynomial det(A− λI)characteristic

polynomial

(a− λ)(d− λ)− bc = λ2 − (a+ d)λ+ (ad− bc) = 0 .

The constant term is equal to det(A) and the coefficient (a+d) corresponds to the trace
of A, denoted tr(A). Let A = [aij ] be an n × n matrix, the trace of A is defined to be
the sum of the diagonal entries tr(A) =

∑n
i=1 aii. The eigenvalues are then given by

λ1,2 =
1

2

(
tr(A)±

√
[tr(A)]2 − 4 det(A)

)

=
1

2

(
(a+ d)±

√
(a+ d)2 − 4(ad− bc)

)
.

Given the eigenvalues, the eigenvectors can be calculated by

~vi =
1√

1 + p2
i

[
1
pi

]

where

pi =
λi − a
b

, b 6= 0, i = 1, 2 .

The sign of [tr(A)]2 − 4 det(A) determines whether the eigenvalues λ are:

1. complex with nonzero imaginary part if [tr(A)]2 − 4 det(A) < 0

2. real and distinct if [tr(A)]2 − 4 det(A) > 0

3. real and repeated if [tr(A)]2 − 4 det(A) = 0.

3A matrix is singular if its determinant is zero. It is regular if the determinant is nonzero, and in which
case an inverse exist.
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Figure 4.7: Left: Phase portrait of the system dx/dt = −2x+y, dy/dt = x−2y. Right: Sample solutions
for x. Eigenvalues λ1 = −3, λ2 = −1. The critical point (0, 0) is called a nodal sink. It is
asymptotically stable node.

If in the first case [tr(A)]2 − 4 det(A) < 0, then the real part of the eigenvalues is
tr(A/2) ≡ (a+ d)/2, determining a

... spiral sink if tr(A) < 0

... spiral source if tr(A) > 0

... center if tr(A) = 0.

If for the second case above [(tr(A)]2−4 det(A) > 0, if det(A) < 0 we have a saddle and
for tr(A) > 0 and det(A) > 0 we have a source. In terms of the eigenvalues of matrix A
we can distinguish five cases, discussed hereafter.
Case 1: Unequal, real eigenvalues of the same sign: The general solution of (4.4)
is

[x y]T = c1~v1e
λ1t + c2~v2e

λ2t .

The eigenvalues can be either positive or negative. In Figure 4.7 the case for

A =

[
−2 1
1 −2

]

with λ1 < λ2 < 0 is shown. From the general solution we see that both variables
approach zero as time goes to infinity, regardless of the constants c1 and c2. This means
that all solutions approach the critical point at the origin as t → ∞. The eigenvectors
are in this case ~v1 = [0.71 − 0.71]T and ~v2 = [0.71 0.71]T , forming a cross through
the origin. Notice that all solutions approach the critical point tangent to ~v2, except
those solutions that start on the line through ~v1. This critical point is called a node
or nodal sink . If λ1 and λ2 are both positive and 0 < λ2 < λ1, the trajectories in the nodal sink

phase-plane have the same pattern as in Figure 4.7 but they are moving away from the
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Figure 4.8: Left: Phase portrait of the system dx/dt = x+ y, dy/dt = 4x+ y. Right: Sample solutions
for x. Eigenvalues λ1 = 3, λ2 = −1. The critical point (0, 0) is called a saddle point.

critical point. x(t) and y(t) grow exponentially in this case. The critical point is, in this
case, called nodal source.nodal source

Case 2: Unequal, real eigenvalues of the opposite sign: The general solution of
(4.4) is again

[x y]T = c1~v1e
λ1t + c2~v2e

λ2t .

In Figure 4.8 the system with matrix

A =

[
1 1
4 1

]

is illustrated. The eigenvectors for this system are ~v1 = [0.45 0.89]T and ~v2 = [−0.45 0.89]T .
The eigenvectors are again forming a cross through the origin. If a solution starts on
the line along ~v1 (which goes from the bottom left to top right corner of the plane), it
will remain there for all time and c2 = 0. The only solutions that approach the critical
point in the origin are those that start on the line determined by ~v2. For all other initial
conditions the positive exponential term in the solution will eventually dominate. The
origin is called a saddle point . The origin is also an unstable fixed point since no solutionsaddle point

will remain there.

Case 3: Equal eigenvalues: In case λ1 = λ2 = λ, we have to distinguish two cases.
Two independent eigenvectors: The general solution is

[x y]T = c1~v1e
λt + c2~v2e

λt .

In this case the ratio y/x is only dependent on ~v1, ~v2 and independent of t. The tra-
jectories generate a star-shaped pattern of the phase-plane. The fixed point is called a
proper node or star point . Figure 4.9 illustrates a system with eigenvectors ~v1 = [1 0]Tproper node

and ~v2 = [0 1]T . The node is asymptotically stable or unstable, depending on whether
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Figure 4.9: Left: Phase portrait of the system dx/dt = x, dy/dt = y. Right: Sample solutions for x.
Eigenvalue λ = 1. The critical point is called a proper node.
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Figure 4.10: Left: Phase portrait of the system dx/dt = x− y, dy/dt = x+ 3y. Right: Sample solutions
for x. Eigenvalue λ = 2. There is only one independent eigenvector. The critical point is
called an improper node.

221



4 Modelling of Cell Communication Networks

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

(a)

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time t

x

(b)

Figure 4.11: Left: Phase portrait of the system dx/dt = −0.5x + y, dy/dt = −x − 0.5y. Right: Sample
solutions for x. Eigenvalues λ1 = −0.5 + i, λ2 = −0.5 − i. Since the real part is negative
the trajectories spiral inwards.

the eigenvalue is negative or positive.
One independent eigenvector: The general solution is in this case

[x y]T = c1~v1e
λt + c2(~v1te

λt + ~v2e
λt)

where ~v1 is the one independent eigenvector and ~v2 denotes the generalised eigenvector
associated with the repeated eigenvalue. For a large t the dominant term is c2~v1te

λt,
which means that for t → ∞ all trajectories approach the origin tangent to the line
through the eigenvector. The orientation of the trajectories depends on the relative
positions of ~v1 and ~v2. Figure 4.10 illustrates one situation for a system with eigenvectors
~v1 = [−0.71 0.71]T and ~v2 = [−0.71 0.71]T . When a repeated eigenvalue has only one
independent eigenvector, then the critical point is called an improper node or degenerateimproper node

node. An improper node is asymptotically stable or unstable, depending on whether the
eigenvalues are negative or positive.

Case 4: Complex eigenvalues: In this case the eigenvalues are a± ib, where a is the
real part and b denotes the imaginary part. The critical point is called a spiral point ,spiral point

spiral sink or spiral source. Whenever a 6= 0, the trajectories are spirals. They are
directed inward or outward, depending on whether a is positive or negative. Figures
4.11 and 4.12 provides an illustration.

Case 5: Pure imaginary eigenvalues: In case a = 0 for the eigenvalues, the tra-
jectories become circles around the origin, that are traversed clockwise if b > 0 and
anticlockwise if b < 0. Figure 4.6 provides an illustration for the system dx/dt = y,
dy/dt = −x, with eigenvalues λ1,2 = ±i.

We have summarised the dynamic properties or stability of the linear system [x y]T =
A[x y]T in Table 4.1. Before we continue with study nonlinear dynamics using phase-
plane analysis, we look at a particular nonlinear autonomous system which is almost
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Figure 4.12: Left: Phase portrait of the system dx/dt = 4x − 3y, dy/dt = 3x + 4y. Right: Sample
solutions for x. Eigenvalues λ1,2 = 4 ± 3i. Since the real part is positive the trajectories
spiral outwards.

Table 4.1: Stability of the linear system [ẋ ẏ]T = A[x y]T with det(A) 6= 0.

Eigenvalues Type of Critical Point Stability
λ1 > λ2 > 0 Node Unstable
λ1 < λ2 < 0 Node Asymptotically stable
λ2 < 0 < λ1 Saddle point Unstable
λ1 = λ2 > 0 Proper or improper node Unstable
λ1 = λ2 < 0 Proper or improper node Asymptotically stable
λ1,2 = α± iβ Spiral point

α > 0 Unstable
α < 0 Asymptotically stable

λ1,2 = ±iβ Center Stable

linear around the origin:

dx

dt
= y + x− x(x2 + y2)

dy

dt
= −x+ y − y(x2 + y2) .

The only critical point of this system is the origin (0, 0). The corresponding linear system
has the system matrix

A =

[
1 1
−1 1

]
.

and eigenvalues λ1,2 = ±i, which suggests the origin is an unstable spiral point for the
linear as well as the nonlinear system. However, rather than spiralling out completely,
as the linear analysis would suggest, the system exhibits what is known as a limit cycle. limit cycle

Figure 4.13 illustrates the limit cycle behavior.
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Figure 4.13: Illustration of an autonomous nonlinear system, which is almost linear around the origin
but displays a limit cycle.

4.6 Nonlinear Dynamics

As a motivating example for nonlinear systems let us find the trajectories of the following
system with two coupled nonlinear equations:

dx

dt
= 4− 2y ,

dy

dt
= 12− 3x2 .

To find critical points we set the derivatives to zero:

4− 2y = 0 , 12− 3x2 = 0

and find that there are two critical points at (−2, 2) and (2, 2). For the trajectories we
write

dy

dx
=

12− 3x2

4− 2y
.

Separation of variables and integration provides us with the solution

4y − y2 − 12x+ x3 = c

where c is some arbitrary constant. Figure 4.14 illustrates the phase portrait.

The phase-plane analysis introduced above does work for nonlinear systems by linear-
ising a system around a point of interest. The analysis in this case applies locally. Points
of particular interest are critical- or fixed points. Let us denote such point of particular
interest in the plane as (x∗, y∗).

Linearising a nonlinear system is done in the neighborhood of the fixed points using
a Taylor expansion of f(x, y) and g(x, y). The Taylor expansion for a function of twoTaylor expansion
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Figure 4.14: Phase portrait of the nonlinear system dx/dt = 4− 2y , dy/dt = 12− 3x2.

variables f(x, y) is given by

f(x, y) = f(x∗, y∗) +
∂f

∂x

∣∣∣∣
x∗,y∗

(x− x∗) +
∂2f

∂x2

∣∣∣∣
x∗,y∗

(x− x∗)2

2!
+
∂3f

∂x3

∣∣∣∣
x∗,y∗

(x− x∗)3

3!

+
∂f

∂y

∣∣∣∣
x∗,y∗

(y − y∗) +
∂2f

∂y2

∣∣∣∣
x∗,y∗

(y − y∗)2

2!
+
∂3f

∂y3

∣∣∣∣
x∗,y∗

(y − y∗)3

3!
+ · · ·

(4.5)

If we neglect terms higher than first order the Taylor expansion is

f(x, y) ≈ f(x∗, y∗) +
∂f

∂x

∣∣∣∣
x∗,y∗

(x− x∗) +
∂f

∂y

∣∣∣∣
x∗,y∗

(y − y∗) . (4.6)

Introducing new variables u, v,

u
.
= x− x∗ , v

.
= y − y∗ ,

we can write for the expansion of (4.14),

du

dt
= au+ bv + · · · ,

dv

dt
= cu+ dv + · · · ,

(4.7)

where

a =
∂f

∂x

∣∣∣∣
x∗,y∗

, b =
∂f

∂y

∣∣∣∣
x∗,y∗

,

c =
∂g

∂x

∣∣∣∣
x∗,y∗

, d =
∂g

∂y

∣∣∣∣
x∗,y∗

.

(4.8)
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The trick is then to assume that in the neighborhood of the fixed points, the higher-order
terms in (4.7) are small enough to be neglected. If we collect the partial derivatives in
matrix form this leads us to what is called the Jacobian matrix : Jacobian matrix

J∗ =




∂f

∂x

∂f

∂y
∂g

∂x

∂g

∂y


 , (4.9)

with the partial derivatives evaluated at (x∗, y∗), treating in each case the other variable
as a constant. Therefore in the neighborhood of a fixed point, the nonlinear system
(4.14) can be approximated by the set of linear equations

[
u̇
v̇

]
=

[
a b
c d

] [
u
v

]
. (4.10)

The dynamics in the neighborhood of (x∗, y∗) are now determined by the eigenvalues of
the system matrix, as illustrated above.

For more examples, we return to the population models referred to earlier in the text.
On page 101 of Chapter 2 we considered a simple population model

dS(t)

dt
= (k+ − k−)S(t) , (2.5)

where S(t) denotes the molecular population size at time t, k+ the formation or birth
rate and k− the decay or death rate. In systems and control theory or the study of
differential equations such model is more commonly written using the following notation

dx(t)

dt
= u(t)x(t) , (4.11)

where u(t) may be considered a control input variable. Because of the product of the
state variable and input variable, u(t)x(t) , such a system is also called a bilinear system,bilinear system

and which is an example of the more general system

ẋ = φ
(
t, x(t)

)
+ u(t)g

(
t, x(t)

)
, x(t0) = x0

y(t) = h
(
t, x(t)

)
.

(4.12)

In many realistic situations u(t) may depend on x(t), which in effect leads to some
population constraints. A simple example of such a feedback control loop is the following
definition for u

u
(
x(t)

)
= a− bx(t) ,

where for a population model, a may be considered as the intrinsic growth rate such
that a/b corresponds to the maximum population level that can be reached [Ton90]. The
input-output description and the description of feedback loops is central to the control
engineering approach.
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We can extend the idea of the bilinear formulation (4.11) to two molecular species x
and y,

dx

dt
= u1(x, y)x ,

dy

dt
= u2(x, y)y , (4.13)

where the dependence on t is suppressed to simplify the notation. If we define

u1(x, y) = α− βy
u2(x, y) = γx− δ ,

we obtain the well known Lotka-Volterra model. This model has been rather useful,
certainly for educational purposes. We encountered this system in Chapter 3 (Equation
3.7, Figures 3.4 and 3.11) and will further discuss it hereafter. But first let us consider
the phase-portrait of a bilinear system with u1(x, y) = y+ y/x and u2(x, y) = x+ 3x/y:

dx

dt
= xy + y

dy

dt
= xy + 3x .

The system has two critical points, a trivial fixed point (x∗1, y
∗
1) at (0, 0) and another at

(x∗2, y
∗
2) = (−1,−3). The Jacobian matrix is

J∗ =

[
y∗1,2 x∗1,2 + 1

y∗1,2 + 3 x∗1,2

]
.

Considering first the trivial fixed point. The eigenvalues are λ1 = −
√

3, λ2 =
√

3, with
associated eigenvectors ~v1 = [−0.5 0.866]T and [0.5 0.866]T . For the nontrivial fixed
point the eigenvalues are λ1 = −3, λ2 = −1, with associated eigenvectors ~v1 = [1 0]T
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Figure 4.15: Phase portrait of the nonlinear system xy + y , dy/dt = xy + 3x, around the critical points
(0, 0) on the left and (−1,−3) on the right.
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Figure 4.16: Left: Phase portrait of the nonlinear system dx/dt = xy + y , dy/dt = xy + 3x. Right:
sample solutions.

and [0 1]T . Figure 4.15 illustrates the two phase-portraits of the system linearised around
the critical points and Figure 4.16 shows the combined phase portrait of the nonlinear
system.

What the Lotka-Volterra model is for the theoretician is the enzyme kinetic reaction
for the experimentalist. The vast majority of biochemical reactions in a cell are catalyzed
by enzymes. This type of reaction is therefore of particular interest in modelling and in
experiments. We first introduced this system on in Section 2.7 and will have a further
discussion of this reaction in Section 4.8.2. The biochemists diagrammatic representation
is

E + S
k1−⇀↽−
k2

C
k3−→ E + P

where substrate S is under the action of enzyme E turned first into an intermediate
complex C before further decomposed into a product P and the enzyme. The mass
action kinetic equations for changes in the concentrations of the substrate and complex
are

d[S]

dt
= −k1[S][E] + k2[C],

d[ES]

dt
= −(k2 + k3)[C] + k1[S][E] .

Since the enzyme is, in a sense, controlling the reaction, we may consider it as an input to
the system. Rewriting these equations, using input variable u and state variables x1 and
x2 for substrate and complex respectively, gives us the following compact representation
that emphasises an input-output representation and where state-variables and inputs
are bilinearly related:

ẋ1 = −k1x1u+ k2x2,

ẋ2 = −(k2 + k3)x2 + k1x1u .
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Figure 4.17: Time series plot of the Lotka-Volterra system for α = 2, β = 0.002, γ = 0.0018, δ = 2 and
initial conditions x(0) = 300, y(0) = 300. The solid line is for the prey population, x(t),
and the dashed line represents the predator population, y(t).

Let us continue with a closer look at the predator-prey model for two competing or
interacting populations, introduced by Lotka and Volterra:

dx

dt
= αx− βxy ,

dy

dt
= γxy − δy ,

(4.14)

where x, y ≥ 0, and α, β and δ are all positive constants. In (4.14) variable x is to
represent the prey population and y the predator population. The structure of the
Lotka-Volterra equations imply that in the absence of predators, the prey population
will grow unbounded and in the absence of any prey, the predators will be extinguished.
δ denotes the natural death rate of the predator and the term involving β describes the
death of prey as being proportional to the encounters with predators.

Figure 4.18 shows two visualisations of the dynamic behavior to the Lotka-Volterra
system. The x-isoclines is described by those points in the phase-plane for which dx/dt = isocline

0, i.e.,

f(x, y) = αx− βxy = 0

which is true for

x = 0 and y =
α

β
.

These are two lines, equal to the y-axis going through the origin and a horizontal line
at height α/β. The y-isoclines is defined in the same fashion,

g(x, y) = γxy − δy
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M-code 4.1: Matlab function to simulate the Lotka-Volterra equations.

x0 =300; y0 = 300; % Initial conditions. x: prey , y: predator

tspan = [0 15]; % Simulation time.

% ODE solver for numerical solution:

[t,z] = ode45(@LV ,tspan ,[x0 y0],dlt ,gamm ,alph ,bt);

figure , plot(t,z(:,1),t,z(: ,2)); % Plot time series.

figure , plot(z(:,1),z(: ,2)); % Trajectory in phase -plane.

figure , plot3(z(:,1),t,z(: ,2)); % Integral curve.

zlabel(’predator ’); ylabel(’time’); xlabel(’prey’);

% Subfunction for LV equations:

function dzdt = LV(t,z,dlt ,gamm ,alph ,bt)

% z(1) : prey , z(2) : predator

dzdt = [alph*z(1)-bt*z(1)*z(2);

gamm*z(1)*z(2)-dlt*z(2)];

which is true for

y = 0 and x =
δ

γ
.

These are again two perpendicular lines. There are two points of intersection between
the x-isoclines and y-isoclines. There are therefore two fixed points for the system. The
first fixed point is the origin of the plane, where x = y = 0. The second fixed point is
given by y = α/β, x = δ/γ, which is a point at which the two populations are balanced
so that there is no change to either population.

Plotting trajectories in the phase-plane, as in Figure 4.18, requires a software tool for
numerical integration (Matlab code in listing 4.1). A quick way to visualise the flow of
a two-dimensional nonlinear systems is to plot for a grid of (x, y)-values the gradient
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Figure 4.18: Phase plane (left) and integral curve (right) of the Lotka-Volterra equations, (4.14).
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Figure 4.19: Visualisation of the flow of the Lotka-Volterra equations. The horizontal second x-isocline
and vertical second y-isocline are shown as dotted lines. The fixed point lies where the
isoclines meet. The first isoclines are the axis of the plot going through the origin.

dy/dx as an arrow as shown in Figure 4.19, plotted using the few lines of Matlab code
in listing 4.2. As an exercise, you may want to explain why the trajectories in Figure
4.18 are not circles or ellipsoids?

For the Lotka-Volterra system, (4.14), the fixed points occur at x∗ = 0, y∗ = 0 and at
x∗ = δ/γ, y∗ = α/β. The constants of the system, linearised at (x∗, y∗), are

a =
∂f

∂x

∣∣∣∣
x∗,y∗

= α− βy∗ , b =
∂f

∂y

∣∣∣∣
x∗,y∗

= −βx∗ ,

c =
∂g

∂x

∣∣∣∣
x∗,y∗

= γy∗ , d =
∂g

∂y

∣∣∣∣
x∗,y∗

= γx∗ − δ .
(4.15)

For the fixed point at the origin, a = α, b = 0, c = 0, d = −δ, such that the eigenvalues
are

λ1 = α , λ2 = −δ .
Since α and δ are positive, this fixed point is a saddle point, i.e., trajectories going
towards it will drift off just before it. For the predator-prey model this means that even

M-code 4.2: Matlab function to visualise the flow of the Lotka-Volterra system.

meshgrid(linspace (0 ,3000 ,15));

dx = alph.*X - bet.*X.*Y;

dy = gamm.*X.*Y - delt.*Y;

quiver(X,Y,dx ,dy ,1.5);

xlabel(’prey’); ylabel(’predator ’);
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Figure 4.20: Left: The flow of the Lotka-Volterra system, (4.14), with parameters β = γ = 2, α = δ = 1.
Right: stable focus for a = −1, b = −1, c = 1.9, d = −1, which leads to eigenvalues
λ1 = −1 + i1.378, λ2 = −1− i1.378.

if the populations get near the extinction point, the populations will eventually grow
again. For the second fixed point, we have a = 0, b = −βδ/γ, c = γα/β, d = 0. The
eigenvalues are

λ = ±
√
−αδ .

Taking the square root of a negative number will lead to a complex number. The
eigenvalues are therefore both imaginary numbers, which implies that the predator and
prey populations oscillate around the fixed point, as can be seen well in Figure 4.19.
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Figure 4.21: Left: stable node of the linearised system, (4.10), with parameters taken from [KG95]:
a = −1.5, b = 1, c = 1, d = −1.5, leading to λ1 = −2.5, λ2 = −0.5. Right: saddle point
of the linearised system, (4.10), for a = 1, b = 1, c = 1, d = −1, leading to eigenvalues
λ1 = −

√
2, λ2 =

√
2.
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This section could only serve as a rudimentary introduction to nonlinear modelling.
Other more comprehensive books at introductory level are [Str00a], and [JS07]. The
book by Kaplan and Glass [KG95] is particularly suitable for biologists. Advanced texts
are [Wig03] and [GH83]. The control engineering perspective of nonlinear systems is
described in [Nv90], [Isi89], and [Sas99], all of which are advanced texts. The standard
text on mathematical biology by Murray [Mur02] is an excellent source of examples for
nonlinear modelling, applied to biological systems.

4.7 Receptor Modelling

In this section we pick up the thread of Section 1.5 and discuss in greater detail a
mathematical model of cell surface receptor binding. A comprehensive study of receptors,
models for binding, trafficking and signaling was first provided in [LL93] on which we
draw heavily. Receptors are most commonly found at the cell surface, where extracellular
signaling molecules, the ligand, can bind to them. Signaling proteins include cytokineses,
insulin, hormones or growth factors, which could for example be transported through
the blood stream. The binding process leads to a transmission of the signal into the cell
where it can affect various processes, including the transcription of genes, which in turn
can control various important cell functions.

We begin with a basic model for cell surface receptor binding, using the reversible
bimolecular reaction

L+R
ka−⇀↽−
kd

C

where R and L denote the free receptor of a cell and ligand molecules, respectively and
C denotes the LR complex, i.e., receptors that are “occupied”. ka is the rate constant at
which ligands bind to receptors and kd is the dissociation constant. We refer to receptor
and ligand as monovalent to assume that at any time only one ligand molecule and one monovalent binding

receptor form a complex. For a single cell, the kinetic model that describes temporal
changes in the number of LR complexes is then

dC

dt
= kaR[L]− kdC , (4.16)

where [L] gives the free ligand concentration in moles per liter of the medium; R is the
number of free receptor per cell (#/cell), C the number of receptor-ligand complexes
per cell, kd and ka are in sec−1 and M−1sec−1, respectively. The number of receptors
or complexes per cell can be converted into a concentration (moles per volume solution)
or density (#/cell surface area) if necessary. To check the units of (4.16) we have

1

cell · sec
=

1

M · sec
· 1

cell
·M− 1

sec
· 1

cell
.

Equation (4.16) has three variables, C, L, and R. A reasonable assumption to simplify
the analysis is that the total number of surface receptors, denoted RT , is constant:

RT = R+ C , (4.17)
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Figure 4.22: The figure illustrate the three most common kinds of cell surface receptors and mechanisms
for their activation.

leading to an equation in two variables:

dC

dt
= ka(RT − C)[L]− kdC . (4.18)

The ligand concentration is determined by the initial concentration minus the ligands
bound in complexes, L = L0 − C. Furthermore, in most experimental set-ups we are
going to have n cells in the medium to which also the concentration of the ligand refers.
This means that we ought to multiply C (given in #/cell) by n. Furthermore, since C
is a count per cell, we turn the concentration of L, given in mol/liter, into a count of
numbers by multiplying with NA the Avogadro constant (#/mol):

[L] = L0 −
(
n

NA

)
C , (4.19)

where we write for the initial concentration of L, [L](t = 0) = L0. The brackets are
therefore left to simplify the notation. Inserting the two conservation assumptions (4.17)
and (4.19) into (4.16) gives us a single differential equation to describe the receptor-ligand
binding process:

dC

dt
= ka(RT − C)

(
L0 −

n

NA
C

)
− kdC (4.20)

= kaRTL0 − kaRT
n

NA
C − kaL0C + ka

n

NA
C2 − kdC .

Rewriting this equation we recognise it as an inhomogeneous second-order differential
equation:

dC

dt
+

(
kaRT

n

NA
+ kaL0 + kd

)
C − ka

n

NA
C2 = kaRTL0 . (4.21)
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4.7.1 Negligible ligand depletion

In order to obtain a simpler differential equation than (4.21) we make further assump-
tions. If we assume that ligand depletion can be neglected and therefore replace L in
(4.18) with L0 the differential equation becomes dependent on only one variable:

dC

dt
= ka(RT − C)L0 − kdC . (4.22)

If we imagine there are initially no ligands bound, the assumption of negligible ligand
depletion implies that the initial concentration is much larger than the ligand bound in
complexes, i.e., (n/NA)C � L0. Alternatively we could have replaced L0− (n/NA)C by
L0 in (4.20) to arrive at (4.22).

Let us now determine the solution to differential equation (4.22), by recognising it as
a linear, inhomogeneous, first-order ordinary differential equation4

dC

dt
+ (kaL0 + kd)︸ ︷︷ ︸

P (t)

C = kaRTL0︸ ︷︷ ︸
Q(t)

. (4.23)

Such equations are solved by defining an integrating factor integrating factor

ρ(t) = e
∫
P (t)dt

= exp

{∫
(kaL0 + kd) dt

}

= exp {(kaL0 + kd)t} .

The next step is to multiply both sides of (4.23) with ρ(t)

exp {(kaL0 + kd)t}
dC

dt
+exp {(kaL0 + kd)t} (kaL0 +kd)C = exp {(kaL0 + kd)t} kaRTL0 .

We notice that the left-hand side is the derivative of the product C(t) · ρ(t), which is in
fact the whole idea behind the use of an integrating factor. We can thus write

ρ(t) · C(t) =

∫
ρ(t) ·Q(t)dt+ c ,

where c is some arbitrary constant. Insert the expressions for ρ(t) and Q(t),

ρ(t) · C(t) =

∫
exp {(kaL0 + kd)t} · kaRTL0 dt+ c

= kaRTL0

∫ t

0
e(kaL0+kd)t dt+ c

=
kaRTL0

kaL0 + kd

(
e(kaL0+kd)t − 1

)
+ c ,

4This is an ordinary differential equation since there is only a single independent variable, t. The
equation is linear since no terms such as C2 appear and it is first-order since only the first derivative
dC/dt appears. The homogenous version of (4.22) is obtained for kaRTL0 = 0. This special case
would correspond to the monomolecular reaction (2.2) on page 98.
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leading to

C(t) =
kaRTL0

kaL0 + kd
− kaRTL0

kaL0 + kd
e−(kaL0+kd)t + c · e−(kaL0+kd)t , (4.24)

where 1/ρ(t) = exp{−(kaL0 + kd)t}. From the initial condition, C(t = 0) = C0, we can
determine the constant

C0 =
kaRTL0

kaL0 + kd
− kaRTL0

kaL0 + kd
+ c ,

i.e., c = C0, which inserted into (4.24), gives us the solution

C(t) = C0 exp {−(kaL0 + kd)t}+
kaRTL0

kaL0 + kd
(1− exp {−(kaL0 + kd)t}) . (4.25)

4.7.2 Equilibrium and steady state

At equilibrium the reaction rates are equalequilibrium

ka[L]R = kdC ,

where the dissociation constant is defined (cf. page 79) asdissociation constant

Kd =
R[L]

C
=
kd
ka

,

where here we have for R = RT − C and [L](t = 0) = L0, from our assumptions (4.17)
and (4.19) above:

Kd =
(RT − C)L0

C
,

with unit M (mol per liter). Let us denote by Ceq the number of ligand-receptor com-
plexes at equilibrium,

Ceq =
RTL0

Kd + L0
. (4.26)

At steady state, dC/dt = 0,steady state

0 = ka(RT − C)L0 − kdC ,

leading to

C =
kaRTL0

kd + kaL0
=

RTL0

Kd + L0
.

The steady state value is therefore in this case identical to the number of receptor-ligand
complexes at equilibrium.
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4.7.3 Dimensionless representation

To visualise the solution (4.25) with a plot, we would have to specify the rate constants,
the initial ligand concentration, the total number of receptors and the initial number of
receptor-ligand complexes. The appearance of the plot may therefore vary considerably
for different values of these parameters. This can be avoided by not looking at C(t) but
plotting the dimensionless fraction of occupied receptors,

y =
C

RT
, (4.27)

where 0 ≤ y ≤ 1. For y = 0 all receptors are free (no complexes), and for y = 1 all
receptors are occupied. Let us furthermore introduce a scaled time, τ ,

τ = kdt . (4.28)

Rewriting (4.22) first by dividing both sides by RT

d

dt

(
C

RT

)
= ka

(
1− C

RT

)
L0 − kd

C

RT
,

dy

dt
= ka(1− y)L0 − kdy ,

next taking account of (4.28) gives

dy

dτ
=
ka
kd

(1− y)L0 − y ,

=
L0

Kd
(1− y)− y . (4.29)

For the fractional occupancy of receptors, the transient changes are therefore described
by the following solution of (4.29)

y(τ) = y0 exp

{
−
(

1 +
L0

Kd

)
τ

}
+

L0/Kd

1 + (L0/Kd)

(
1− exp

{
−
(

1 +
L0

Kd

)
τ

})
, (4.30)

and the equilibrium value is determined by the ratio L0/Kd:

yeq =
L0/Kd

1 + (L0/Kd)
. (4.31)

See Figure 4.23 for an illustration of the transient binding of ligands to cell receptors.
Note that yeq = Ceq/RT and yeq = 0.5 when L0/Kd = 1, i.e., half the receptors are
bound by ligands at equilibrium when the ligand concentration is equal to the value of
Kd.
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Figure 4.23: Left: Transient binding of ligands to cell receptors, where a bimolecular reaction is used as
a model, with ligand depletion assumed to be negligible and the total number of receptors
remaining unchanged. At t = 0, it is assumed that all receptors are free. Right: The
fractional occupancy of receptors at equilibrium.

4.7.4 Half-Time

Taking a break before we continue with our model of ligand binding, we complete the
previous study by looking at the half-time of an experiment. Let us assume an experi- half-time

ment with initial condition y0 = C0/RT = 0, i.e., initially no ligands are bound to the
receptors.

One definition for a half-time, τh, is for the transient solution y(τ) to reach half of the
change from y0 = 0 to yeq, y = 0.5yeq:

1

2
yeq = yeq

[
1− exp

{
−
(

1 +
L0

Kd

)
τh

}]
, (4.32)

1

2
= − exp

{
−
(

1 +
L0

Kd

)
τh

}
, (4.33)

−
(

1 +
L0

Kd

)
τh = ln

1

2
, (4.34)

such that

τh =
− ln 1/2

1 + L0/Kd
=

ln 2

1 + L0/Kd
≈ 0.69

1 + L0/Kd
. (4.35)

This half time is shown in the right-hand plot of Figure 4.23.

Alternatively, we may ask for the left-hand plot of y(τ) in Figure 4.23 for when y(τh) =
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1/2. Considering again an initial value y(t = 0) = 0,

1

2
= yeq

[
1− exp

{
−
(

1 +
L0

Kd

)
τh

}]
,

1

2yeq
= 1− exp

{
−
(

1 +
L0

Kd

)
τh

}
,

exp

{
−
(

1 +
L0

Kd

)
τh

}
= −

(
1− 2yeq

2yeq

)
,

−
(

1 +
L0

Kd

)
τh = ln

(
2yeq − 1

2yeq

)
.

Since it must be possible for half of the receptors to be occupied, yeq ≥ 0.5.

(
1 +

L0

Kd

)
τh = − ln

(
2yeq − 1

2yeq

)
= ln

(
2yeq

2yeq − 1

)
,

τh =

(
ln

2yeq

2yeq − 1

)
·
(

1 +
L0

Kd

)−1

=
ln[2yeq/(2yeq − 1)]

1 + L0/Kd
.

4.7.5 Stimulus-Response analysis

The previous study of receptor-ligand binding, based on equation (4.22), assumed that
the ligand concentration is more or less constant. The solution (4.25), respectively (4.30),
can be thus be interpreted as the response to a step-change in the ligand concentration.
We now return to equation (4.18) and consider different kinds of stimuli.

dC

dt
= ka(RT − C)[L]− kdC (4.18)

= kaRT [L]− kaC[L]− kdC ,

where both C and the ligand concentration [L](t) are a function of time. A check of the
units is quickly done for the last equation

#

cell · sec
=

1

M · sec
· #

cell
·M− 1

M · sec
· 1

cell
·M− 1

sec
· #

cell
.

To investigate the response in receptor binding to different forms of ligand stimulation
we again use the dimensionless variable y = C/RT , which represents the fraction of
occupied receptors

dy

dt
= ka[L]− kay[L]− kdy .

Let us further scale time by introducing τ = t ·kd, which means that the right-hand side
of the above equation is divided by kd

dy

dτ
=
ka
kd

[L]− ka
kd
y[L]− y .
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Figure 4.24: Left: Downward step-change stimulus x(τ) for different parameter values of γ; α = 2,
β = 2.5. Right: Positive step.

For the reversible bimolecular reaction the equilibrium constant and dissociation con-
stants are defined as (cf. page 79)

Keq =
ka
kd

, Kd =
kd
ka

,

such that we have

dy

dτ
=

1

Kd
[L]− 1

Kd
y[L]− y . (4.36)

In order to make this equation more appealing for the eye, we hereafter use x to denote
the stimulus L and replace the equilibrium constant by θ:

dy

dτ
= θx− θxy − y . (4.37)

This then is a nonlinear ordinary differential equations with one parameter θ and two
temporal variables x(t) and y(t). We begin with a downward step-change

x(τ) =
α

1 + exp
{
τ−β
γ

} , (4.38)

where the parameters

α : determines the initial height,

β : defines the turning point of the curve,

γ : determines sharpness of the transition.

For γ → 0 we obtain the Heaviside step-function as illustrated in Figure 4.24. In
Figure 4.25, on the left, the solution of (4.37) is shown for three different ratios of
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Figure 4.25: Left: Response to downward step-changes for initial condition y = C/RT = 0.5 and different
values for L0/Kd; α = 2, β = 2.5 and γ = 0.2. Right: Response to a downward step with
the slope of the change, γ, changing; L0/Kd = 10 and α and β as before.

L0/Kd, α = 2, β = 2.5 and γ = 0.2. The right-hand plot of Figure 4.25 shows the
response to a downward step with the slop of the change, γ, changing; L0/Kd = 10 and
α and β as before. The inverse of the “downward” or “negative” step, is the function

x(τ) =
α

1 + exp
{
−β
γ

} − α

1 + exp
{
τ−β
γ

} .

The response pattern to this stimulus are shown in Figure 4.26.
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Figure 4.26: Left: Response to downward step-changes for initial condition y = C/RT = 0.5 and different
values for L0/Kd; α = 2, β = 2.5 and γ = 0.2. Right: Response to a downward step with
the slope of the change, γ, changing; L0/Kd = 10 and α and β as before.
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Figure 4.27: Impulse-like stimulus x(τ), α = 2, β = 2.5 for different width parameter.
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Figure 4.28: Left: Response to impulse stimulus for initial condition y = C/RT = 0.5 and different
values for L0/Kd; α = 2, β = 2.5 and γ = 0.2. Right: Response to an impulse with width,
γ, changing; L0/Kd = 10 and α and β as before.

Next we consider an ‘impulse’-like function, which we represent by a gaussian function

x(τ) =
α

γ
· exp

{
−(τ − β)2

γ2

}
. (4.39)

The pre-factor α/γ is chosen in this way as to ensure the integral of the right-hand side
(i.e., the intensity) is constant. For α = 2, β = 2.5 and changing width, γ, the function
is shown in Figure 4.27 and the response pattern in Figure 4.28.
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4.7.6 Conclusions

For a full understanding of the dynamics of a system it is necessary to conduct a series
stimulus-response experiments. For most experiments an initial concentration of ligands
is depleted and it is not possible to control the exact shape of the stimulus. Here we
have considered ‘typical’ input stimuli that may occur in a system.

We can easily extend the model of extracellular ligands binding to receptors, as dis-
cussed above, to intracellular signaling. A common mechanism for receptor regulated
signalling is dimerisation, a ligand induced monomer-to-dimer transition. As a monomer dimerisation

a single receptor is inactive, dimerisation leads to an activation and intracellular auto-
phosphorylation of the signaling domain as illustrated in Figure 4.29.

response

︸ ︷︷ ︸

dimerization
P
P

P
P

dimerization

stimulus growth factor, cytokines, insulin

sensory domain of receptors

transmembrane domain

signaling domain

autophosphorylation

Figure 4.29: Example of a common mechanism for receptor regulated signalling. Dimerisation is a lig-
and induced monomer-to-dimer transition. As a monomer a single receptor is inactive,
dimerisation leads to an activation and intracellular autophosphorylation of the signaling
domain.

Let us denote by S̃ the non-phosphorylated form of a molecular species or substrate
S. The model for a signaling step suggested here is a phosphorylation

S̃i + Si−1
kai−−⇀↽−−
kdi

Si

where analog to (4.16)
d[Si]

dt
= kai[S̃i][Si−1]− kdi[Si] .

We assume the total concentration of kinase Si is constant

[ST i]
.
= [S̃i] + [Si] ,

which inserted into the previous equation gives

d[Si]

dt
= kai[Si−1]([ST i]− [Si])− kdi[Si] ,
= kai[ST i][Si−1]− kai[Si−1][Si]− kdi[Si] .
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In support of our eyesight we introduce xi to denote the phosphorylation of Si and write
ci
.
= [ST i], αi

.
= kaici, βi

.
= kdi, leading to

dxi
dt

= αixi−1 −
1

ci
xi−1xi − βixi ,

dxi
dt

= αixi−1

(
1− xi

αici

)
− βixi . (4.40)

This last equation is the basis for an interesting study of properties of a signaling path-
way, first introduced by Heinrich et al. [HNR02] and which we are going to discuss in
greater detail in Section 4.8.5.

4.8 Dynamic Modelling of Biochemical Networks

Pathways are networks of biochemical reactions, most of which are facilitated by highly
specialised enzymes. The enzyme kinetic reaction can therefore serve as a template to
construct more complex pathway models. In the present section we therefore first look at
the equations that represent an enzyme kinetic reaction and hint at the use in dynamic
modelling of signal transduction pathways.

We are going to consider a compartment or region of the cell with volume V for
which we assume that diffusion is fast compared to the time scales of the reactions and
hence concentrations within this volume are homogenous. In many cases it is possible to
decompose more complex reaction networks into a set of uni- or monomolecular (first-
order) reactions and bimolecular (second order reactions), depicted

S
km−−→ · · · respectively S + E

kb−→ · · · ,

where the arrow denotes a conversion according to the law of mass action. Concentra-
tions are specified in mol per liter (M). When it is clear from the context, the square
brackets which denote concentrations, are often left away to have a simpler notation.
The letters for the variables are chosen arbitrarily and depending on the context. The
rate of the reaction or reaction rate v is, in case of the monomolecular reaction definedreaction rate

by the product km and [S] and in case of the bimolecular reaction defined by the product
of kb with [S] and [E]:

S
km−−→ · · · where v = km[S]

S + E
kb−→ · · · where v = kb[S][E]

The linear (monomolecular reaction), respectively bilinear relationship (bimolecular re-
action) of the reaction rate on the concentrations is in essence the law of mass action.
Note that the units of the rate constant k is per second (sec−1) for the monomolecular
reaction and in moles per second (M−1sec−1) for bimolecular reactions.
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One approach to model more complex signal transduction pathways is to model each
step of the pathway on a template of an enzyme kinetic reaction (see also Section 2.7)

E + S
k2−⇀↽−
k1

ES
k3−→ P + E (4.41)

with k1 denoting the rate at which the complex ES is formed; k2 at which ES dissociates
into enzyme E and substrate S; k3, the rate at which ES dissociates into product P and
E. The reaction diagram (4.41) can be decomposed into a set of mono- and bi-molecular
reactions

E + S
k1−→ ES , v1 = k1[E][S]

ES
k2−→ E + S , v2 = k2[ES]

ES
k3−→ P + E , v3 = k3[ES]

The ordinary differential equation model is directly derived from these reactions

d[E]

dt
= −k1[E][S] + k2[ES] + k3[ES]

d[S]

dt
= −k1[E][S] + k2[ES]

d[ES]

dt
= k1[E][S]− k2[ES]− k3[ES]

d[P ]

dt
= k3[ES] .





(4.42)

Figure 4.30 gives a graphical representation of these equations. If these graphical rep-
resentation have a one-to-one mapping to the equations, they are an important commu-
nication tool in interdisciplinary collaborations. Biologists naturally draw cartoons to
represent the relationship between variables in a pathway. There is however no standard
about the meaning of symbols and it is usually not obvious how to translate this into
equations.

Using the rate of reactions, an alternative compact representation of (4.42) is

d[E]

dt
= −v1 + v2 + v3

d[S]

dt
= −v1 + v2

d[ES]

dt
= v1 − v2 − v3

d[P ]

dt
= v3 .





(4.43)

The enzyme is considered a catalyst, which facilitates the reaction without loss, i.e., the
total enzyme concentration, i.e. the sum of free enzyme [E] and enzyme in the complex
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E
enzyme

S
substrate

ES

complex
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product

k1 k1k2k2

k3

k3

Figure 4.30: Graphical representation of the enzyme kinetic reaction. More complex signal transduction
pathways can be constructed using this template.

[ES], is constant. This is also apparent from adding the equations for ˙[E] and ˙[ES]:

˙[E] + ˙[ES] = 0 which implies [E](t) + [ES](t) = c1 .

Assuming there is initially no complex, [ES](0) = 0, the constant equals the initial
enzyme concentration c1 = [E](0). Inserting [E](t) = [E](0)− [ES](t) into the equation
for substrate [S], and complex [ES], the system of ODEs reduces to two equations:

˙[S] = −k1[E](0)[S] + (k1[S] + k2)[ES] (substrate)

˙[ES] = k1[E](0)[S]− (k1[S] + k2 + k3)[ES] (complex)

with initial conditions [S](0) and [ES](0) = 0.
The structure of the equations (i.e., the signs, the number of terms, and the variables

involved) are obtained as a direct translation of the biologist’s knowledge of a pathway.
This knowledge is usually not firm and the purpose of modelling is not only to fit
experimental data to an assumed model, but to identify an appropriate model structure,
validating or updating the knowledge we have of the proteins in a pathway and how
they interact. To decide whether a model structure is realistic, a simulation could reveal
whether the concentration profiles match experimental experience. For a simulation we
do however need to know the values of the parameters. Ideally, we would like to derive
some general properties of the system, without knowing the exact parameter values.
For the set of equations (4.42) this can be done easily by looking at the equations. We
know that the enzyme [E] turns the substrate [S] into the product [P ] and thus we would
expect [P ] to increase steadily while [S] decreases. The last equation ˙[P ] = k3[ES] makes
the product increase so long as [ES] is positive. Since we deal with concentrations, all
xi can only be positive. Looking at the equation for the substrate, [S] will decrease so
long as the right-hand side is negative, i.e., k1[E][S] > k2[ES]. Thus from any initial
condition [E], [S], and [ES] would adjust themselves steadily until k1[E][S] > k2[ES]
and from then on [S] would decrease steadily.
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ATP kinase ADP

Protein
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ion

Protein-P

phosphatase

Figure 4.31: A common means of signal transduction is through sequential phosphorylation and dephos-
phorylation. Phosphorylation is facilitated by means of a kinase and dephosphorylation is
realised by a phosphatase. The phosphorylated state is denoted by adding -P to the name
of the protein. More complex pathway diagrams can be built by connecting these basic
components into cascades and networks.

Symbolically, we can summarise the enzyme kinetic reaction model (2.137), (4.41) as
follows:

S
E⇒ P

We read this as “the conversion of S into P , facilitated (or catalyzed) by E”. For ex-
ample, signal transduction pathways are commonly considered as a series or cascade of
modules, each of which can be modelled using the enzyme kinetic reaction as a tem-
plate. The signal in these pathways is transmitted through facilitated phosphorylation
of proteins referred to as ‘kinases’:

1. P3
P4⇒ P ∗3

2. P2
P ∗3⇒ P ∗2

P ∗3⇒ P ∗∗2

3. P1
P ∗∗2⇒ P ∗1

P ∗∗2⇒ P ∗∗1

where the ∗ and ∗∗ denote phosphorylation and double phosphorylation, respectively.
Here P4 facilitates the phosphorylation of P3 and so forth. More generally we use the
∗ to denote an activation, which can but must not be achieved by phosphorylation. A
phosphorylation, e.g. of MEK, is often also denoted by adding -P to the name of the pro-
tein, MEK-P, or ERK-PP, for phosphorylation and doublephosphorylation, respectively.
Figure 4.31 shows another common way to illustrate signaling steps in diagrams.

4.8.1 Simulation example

As an illustration, we here describe the simulation of the enzyme-kinetic reaction (4.42).
The four differential equations of (4.42) are an example for the mass action representation
(1.30) consisting of N ordinary differential rate equations

d

dt
[Si] =

M∑

µ=1

νµikµ

Lµ∏

j=1

[Sp(µj)]
lµj i = 1, 2, . . . , N (4.44)

where the kµ’s are rate constants and νµ denotes the change in molecules of Si resulting
from a single Rµ reaction. For more complex reaction networks one first has to divide
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reversible reactions up into basic reaction channels

Rµ : lµ1Sp(µ1) + lµ2Sp(µ2) + · · ·+ lµLµSp(µLµ)
kµ−→ · · ·

where Lµ is the number of reactant species in channel Rµ, lµj is the stoichiometric

coefficient of reactant species Sp(µj), Kµ =
∑Lµ

j=1 lµj denotes the molecularity of reaction
channel Rµ, and the index p(µj) selects those Si participating in Rµ. For the enzyme-
kinetic reaction there are M = 3 reaction channels

R1 : E + S
k1−→ ES (bimolecular reaction)

R2 : ES
k2−→ E + S (monomolecular reaction)

R3 : ES
k3−→ E + P (monomolecular reaction)

For i = 1, . . . , N = 4, we translate the names ‘Enzyme’, ‘Substrate’, ‘Enzyme/Substrate
complex’, and ‘Product’ into the notation of Chapter 2:

S1
.
= E S2

.
= S , S3

.
= ES , S4

.
= P .

Subsequently, we have the matrix ν = [νµi]

ν11 = −1 , ν12 = −1 , ν13 = +1 , ν14 = 0

ν21 = +1 , ν22 = +1 , ν23 = −1 , ν24 = 0

ν31 = +1 , ν32 = 0 , ν33 = −1 , ν34 = 1

The indices for participating species are collected in terms of vectors pµ

p1 = (1, 2) , p2 = 3 , p3 = 3

Similar, to facilitate the software implementation of the equations, the stoichiometry is
defined by

l1 = (1, 1) , l2 = 1 , l3 = 1

such that the molecularity Kµ =
∑Lµ

j=1 lµj is encoded as follows

L1 = 2 , L2 = 1 , L3 = 1

K1 = 2 , K2 = 1 , K3 = 1 .

This leads us to a representation of the enzyme-kinetic reaction (4.41) in the form of
(4.44)

dS1

dt
= ν11k1S

1
1S

1
2 + ν21k2S

1
3 + ν31k3S

1
3

dS2

dt
= ν12k1S

1
1S

1
2 + ν22k2S

1
3 + ν32k3S

1
3

dS3

dt
= ν13k1S

1
1S

1
2 + ν23k2S

1
3 + ν33k3S

1
3

dS4

dt
= ν14k1S

1
1S

1
2 + ν24k2S

1
3 + ν34k3S

1
3
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M-code 4.3: Matlab code to simulate an enzyme-kinetic reaction as an example of the mass action
model. The solutions of the differential equations are split into two parts, which are shown
in Figure 4.32.

S0 = [0.5; 1; 0; 0]; % initial concentrations (nM)

Nu = [-1 1 1;-1 1 0;1 -1 -1;0 0 1]; % stoichiometric matrix

L = -D.*(D<0);

k = 60*[10 2 0.02]; % rate constants

M1s = ones(size(k));

V = @(t,S) Nu*(k.*prod(S(:,M1s).^L)).’; % rates dS/dt

sol = ode15s(V, [0 10], S0); % solution over t = 10 min

Si = deval(sol ,ti); plot (60*ti ,Si); % inner solution

So = deval(sol ,to); plot(to ,So); % outer solution

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

Time (sec)

C
o
n
ce
n
tr
at
io
n
(n
M
)

Enzyme
Substrate
Complex
Product

(a)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Time (min)

C
o
n
ce
n
tr
at
io
n
(n
M
)

Enzyme
Substrate
Complex
Product

(b)

Figure 4.32: Temporal evolution of substrate, enzyme, complex and product for the enzyme kinetic
reaction. The plot on figure (a) shows the inner solution, the plot on figure (b) the outer
solution.

The Matlab listing 4.3 computes the inner and outer solution of (4.44) for the enzyme
kinetic reaction plotted in Figure 4.32. For most enzyme kinetic reactions, k1 is usually
magnitudes larger than k2, which means that there is initially a rapid drop in the enzyme
and substrate concentrations. It is for this reason that we have split the solution into an
early phase or inner solution and a later phase, called outer solution. For most practical
cases, it is very difficult to take measurements at very short time intervals. See [Rub75]
for a comprehensive discussion.

4.8.2 Michaelis-Menten modelling

Phosphorylation steps in signaling cascades are enzyme kinetic reactions, the kinase
facilitating the phosphorylation of a substrate. However, even for the relatively simple
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system of an enzyme kinetic reaction

E + S ←→ ES → E + P

it is already rather difficult to obtain an analytical solution5 to the set of differential
equations (4.43). Furthermore, not all variables may be observable, i.e., measurable,
or identifiable from experimental data. Here we are going to discuss commonly used
assumptions and simplifications.

Above we realised that the total enzyme is constant, [E] + [ES] = c1. Ignoring
degradation and reconstitution of the enzyme, the constant can be evaluated from the
initial conditions:

[E](t) + [ES](t) = [E](0) + [ES](0) . (4.45)

Using (4.45) to eliminate [E], we obtain

˙[S] = −k1

(
[E](0) + [ES](0)− [ES]

)
[S] + k2[ES] (4.46)

˙[ES] = k1

(
[E](0) + [ES](0)− [ES]

)
[S]− (k2 + k3)[ES] . (4.47)

which, together with initial conditions [S](0) and [ES](0) can be numerically solved.
The solution for [P ] can be derived easily from the solution of [ES]. The solution of [E]
is given by (4.45).

From our discussion in the previous section, we know that the substrate concentration
[S] steadily decreases. However, if it is the case that the available amount of substrate
is relatively large, i.e., we might consider it as unchanged for a suitable period of time,
we would have [S](t) = [S](0), so that (4.46) is not required. For this steady state
assumption (w.r.t. [S]), we are left with only (4.47)

˙[ES] = k1

(
[E](0) + [ES](0)− [ES](t)

)
[S](0)− (k2 + k3)[ES](t) . (4.48)

Denoting the steady state of [ES] by the constant ˜[ES], and inserting this into (4.48)

k1

(
[E](0) + [ES](0)− ˜[ES]

)
[S](0)− (k2 + k3) ˜[ES] = 0 ,

from which we obtain an expression for ˜[ES]

˜[ES] =

(
[E](0) + [ES](0)

)
[S](0)

KM + [S](0)
,

where

KM =
k2 + k3

k1
(4.49)

is called the Michaelis- or Michaelis-Menten constant. Denoting the deviation of the
complex from its steady state by [ES]′

[ES]′ = [ES](t)− ˜[ES]

5Schnell [SM97] describes a closed form solution employing the omega function.
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and substituting this expression into (4.48)

[ES](t) = [ES]′(t) + ˜[ES] , (4.50)

and
d[ES]

dt
=
d[ES]′

dt
.

It follows
d[ES]′

dt
= −λ[ES]′ where λ = k1[S](0) + k2 + k3 ,

the solution of which is
[ES]′(t) = c · e−λt ,

where c is a constant we obtain from initial conditions. From (4.50)

[ES](t) = c · e−λt + ˜[ES] .

The initial condition for [ES] gives us then an expression for the constant c:

[ES](0) = c+ ˜[ES] , or c = [ES](0)− ˜[ES] ,

leading to a solution for the temporal evolution of the complex concentration

[ES](t) = ([ES](0)− ˜[ES]) · e−λt + ˜[ES] . (4.51)

In conclusion, if substrate [S] can be considered constant, then the complex concentra-
tion [ES](t) approaches asymptotically the steady state ˜[ES], regardless of its initial
conditions.

If we therefore let ˙[ES] ≈ 0, this quasi steady-state assumption (w.r.t. [ES]) applied quasi steady-state

to (4.47), gives us the following expression

[ES](t) =
(E[0] + [ES](0)) [S](t)

[S](t) +KM
.

Substituting this into (4.46) gives an expression that forms the basis for many experi-
mental textbook settings:

[Ṡ] = −k3 (E[0] + [ES](0)) [S](t)

[S](t) +KM

The value V = | ˙[S]| is called the (initial) velocity of the reaction. Assuming [ES](0) = 0,
the equation above is commonly written as

V =
k3[E](0)[S]

KM + [S]
.

Because ∂V/∂[S] > 0, the reaction velocity is an increasing function of the substrate
concentration. The maximum value of V , i.e., the maximum rate by which a product
can be formed, is approached for very large values of [S]

Vmax = lim
[S]→∞

V = k3[E](0)
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and is called the limiting rate. Dividing this maximum rate by the enzyme concentration limiting rate

is called the turnover number . Typical turnover numbers are 1000 substrate molecules
processed per second per enzyme molecule [AJL+02].

If the assumptions made above are realistic, the equation for V can be written as
follows

V =
Vmax · [S]

KM + [S]
. (4.52)

The Michaelis-Menten constant KM gives the initial substrate concentration at which
the reaction velocity is half maximal (since for [S](0) = KM substituted above gives
V = Vmax/2). KM is therefore an approximate measure of substrate affinity for the
enzyme. A low KM value means that the enzyme reaches its maximum catalytic rate at
a low substrate concentration, which generally indices a tighter substrate binding.

Since V can be measured as a function of [S](0), equation (4.52) allows us to estimate
Vmax and KM from curve fitting. To this end, we rearrange (4.52)

1

V
=

1

Vmax

(
1 +

Km

[S]

)
.

This represents a straight line with slope KM/Vmax and intercept 1/Vmax. Plotting values
of 1/V against 1/[S](0) is referred to the Lineweaver-Burk plot.

4.8.3 Multinomial systems

In our discussion of stochastic modeling and simulation, equation (1.30) represented
GMA models. The general structure of these differential equations is of the form6

ẋi =
n∑

k=1

θik

n∏

j=1

x
lijk
j . (4.53)

Including m independent variables, we write (see also page 94)

ẋi =
n+m∑

k=1

θik

n+m∏

j=1

x
lijk
j . (4.54)

The mathematical structure was introduced by M.Peschel and W.Mende and is referred
to as multinomial systems. Applied to biochemical reaction networks, these equations
are the generalised mass action models (1.30). The set of equations for the enzyme
kinetic reaction (4.41) is an example for a GMA system. We obtain the matrix of rate
coefficients

[θik] =




−k1 k2 k3 0
−k1 k2 0 0
k1 −k2 −k3 0
0 0 k3 0




6Dealing with differential equations we use n not as the state-vector but as an integer and limit to
sums. Similar, rather than referring to molecular species S we denote all variables with x, a notation
that is most frequently used in systems theory.
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and the set of matrices Li = [ljk]i for the kinetic orders ljk in equation i:

L1 =




1 0 0 0
1 0 0 0
0 1 1 0
0 0 0 0


 L2 =




1 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0


 L3 =




1 0 0 0
1 0 0 0
0 1 1 0
0 0 0 0


 L4 =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0




While the class of models, which is defined by (4.54) seems very general and it may
seem difficult to conduct a formal analysis of these equations without turning to numer-
ical solutions, we ought to remember that the values xi cannot be negative and that
although the coefficients can be positive or negative, which sign applies is predefined by
the model structure or the reaction diagram respectively.

The ability to derive general properties of the dynamic behavior of a system, independ-
ent of specific parameter values, is the most attractive aspect of a formal mathematical
analysis. If we consider the sparse data sets we obtain from experiments, such analysis
would benefit parameter estimation and experimental design. If we are able to establish
an order relationship between parameters, e.g. “k1 � k3”, this would very useful in
guiding parameter estimation, or providing confidence in using parameter values from
literature. Due to experimental uncertainties, absolute values have little value, and an
analysis in terms of basic temporal profiles (e.g. “x1 decays exponentially”, “x2 peaks
before [P ]”, “x1 is pulled down”, “x2 is delayed”) is at the heart of the biologists reas-
oning.

An example for a model of the ERK pathway is the following set of equations:

ẋ1 = −k1x1x2 + k2x3 − k10x1x12 + k11x13 + k6x7 + k14x14

ẋ2 = −k1x1x2 + k2x3

ẋ3 = k1x1x2 − (k2 + k3)x3

ẋ4 = k3x3

ẋ5 = k3x3 − k4x5x6 + k5x7

ẋ6 = −k4x5x6 + k5x7 + k9x10

ẋ7 = k4x5x6 − (k5 + k6)x7

ẋ8 = k6x7 − k7x8x9 + k8x10

ẋ9 = k14x14 − k7x8x9 + k8x10

ẋ10 = k7x8x9 − (k8 + k9)x10

ẋ11 = k9x10 − k12x11x13 + k13x14

ẋ12 = −k10x1x12 + k11x13 + k15x15

ẋ13 = k10x1x12 − k11x13 − k12x11x13 + k13x14

ẋ14 = k12x11x13 − (k13 + k14)x14

ẋ15 = k14x14 − k15x15 .

The structure of these equations is determined from knowledge of the proteins (xi)
involved. For some of these proteins we can obtained experimental time course data but
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not for all. The question is then whether we could extract from this system of equation
basic relationships between the k’s, considering that we are looking for basic temporal
profiles (all of which either converge to zero or some steady state)?

Since the structure of these equations is fairly well defined (sums of simple products
of variables, the signs of terms are given, the parameters are always positive), one might
imagine some ‘qualitative’ analysis of the kind described above: Given time course data
for some of the variables, we first of all wish to validate the model structure (e.g. test
for feedback through an additional negative term in one of the equations). The model
structure is in this sense more important than knowing exact parameter values. We
elaborate on these issues further in Chapter 4.

4.8.4 S-Systems

The mathematical structure (4.53) suggests a form in which we separate positive terms
(complex formation, production) from negative terms (dissociation, degradation, deple-
tion):

ẋi = V +
i (x1, . . . , xn)− V −i (x1, . . . , xn) .

If we are to include m independent variables we write

ẋi = V +
i (x1, . . . , xn, xn+1, . . . , xn+m)− V −i (x1, . . . , xn, xn+1, . . . , xn+m) . (4.55)

where i = 1, . . . , n. This general format allows for different classes of representations,
one of which are S-systems.

The S-systems approach, mostly developed by M.Savageau [Sav69b, Sav69a, Sav70]
and E.O.Voit [Voi00], starts with the general description (4.55)

ẋi = V +
i − V −i for i = 1, 2, . . . , n ,

where the general functions are reduced to simple products of the variables involved.
Such power law representation has some attractive mathematical features, but is impli-
citly based on a Taylor series approximation around a steady state value. This is alright
for studying metabolic fluxes but does not work for transient phenomena in, for instance,
signal transduction pathways.

For example, considering the conversion of x1 into x2, catalyzed by x3. We assume a
constant influx α to replenish x1. The degradation of x1 depends on the concentration
or pool size of x1 itself and also on the enzyme x3:

ẋ1 = α− V −1 (x1, x3) .

The production of x2 is described in the same way as the degradation of x1, V +
2 = V −1 .

Finally, the degradation of x2 depends only on its current concentration or pool size:

ẋ2 = V −1 (x1, x3)− V −2 (x2) .
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The S-systems approach would then choose the following power-law representations for
V −1 and V −2 :

V −1 (x1, x3) = βxa1x
b
3 ,

V −2 (x2) = γxc2 .

For a general S-system we write

ẋi = αi

n+m∏

j=1

x
gij
j − βi

n+m∏

j=1

x
hij
j for i = 1, 2, . . . , n ,

and α denoting the rate constant for the production of each pool and β for its degradation
or loss. These values can be positive or zero but not negative. There are numerous
publications, exploring the theoretical properties of S-systems and applying them to
metabolic pathways.

4.8.5 The Heinrich model

In [HNR02], Heinrich and colleagues demonstrated that even without experimental data
to estimate parameter values, mathematical modelling allows an interesting study of
protein kinase signal transduction pathways. Amongst other things they concluded
from their study that:

• The simplest model pathways allow amplified signalling only at the expense of slow
signal transduction.

• Phosphatases have a more pronounced effect than kinases on the rate and duration
of signalling, whereas signal amplification is controlled primarily by kinases.

Heinrich first considers a linear signalling cascade with the stimulation of a receptor,
forming the upper part of the pathway and subsequent sequential activation of down-
stream proteins through phosphorylation via kinases. The output of the pathway is the
phosphorylation of a protein, which is assumed to have further consequences, e.g. on the
activation of transcription factors and thereby influencing transcription of genes. De-
activation of proteins is realised through dephosphorylation via phosphatases in case of
intermediate pathway elements. Receptors can thought of being deactivated by receptor
dephosphorylation, internalisation of the receptor-ligand complex, and/or degradation
of the receptor or ligand.

Considering the enzyme-kinetic reaction as a template for activation and deactivation,
and assuming that the concentration of each kinase-substrate complex in the pathway is
small compared to the total concentration of the reaction partners, and assuming that
the concentration of active phosphatase is constant, each phosphorylation step or activ-
ation is described as a second-order or bi-molecular reaction, where the phosphorylated
form xi−1 of protein i−1 one step up in the pathway takes the role of the kinase which fa-
cilitates the activation of the unphosphorylated form x̃i of the next downstream protein,
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referred to as the substrate of the reaction.

x̃i + xi−1
α̃i−→ xi : phosphorylation

xi
βi−→ x̃i + xi−1 : dephosphorylation

The phosphorylation rate is given by the expression

vp,i = α̃ixi−1x̃i ,

where α̃i is the phosphorylation second-order rate constant for phosphorylation of the
ith kinase. Assuming that the concentration of active phosphatase is constant, dephos-
phorylation is modelled as a first order reaction with dephosphorylation rate

vd,i = βixi ,

where βi is the rate constant for dephosphorylation by the ith phosphatase. Defining

ci = x̃i + xi

as the total concentration of protein kinase i. The differential equation for the phos-
phorylation or activation of xi is given by

dxi
dt

= vp,i − vd,i
= α̃ixi−1x̃i − βixi

Let
αi = α̃ici

be a pseudo-first-order rate constant, so that we can write

dxi
dt

= αixi−1

(
1− xi

ci

)
− βixi , (4.56)

which we also introduced in Section 4.7. The first step of the pathway, receptor stimu-
lation, is modelled as

dx1

dt
= α1u(t)

(
1− x1

c1

)
− β1x1 , (4.57)

where u(t) is the concentration profile of the activated receptor. For example, the in-
activation of the receptor may be modelled as u(t) = exp(−λt), where 1/α is the time
constant of the receptor. For λ→ 0, the pathway is permanently activated. Heinrich et
al. then introduce the signalling time as the average time to activate protein isignalling time

τi =
Ti
li

where li =

∫ ∞

0
xi(t) dt and Ti =

∫ ∞

0
txi(t) dt . (4.58)

li denotes the total amount of active protein i, generated during the signaling period.
The signal duration is defined bysignal duration
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θi =

√
Qi
li
− τ2

i , where Qi =

∫ ∞

0
t2xi(t)dt . (4.59)

For a weakly activated pathway all of its proteins are phosphorylated to a low degreeweak activation

such that xi � ci. As a consequence, Equation (4.56) becomes

dxi
dt

= αixi−1 − βixi . (4.60)

Heinrich et al. showed that the signaling time and signal duration can for this case be
calculated explicitly:

signalling time: τ =
1

λ
+

n∑

i=1

1

βi
, (4.61)

signal duration: θ =

√√√√ 1

λ2
+

n∑

i=1

1

β2
i

. (4.62)

4.8.6 The MAP Kinase (MAPK) pathway

This section is to introduce an important class of signaling pathways. For unfamiliar
biochemical expressions the reader is referred to the glossary on page 395.

input MAPKKK MAPKK MAPK output

Figure 4.33: Compact representation of the MAPK pathway.

The mitogen-activated protein kinase (MAPK) cascade, is part of the growth-factor/Ras
pathway in eucaryotic cells. The cascade7 is highly conserved, which means that the same
principles can be observed in a variety of organisms and cell types.

The core of this pathway is formed by a module which is defined by three protein
kinases: MAPKKK (e.g. RAS/Raf), MAPKK (e.g. MEK) and MAPK. This module is
activated by a collection of proteins, some of which have to occur in combination. The
first element of the module to be activated is the MAPKKK. The activated MAPKKK
phosphorylates MAPKK at two sites. This double phosphorylated MAPKK, denoted
MAPKK**, acts as a threonine/tyrosine kinase and phosphorylates MAPK at two sites
of the protein structure. MAPK can then act as a kinase for transcription factors, but
may also have a feedback effect on the activity of kinases like the MAPKKK further
upstream.

The ERK (extracellular-signal-regulated kinase) pathway is an example for a MAPK
cascade, which features Ras as the G-protein, Raf as MAPKKK, MEK (MAPK/ERK
kinase) as MAPKK and ERK as MAPK. Ras and Raf are proto-oncogenes which explains

7Biologists refer to an unbranched sequence of modules combined in a cascade as a linear cascade.
The term ‘linear’ has not relationship with the question whether the biochemical reactions and their
mathematical model are linear or nonlinear. See page 27 for a definition a linear model. The upper
- membrane near parts of the pathway are also referred to ‘upstream regions’.
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Figure 4.34: The MAP kinase pathway. The core of this pathway is formed by a module which is defined
by three protein kinases: MAPKKK, MAPKK and MAPK. Drawing adapted from [Kol00].

the interest in this pathway [Kol00]. Most stimuli to the receptor leads to an activation
of the G-protein Ras by inducing the exchange of GDP with GTP. GDP and GTP
are therefore also referred to as exchange factors. This exchange will convert the Ras
molecule into its active conformation. Ras resides near the cell membrane and one
says that the exchange factors are recruited. The protein SOS (son of sevenless) is
another Ras exchange factor, which can terminate Ras activation. This termination
proceeds by phosphorylation of SOS, which leads to the disassembly of the complex.
The phosphorylation of SOS is also feedback regulated by the activated ERK pathway
[Kol00].

Activated Ras functions as an adaptor that binds to Raf kinases with high affinity
and causes their translocation to the cell membrane, where Raf activation takes place.8

Mammals posses three Raf proteins which are also referred to as isoforms: Raf-2, A-Raf,
and B-Raf. For all three, MEK acts as a substrate further ‘downstream’ of the pathway.

MEK is activated by phosphorylation of two serine residues in the activation loop. The
most predominant activator of MEK in most cell types are Raf kinases. It is believed that
Raf-1 can inhibit itself through some negative feedback. Raf seems to be suspended in
a balance between activation and auto-inhibition [Kol00]. Raf can activate both MEK

8The spatial dimension, translocation of molecules, is an important aspect that is ignored by conven-
tional models. One idea is to divide a space up into regions, model each region separately and allow
for an exchange between them. We are thus in need for a multi-model concept.
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Figure 4.35: General outline of the MAPK pathway.

isoforms, MEK-1 and MEK-2, and both of them can activate the downstream ERK
kinases. MEK is a ‘dual-specificity’ kinase which can phosphorylate both.

Finally, ERK is a serine/threosine kinase with more than 50 substrates [Kol00]. All
components of the Ras/Raf/MEK/ERK pathway can interact with each other physically:
Ras-GTP binds to Raf; Raf can bind to MEK; and MEK can bind to ERK.

4.8.7 The Ras/Raf/MEK/ERK pathway

This section describes a mathematical model of the ERK module, as an example of a
MAPK signal transduction pathway. The model is represented by a set of nonlinear signal transduction

differential equations. We show how this representation can be generalised to capture a
large class of dynamic pathway models. In this framework, a pathway diagram corres-
ponds to the state space of a dynamic system, while the entirety of dynamic processes
that can occur in a particular pathway is defined by a one-parameter group of trans-
formations in the manifold that is the state space. We are thus providing a conceptual
framework in which to describe not only pathway diagrams but also the spatial-temporal
interactions within and between cells.

Experimental data show that the inhibition of MEK phosphorylation by RKIP is not
linear. There is a threshold of RKIP expression that steeply reduces MEK phosphoryla-
tion. This is consistent with a positive feedback mechanism. If not all Raf is bound to
RKIP, then there is Raf-1 available for interacting with and activating MEK. MEK then
activates ERK. Consequently, the positive feedback phosphorylation of RKIP by ERK
will ensure that RKIP is phosphorylated and dissociates from Raf-1. In this situation
there will be little or no inhibition of Raf-1 by RKIP. If the level of RKIP expression
exceeds a certain threshold, all of the Raf-1 will be bound to RKIP. In this situation
there is no phosphorylation of RKIP and no dissociation. Hence MEK phosphorylation
remains inhibited.

To analyze the dynamics of the ERK signaling pathway, including the positive feedback
mechanism, in both qualitative and quantitative manner, we constructed a mathematical
model based on the mass action law and represented by nonlinear ordinary differential
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Figure 4.36: Basic outline of the Ras/Raf/MEK/ERK pathway. Drawing adapted from [Kol00].

equations (see Figure 4.39):

ẋ1 = −k1x1x2 − k9x1x12 + k10x13 + k5x7 + k13x14

ẋ2 = −k1x1x2

ẋ3 = k1x1x2 − k2x3

ẋ4 = k2x3

ẋ5 = k2x3 − k3x5x6 + k4x7

ẋ6 = −k3x5x6 + k4x7 + k8x10

ẋ7 = k3x5x6 − (k4 + k5)x7

ẋ8 = k5x7 − k6x8x9 + k7x10

ẋ9 = k13x14 − k6x8x9 + k7x10

ẋ10 = k6x8x9 − (k7 + k8)x10

ẋ11 = k8x10 − k11x11x13 + k12x14

ẋ12 = −k9x1x12 + k10x13 + k14x15

ẋ13 = k9x1x12 − k10x13 − k11x11x13 + k12x14

ẋ14 = k11x11x13 − (k12 + k13)x14

ẋ15 = k13x14 − k14x15 .





(4.63)
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Figure 4.37: Illustration of how a signal is relayed through sequential activation of proteins in the
Ras/Raf/MEK/ERK pathway. Note that this picture is an idealised picture and actual
amplitudes and base levels may differ significantly when considering experimental data. See
also Figure 4.36.

The mathematical structure is one of multinomial systems, concentrations xi as well as
the values for parameters ki can only be positive. Each step in the pathway is modelled
in analogy to an enzyme kinetic reaction (4.41). Possible algebraic simplifications of the
model and parameter estimation are not discussed here as this is not the focus of the
present section.

The Ras/Raf-1/MEK/ERK module is an ubiquitously expressed signaling pathway
that conveys mitogenic and differential signals from the cell membrane to the nucleus
[YJM+00]-[Kol00]. This kinase cascade appears to be spatially organised in a signaling
complex nucleated by Ras proteins. The small G protein Ras is activated by many
growth factor receptors and binds to the Raf-1 kinase with high affinity when activated.
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Figure 4.38: Illustration of the interactions of RKIP with the Ras/Raf/MEK/ERK pathway.
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Figure 4.39: Graphical representation of the model for Ras/Raf-1/MEK/ERK signaling module, describ-
ing a positive feedback loop between RKIP and double phosphorylated ERK (ERKpp).

This induces the recruitment of Raf-1 from the cytosol to the cell membrane. Activated
Raf-1 then phosphorylates and activates MAPK/ERK kinase (MEK), a kinase that in
turn phosphorylates and activates Extracellular Kinase (ERK), the prototypic Mitogen-
Activated Protein Kinase (MAPK). Activated ERKs can translocate to the nucleus and
regulate gene expression by phosphorylation of transcription factors. This kinase cascade
controls the proliferation and differentiation of different cell types. The specific biological
effects of the kinase cascade are crucially regulated by the Raf-1 kinase inhibitor protein
(RKIP) [YRD+01]. RKIP binds to Raf-1 thereby disrupting the interaction between
Raf-1 and MEK. As a consequence RKIP inhibits the phosphorylation and activation
of MEK by Raf-1. RKIP overexpression interferes with the activation of MEK and
ERK, induction of AP-1 dependent receptor genes and transformation elicited by an
oncogenically activated Raf-1 kinase [YSL+99].

Figure 4.40 shows a simulation of the ERK model for varying initial concentrations
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Figure 4.40: Simulation of the ERK model for varying initial concentrations of RKIP.

of the Raf-1 kinase inhibitor protein RKIP. The simulations show the rate of active Ras
(x2) binding to Raf-1 (x1) linearly decreasing along with the initial value of RKIP. The
plots demonstrate how the initial signal transduction through active Ras is interrupted
by RKIP. The variation profile of active Raf (x5) as a function of variations of the initial
value for RKIP is similar to active MEK (x8) and active ERK (x11). The dynamics of
these proteins in Figure 4.40 also exhibit the nonlinear relationships encapsulated by the
model. At low initial concentration of RKIP all signal proteins are completely activated
although with different time lags. At high concentrations of RKIP, the activation ratio
is about zero. These simulation results show that there is a threshold of concentration of
RKIP that steeply reduces the phosphorylation of each protein, which is in accordance
with experimental data.

The concept of a pathway is the framework in which a molecular- or cell biologist
captures her/his knowledge of pathway variables, their states and relationships. A path-
way model - whether a simple diagram or a mathematical representation like the one
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described here is an abstraction. In [RS02] the authors discuss the importance of abstrac-
tions in science and suggest an abstract computer language like π-calculus for pathway
modelling. This language provides a means to formalise the knowledge of components
and their interactions. In order to simulate a model in this framework, the process al-
gebra requires the use of, for instance, the Gillespie algorithm in order to compile the
model. Here we are seeking an abstract (and thus generally applicable) algebraic frame-
work in which to discuss the dynamic properties of a pathway but also the entirety of
dynamic processes the cell can realise as well as relationships between cells. Instead of a
computer language, we begin with chemical rate equations and work ‘upwards’ through
generalisations of the models that can be constructed to represent the dynamic interac-
tions in pathways. The main argument for a π-calculus is its “linguistic structure” and
“operational semantics” from which causal relationships can be derived. The motto of
the approach presented in this section could be that we wish to realise what the biologist
could see rather than what he says.

4.8.8 Feedback and oscillations in signalling pathways

In Figure 4.34 a prototypical mitogen-activated protein kinase (MAPK) cascade is shown
[FJ96, Kol00]. MAP kinase pathways have been found in many organisms and cell types.
They are also an important system for cancer research studies [Kol00, YSL+99, YJM+00]
and have been considered in various modelling exercises (e.g. [FJ96, HFJ96, BI99,
Kho00, BF00, AL01, K+02]).

Let us model phosphorylation and dephosphorylation as a reversible bimolecular re-
action, where the phosphorylation of X into X∗ is facilitated by the kinase U , and
dephosphorylation by phosphatase P :

X + U
k1−→ X∗ + U ,

X∗ + P
k′2−→ X + P .

We write x̃ for the unphosphorylated form of a molecular species or protein X, u for
the kinase U , p for phosphatase P and x to denote the activated, i.e., phosphorylated
protein X∗. Referring to the law of mass action, we obtain the following set of ordinary
differential equations

d

dt
x = k1u(t)x̃(t)− k′2p(t)x(t) : phosphorylation,

d

dt
x̃ = −k1u(t)x̃(t) + k′2p(t)x(t) : dephosphorylation .

To simplify the mathematical model we assume that the phosphatase is constant. This
means we can merge p and k′2 into k2. Together with the conservation for a constant
total of x,

x̄ = x(t) + x̃(t) ,
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we obtain the following differential equation, in one variable, to describe the phosphoryla-
tion of protein X:

d

dt
x = k1u(t)

(
x̄− x(t)

)
− k2x(t) .

The block diagram for a signaling step, (de-)phosphorylation is readily obtained:

u(t)
×

x̃(t)

k1
x(t)

k2

−

− x̄

u(t)
×

k1 k2
x(t)

x̃(t)

− x̄

In this model for (de-)phosphorylation, it is assumed that kinase-substrate concentra-
tions are low compared to the total concentration of the reactant species. Furthermore,
for dephosphorylation to be considered a first-order reaction, it is assumed that the
active phosphatase concentration is constant.

For more complex systems, let us now collapse the previous diagram into a single
block to represent the (de-)phosphorylation of x̃ through kinase u:

u(t)

k1 k2

♦ x(t)

ATP kinase ADP

Protein
pho

sphorylation

dephosphorylat
ion

Protein-P

phosphatase

The diagram on the right illustrates the conventional, and more detailed, representation.
Phosphorylation is facilitated by means of a kinase and dephosphorylation is realised by
a phosphatase. The phosphorylated state is commonly denoted by adding -P to the
name of the protein.

Given such a module, we are now in a position to construct more complex pathway
diagrams by connecting these basic components into cascades and networks. For ex-
ample, for the pathway in Figure 4.34 the map is [Kho00]:

u(t)

x̃1
1

2
x1

x̃2
3

6
x2

4

5
x3

x̃4
7

10
x4

8

9
x5

In the diagram x1 corresponds to activated MKKK-P, x2 to MKK-P, x3 to the
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double-phosphorylated MKK-PP, x4 to MAPK-P, x5 to MAPK-PP. Inactivated forms
are denoted with a tilde x̃. In signalling activation/inactivation of proteins corres-
ponds to phosphorylation/dephosphorylation, while in some cases one considers double-
phosphorylations:

v1 = k1u(t)x̃1(t), v6 = k6x2(t)

v2 = k2x1(t), v7 = k7x3(t)x̃4(t)

v3 = k3x1(t)x̃2(t), v8 = k8x3(t)x4(t)

v4 = k4x1(t)x2(t), v9 = k9x5(t)

v5 = k5x3(t), v10 = k10x4(t)

The model is the derived from the fact that

ẋ1 = v1 − v2 ẋ2 = v3 − v6 − v4 + v5

ẋ3 = v4 − v5 ẋ4 = v7 − v10 + v9 − v8

ẋ5 = v8 − v9

Inserting the reaction rates into these equations we obtain the following set of equations
for the activated proteins in the pathway:

ẋ1 = k1u(t)x̃1(t)− k2x1(t)

ẋ2 = k3x1(t)x̃2(t)− k6x2(t)−k4x1(t)x2(t) + k5x3(t)︸ ︷︷ ︸
−ẋ3

ẋ3 = k4x1(t)x2(t)− k5x3(t)

ẋ4 = k7x3(t)x̃4(t) +k9x5(t)− k8x3(t)x4(t)︸ ︷︷ ︸
−ẋ5

−k10x4(t)

ẋ5 = k8x3(t)x4(t)− k9x5(t) .

In addition, the following conservation relationships hold:

x̄1 = x̃1(t) + x1(t)

x̄3 = x̃3(t) + x2(t) + x3(t)

x̄5 = x̃4(t) + x4(t) + x5(t)

Using the mathematical model for (de-)phosphorylation from above, the double phos-
phorylation of x4 into x5 is described by the following block diagram:
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x3(t) ×

k7

x̃4

k10

×

k8

x5(t)

k9

−−

−

x4(t)

−

x̄5

−

This again we can collapse into a single block, without loss of information:

x3(t) x5(t)♦x4♦

k7, k10, k8, k9

The MAP kinase pathway can then be represented by the compact block diagram:

u(t)

k1 k2

♦
x1

♦x2♦

k3, k6,k4,k5

x3
♦x4♦

k7,k10,k8,k9
x5(t)

This system is then another example of the state-space representation, where for
u(t) we might assume a negative exponential function u(t) = e−λt, where an initial
concentration of ligands is depleted through binding to the receptors on the cell surface.
The greater the value of λ, the faster the ligands bind with receptors to form complexes.
In [HNR02], these series-connected submodels of (de-)phosphorylation, have been used
to analyze pathways for their dynamic properties. In particular the authors derived
expression for the signaling time, defined as the average time to activate a protein in the
pathway and the signal duration, characterised by an integral of the concentration profile.
In [Kho00] a very similar model as the one above is modified by introducing a negative
feedback loop between the end product MAPK-PP and a Ras/MAPKKKK complex at
the top of the pathway. Kholodenko showed how ultrasensitivity, leading to switch-like
behavior, combined with negative feedback can bring about sustained oscillations in
this pathway. Considering populations of cells, this may be of particular interest in the
context of the synchronisation of coupled oscillators, which has been observed in a range
of biological and physical systems [Str00b]. Approaches to test for feedback loops have
been presented in [K+02, AFJS04]. In [BI99, BF00, AL01] computational studies of
feedback effects on signal dynamics in a detailed MAPK pathway model are presented.

4.8.8.1 Feedback in signalling pathways

We continue the previous section, introducing feedback loops from a protein xj further
down the pathway, up to xi. We have two options indicated in the following diagrams:
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u(t)

F (xj)

x̃i xi

u(t)

G(xj)

x̃i xi

On the left-hand side, feedback manifests itself as a multiplicative term in the differ-
ential equation for xi:

d

dt
xi(t) = k1u(t)F (xj)

(
x̄i − xi(t)

)
− k2xi(t) ,

where for the function F (xj) we can choose from the following commonly used versions:

F (xj) =
1

1 +
(
xj
KI

)n , F (xj) =
c

dn + xnj
, F (xj) =

cxnj
dn + xnj

,

where n ≥ 1 defines the steepness of the feedback function and the subscript I of KI

stands for ‘inhibition’. The main requirement for the choice of a function F (xj) is that
at xj = 0, we should have F (xj) = 1. Mechanistic interpretations and experimental
evidence for these functions are discussed in [Gol96, FJ96, HFJ96, LQ03]. Note the
distinction between a mechanistic (or physical) and a operational (or phenomenological)
definition for an interaction. An operational definition is based on observations, not
necessarily requiring an interpretation/understanding of the physical interactions of the
molecules involved, as would be the case for a mechanistic definition of kinetic behavior
[CB04, pg. 116]. For the feedback indicated on the right-hand side, and represented by
G(xj), there is an additional contribution to the activation of X:

X + U
k1−→ X∗ + U , X +G

kG−−→ X∗ +G ,

leading to the following, modified ODE model:

d

dt
x(t) = k1u(t)

(
x̄− x(t)

)
+ kGG(xj)

(
x̄− x(t)

)
− k2x(t)

= k1

(
x̄− x(t)

) [
u(t) +

kGG(xj)

k1

]
− k2x(t) .

If G(xj) is monotonically increasing as xj increases, we are dealing with positive feed-
back and, vice versa, if G(xj) monotonically decreasing with xj , we are dealing with
negative feedback. While for conventional pathway maps the kind of feedback employed
remains unclear, if not explicitly stated. In the block diagram , however in our scheme
we recognise the two situations as follows:

268



4.8 Dynamic Modelling of Biochemical Networks

u(t)
×

k1 k2

♦ xi(t)

F (xj)

xj(t)

u(t)
k1 k2

♦ xi(t)

kGG(xj)

k1

xj(t)

4.8.8.2 Michaelis-Menten kinetics

The mass-action models for (de-)phosphorylation, as introduced above, could be criti-
cised in that if the activation of a protein X is seen as an enzyme catalyzed reaction,
the rate of activation in experiments is limited. Some authors might argue that a more
realistic model would be to consider Michaelis-Menten kinetics. We here show how the
Michaelis-Menten model can be derived from the mass-action model. In the context of
signalling pathways an argument against Michaelis-Menten kinetics is the fact that in
its derivation, the enzyme concentrations should be much smaller than the substrate
concentration. In the context of cell signalling the relationships between kinase con-
centrations and those of inactivated proteins may however not satisfy this assumption.
Let us consider the activation (phosphorylation) of protein X by means of an enzyme
(kinase) E:

E

X X∗

P

The dephosphorylation of the activated protein X∗ is realised by some phosphatase
P , which we here assume to have a constant concentration. The mass-action model of
these two processes is

X + E
k1−−−−−→ X∗ + E , X∗ + P

k′2−−−−−→ X + P .

Using again the previously introduced notation, the corresponding differential equation
for activation is

d

dt
x = k1e(t)x̃(t)− k′2p(t)x(t) .

Assuming a constant phosphatase P , let us redefine k2
.
= k′2p(t). With the conservation

relation x̃(t) + x(t) = x̄, we thus have

d

dt
x = k1e(t)

(
x̄− x(t)

)
− k2x(t) .

Note that only one differential equation is needed since changes in the non-phosphorylated
form can always be derived from the conservation relation. A Michaelis-Menten model of
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a signalling module considers an intermediate complex in the enzyme catalyzed reaction

X + E
a1−−→←−−−−−
d1

XE
k1−−→ X∗ + E , X∗ + P

a2−−→←−−−−−
d2

X∗P
k2−−→ X + P .

It is assumed that the first forward reaction is very fast, i.e., for phosphorylation a1 � d1.
Focussing on steady-states, one finds for the Michaelis-Menten constants

Km1 =
d1 + k1

a1
, Km2 =

d2 + k2

a2
.

The equations for a Michaelis-Menten model are then

d

dt
x =

k1e(t)
(
x̄− x(t)

)

Km1 + x̄− x(t)
− k2x

Km2 + x̄− x(t)
.

If E can be assumed to be constant, one would frequently define Vmax
.
= k1E as the

maximum velocity of the reaction, that is achieved for large concentrations of the non-
activated form x = x̄−x. Michaelis-Menten models of the MAP-kinase signaling cascade
are considered in [HFJ96, Kho00, K+02].

4.8.8.3 The Ras/Raf/MEK/ERK pathway

In this section we work out an example for the MAP-kinase pathway in Figure 4.34. In
the Ras/Raf/MEK/ERK pathway Ras is the G-protein, Raf the MAPKKK, MEK the
MAPKK and ERK the MAPK [Kol00]. While the linear cascade of Figure 4.34 is a text-
book illustration, the research literature suggests the existence of various feedback loops
such that we are dealing with a network rather than a linear cascade. As an example,
for the Ras/Raf/MEK/ERK pathway a positive feedback mechanism can be illustrate
with the following cartoon [YSL+99, YJM+00]:

Ras Raf-1 MEK

a
ct
iv
a
ti
o
n

ERK b

Raf-1

increase

Raf-1
dissociation

RKIP

phosphorylation

RKIP

P
P

P
P

P

P

The MAP kinase module is realised by the sequential activation of Raf-1, upstream
near the cell membrane, followed by activation of the proteins MEK and ERK through
structural modifications in the form of phosphorylations indicated by the P’s. ERK
translocates into the nucleus of the cell, where it effects the transcription of genes.
Double phosphorylated ERK-PP also phosphorylates RKIP and thereby releases Raf
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Figure 4.41: Pathway map for the Ras/Raf/MEK/ERK signal transduction pathway with two speculated
feedback loops. The dashed parts describe a positive feedback loop. The bar at the end of a
line denotes an inhibition. Note that x3 is acting on the phosphorylation of x̃4. The dotted
line describes a negative feedback loop. The variables are x1

.
= Raf, x2

.
= MEK, x3

.
= ERK,

x4
.
= RKIP. x̃ denotes the non-activated or non-phosphorylated form.

from the Raf-1/RKIP complex, and Raf in turn activates MEK. This positive feedback
loop leads to switch-like behavior of the pathway.

We first translate the cartoon into a pathway map to reduce ambiguity. The pathway
map is shown in Figure 4.41. The variables are x1

.
= Raf, x2

.
= MEK, x3

.
= ERK, x4

.
=

RKIP. To simplify the example we ignored the double-phosphorylations of the previous
Section. We first consider the pathway without any feedback loop. The mathematical of
model of this simple three module cascade is specified by the following set of equations.

d

dt
x1 =

k1u(t)(x̄1 − x1(t))

Km1 + (x̄1 − x1(t))︸ ︷︷ ︸
phosphorylation

− k2x1(t)

Km2 + x1(t)︸ ︷︷ ︸
dephosphorylation

d

dt
x2 =

k3x1(t)(x̄2 − x2(t))

Km3 + (x̄2 − x2(t))
− k4x2(t)

Km4 + x2(t)

d

dt
x3 =

k5x2(t)(x̄3 − x3(t))

Km5 + (x̄3 − x3(t))
− k6x3(t)

Km6 + x3(t)
,

where for the conservation relations x̄1 = x̃1(t) + x1(t), x̄2 = x̃2(t) + x2(t), x̄3 = x̃3(t) +
x3(t) hold. Next we consider the positive feedback loop introduced by RKIP and which
is denoted by x4. First phosphorylation and dephosphorylation are described as before,

d

dt
x4 =

k7x3(t)(x̄4 − x4(t))

Km7 + (x̄4 − x4(t))
− k8x4(t)

Km8 + x4(t)
,

where x̄4 = x̃4(t)+x4(t). Note that x3, activated ERK-PP, is acting on the phosphoryla-
tion of x4 (RKIP). The inhibitory effect of RKIP on the phosphorylation of x2 (MEK)
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Figure 4.42: Simulink block diagram of the Ras/Raf/MEK/ERK signal transduction pathway with RKIP
regulation. Individual blocks can be “unmasked” to reveal their inside. The inside elements
of these blocks are identical to those introduced before. The switches in the diagram are
used to introduce or remove feedback loops in the simulation.

is reflected by a change to the rate equation of x2:

d

dt
x2 =

k3x1(t)

[
1/

(
1 +

[
x̄4 − x4(t)

KP

]p)]
(x̄2 − x2(t))

Km3 +
(
x̄2 − x2(t)

) − k4x2(t)

Km4 + x2(t)
,

where KP is a constant that defines the strength of the feedback and n defines the
steepness of the response curve. The negative feedback from x3 (ERK-PP) to x1 (Raf)
leads to an insertion in the equation for dx1/dt:

d

dt
x1 =

k1u(t)

[
1/

(
1 +

[
x3(t)

KN

]n)]
(x̄1 − x1(t))

Km1 +
(
x̄1 − x1(t)

) − k2x1(t)

Km2 + x1(t)
.

For all proteins involved, conservation relationships hold for a constant total of the
activated and non-phosphorylated form.

Figure 4.42 shows a Simulink9 block diagram of the Ras/Raf/MEK/ERK signal trans-
duction pathway with RKIP regulation. Simulink is a graphical simulation environment,
using the mathematical programming language Matlab. Block diagrams such as those
introduced in previous sections can be drawn and simulated directly from within an
interactive graphical editor. The effect of changes to parameters, the removal or in-
troduction of feedback loops can be simulated conveniently. As illustrated Figure 4.43,
with only positive feedback added to the pathway and no transport delay, the pathway

9Matlab and Simulink files for all models and simulations shown here are available from
www.sbi.uni-rostock.de.
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Figure 4.43: Simulation of the Ras/Raf/MEK/ERK pathway in Figure 4.41. The plots show the response
to a unit-step input signal. Left: without feedback loops. Right: as before but with a
positive feedback loop. Note the sharpening of the ERK response from the introduction of
positive feedback loop that is realised by RKIP.
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Figure 4.44: Simulation of the Ras/Raf/MEK/ERK pathway in Figure 4.41. Left: with negative feedback
loop. Right: with both, positive and negative feedback loops.

displays switch-like behavior. Switching dynamics have been found in various intracel-
lular systems (e.g. [FJ96, TCN03]). Our previous observation that a positive feedback
loop sharpens the response, making it ultrasensitive, remains true in this more complex
system. Because the positive feedback loop effects only proteins from MEK downward,
the Raf concentration profile has not been changed. Considering a negative feedback
loop, no transport delay and without the positive feedback loop in the system, we ob-
serve that negative feedback can destabilise the response. What can also be observed
are lower steady-state values for Raf and ERK.
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Figure 4.45: Simulation of the Ras/Raf/MEK/ERK pathway in Figure 4.41. The plots show the response
to a unit-step input signal. Left: Negative feedback loop with transport delay Td = 10min.
Right: As before but with additional positive feedback loop. In both cases n = p = 1.
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Figure 4.46: Simulation of the Ras/Raf/MEK/ERK pathway in Figure 4.41. The plots show the response
to a unit-step input signal. Left: Negative feedback loop with Td = 0, n = 2, p = 1. Right:
As before but with additional positive feedback loop.

Once a model is established, simulation allows quick studies of changes to the ele-
ments and parameters. For example, one way to make the model more realistic is to
introduce a time delay between ERK near or inside the nucleus and its feedback effect
on Raf further up the pathway. In Figure 4.45, we introduce a transport delay in the
negative feedback loop with Td = 10min. We observed that transport delays lead to
increased oscillatory behavior, turns the damped oscillations into sustained oscillations.
In [SMT+03] this consideration for nucleocytoplasmic transport was crucial in obtaining
a predictive mathematical model for the JAK-STAT pathway. Our next experiment is to
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change the feedback indices n and p, that were also introduced above and which define
the sharpness or sensitivity of the feedback effect. In Figure 4.46 we find that without
transport delay an increase from n = 1 to n = 2 in the negative feedback loop also leads
to sustained oscillations.

Our study demonstrates various sources of sustained oscillations: negative feedback
combined with ultrasensitivity, combined negative and positive feedback and transport
delays in negative feedback loops. Oscillations have been investigated in various systems
(e.g. [Gol96, WH00, Kho00]) and have been of interest in mathematical modelling for
some time (e.g. [GH83, Str00b]). An interesting question is to ask whether our model
applies to a single cell or a population of cells. If a single cell is an oscillator, one
would have to consider a population of coupled oscillators. Oscillations are not easy to
detect and require complex experimental set-ups. Simulation studies demonstrate the
usefulness of mathematical model in generating hypotheses of phenomena that have yet
to be observed in experiments. On the other hand, a simulation can also be used to
support the design of experiments, helping to decide which variables to measure and
why. The role of feedback in intracellular dynamics has been investigated for some time
in the literature (e.g. [Gri68, Tys79, BPM82, Tys83, TD90]) and will, no doubt, play an
important role in (re)emerging area of systems biology.

k1 = 2.5 Km1 = 10 k2 = 0.25 Km2 = 8 [Raf-1]T = 100
k3 = 0.025 Km3 = 15 k4 = 0.75 Km4 = 15 [MEK]T = 300
k5 = 0.025 Km5 = 15 k6 = 0.5 Km6 = 15 [ERK]T = 300
k7 = 0.5 Km7 = 15 k8 = 0.5 Km8 = 15 [RKIP]T = 60
k7f = 0.025 KN = 9 KP = 9 n, p, Td

Table 4.2: Parameter values for the Ras/Raf/MEK/ERK pathway model. Concentrations are in nM;
k1,k3,k5,k7f are in s−1; k2,k4,k6,k7,k8 in nM·s−1; Km1 to Km8 in nM. The right column
specifies total concentrations. Note that the purpose of this model is to illustrate the role of
feedback loops on protein concentration profiles only.

4.9 Modules and Control Mechanisms

In the present chapter we are going to investigate a class of modules with particular
dynamics behaviors, such as switches, buzzers, oscillators etc. Rather than investigating
dynamic properties in the time domain and with the help of phase-plane analysis, the
present chapter introduces rate curves and stimulus-response curves for steady-states
as a tool for the analysis of dynamic modules and control mechanisms. The presenta-
tion here is an extended version of the paper by Tyson et al. [TCN03]. The graphical
representation of the modules follows the description in [TCN03].

4.9.1 Linear module

To start with, we consider a linear system in which the synthesis of the response molecule
R is facilitated by a stimulus S; illustrated by the following diagram:
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Figure 4.47: Rate curve, comparing the response rate (dashed lines) and the degradation rate (solid line)
for the linear system (4.64). The intersections of both rates (black dots) are the steady
states for the given stimulus. The parameters for the system are: k0 = 0.01, k1 = 1, k2 = 5.

R

S

The mathematical model, the rate equation is given as

dR

dt
= k0 + k1S − k2R . (4.64)

The term k0 describes a constant base level synthesis of the response component R.
What we describe here as a response could also be referred to as the production of
R. Assuming monomolecular reactions for conversion and degradation, the second term
k1S is the conversion of the stimulus component S into the response component. The
degradation of R is given by the last term −k2R. The rate of response is then the sumrate of response

of the base level flux and the conversion of S:

rate of response = k0 + k1S .

This allows us to write for the change of the response component

dR

dt
= rate of response− rate of degradation.

We can then compare the degradation rate and the response rate by plotting the rate
curve as function of R. This is shown in Figure 4.47. Note that hereafter we are goingrate curve

to suppress units in plots for easier viewing. Depending on the number of participating
components the rate coefficient ki has the unit ‘per second’ divided by the unit of the
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component to the power (n−1). Michaelis-Menten constants have the same units as the
corresponding component. The solid line represents the degradation or removal of R,
which is k2R. The rate is a straight line with a slope equal to k2. The rate of response
k0 +k1S (dashed lines) is independent of R and thus a horizontal line. The points, where
the rate of response and the rate of degradation are equal are of particular interest:

rate of response = rate of degradation . (4.65)

At these points the system is in a steady-state such that no net change of concentrations
is measurable. This means response and degradation are in balance, although this does
not mean that no reaction occurs. This state is mathematically determined by the
balance equation

dR

dt
= rate of response− rate of degradation = 0 . (4.66)

Note that a system fulfilling condition (4.65) is either in equilibrium or in a steady-
state. There is no difference between both states from the mathematical point of view.
If the system is in one of these states, all sub-systems have to fulfil (4.65) too. The
difference between both states lies in the considered type of system. An equilibrium is
defined for a closed system, where there is no transport of matter and energy in and out
of the system. A closed system will relax to the equilibrium state and will not leave it
by itself. Following a small perturbation the system returns to the equilibrium. In an
open system, such as a cell, the transport of energy is possible. If we further consider closed/open system

the flow of matter, we get a fully open system.
Here we want to describe the response of a system to an external stimulus, without

assumptions about flow of energy or matter, and therefore assume a fully open system,
that are characteristic of living systems. In such a system we usually reach a steady-state
dependent from the external stimulus. The system state is held by the signal and can be
far away from the equilibrium state. Only, if we close the system, for instance we choose
S = 0, the system relaxes into its equilibrium state. In this sense, the equilibrium is a
particular steady-state but if there is no flow of molecules in and out of the cell this could
mean that they die. As we will see later for the sigmoidal module, the conditions (4.65)
and (4.66) are not fully equivalent. Strictly speaking, if condition (4.65) is fulfilled, the
system is in a steady-state. It can but has not to be in a steady-state if (4.66) is fulfilled.

Note that the dRr/dt of the ordinate in Figure 4.47 is not the net-rate dR/dt on
the left-hand side of (4.64). Figure 4.48 shows the net-rate as a function of R. Is the
net rate equal to zero, shown as horizontal dashed line in the plot, the production and
degradation rates are balanced. The system is in a steady-state.

Next we investigate the steady-state as a function of the stimulus. According to (4.64)
and (4.66) this state is obtained as a solution to the equation

0 = k0 + k1S − k2R .

The steady-state value of the response component is an increasing straight line with
slope k1/k2

Rss =
k0

k2
+
k1

k2
S . (4.67)
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Figure 4.48: The net rate for a linear system as function of the response component R for three values of
the signal S. If the net rate is greater than zero, R increases and if the net rate is smaller
than zero, R decreases. The value dR/dt = 0 (dashed horizontal line) corresponds to the
steady-state. Parameters: k0 = 0.01, k1 = 1, k2 = 5.
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Figure 4.49: Stimulus-response curve for a linear module. Three ratios of k1/k2 are compared, whereby
the decay rate k2 is constant. The response Rss is the stronger the stronger the signal S is.
The horizontal line is the limit for a vanishing stimulus. Parameters: k0 = 1, k2 = 1.

If the stimulus is increasing than the response is increasing too. For a finite constant
external source of R the response is Rss = k0/k2 at a signal strength S = 0. The
representation of the steady-state Rss as function of the signal S is shown in Figure 4.49.
This kind of plot is called stimulus-response curve. Figure 4.49 shows the response ofstimulus-response

curve the linear module for different ratios of k1/k2.
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To this point, we have investigated static properties of the system. Investigating
the temporal evolution of R, we now assume that the signal S does not change over
time. This may also be interpreted as the response to an abrupt change of the stimulus,
at t0 = 0, to the given value, which is then constant (“step-response”). With this
assumption, (4.64) is a linear first-order differential equation for which the solution can
be found analytically:

R(t) =
k0 + k1S

k2

(
1− exp {−k2t}

)
+R0 exp {−k2t} , (4.68)

where R0 is the initial value of R at t0. The first term on the right-hand-side describes
the relaxation to the stationary state Rss (4.67) and the second term is the degradation
of the initial state R0. The relaxation time

τ =
1

k2

is independent from external stimulus S. This quantity is an approximation to the time
needed to relax into the steady state. It can also be interpreted as the time the system
is able to react to perturbations. For t� 1/k2 we can expand the exponential function

e−x ≈ 1− x+O(x2) ,

where O(x2) denotes terms of the order of x2. For a short initial period of time that
leads to

R(t) ≈ (k0 + k1S − k2R0) t+R0 . (4.69)

The response R(t) as function of the dimensionless time τ = k2 ·t is shown in Figure 4.50.
We chose a fixed value for the decay rate coefficient k2 and vary the rate coefficient k1.
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According to (4.68) the response component R(t) exponentially relaxes to the steady-
states (4.67). The solid straight lines are the asymptotic solutions for initial times (4.69).
The horizontal dashed lines correspond to the steady state. Analogue to Figure 4.49 the
steady-state depends on the ratio k1/k2. If the production dominates, k1 > k2, the
steady-state value is greater than the signal strength10 S.

4.9.2 Hyperbolic module

A hyperbolic module is slightly more complicated than the linear module discussed
above. The response or activation is now understood as a bimolecular reaction while
degradation is still considered monomolecular.

S

R R∗

This formulation is a popular model for activation or phosphorylation in signalling
pathways. In this situation we denote by R∗ the activated or phosphorylated form and
use R to denote the non-activated form. Such a reaction system we describe as

dR∗

dt
= k1SR− k2R

∗ ,

where in the case of a signalling pathway, stimulus S corresponds to a kinase that
facilitates the phosphorylation of R. If we assume a constant total concentration,

RT = R∗ +R , (4.70)

we can rewrite the differential equation of the hyperbolic module:

dR∗

dt
= k1S(RT −R∗)− k2R

∗ , (4.71)

where the first term on the right-hand-side is the rate of response or activation and the
second the rate of deactivation. The corresponding rate curve is shown in Figure 4.51.
The rate of deactivation (solid line) has a slope of k2. According to the conservation law
(4.70) the response component is restricted to the range [0, RT ]. If all R molecules are
phosphorylated the response must be zero. The net rate of (4.71) is a straight line with
a slope −(k1S+k2). The conservation law restricts the response to [0, 1]. If the net rate
is greater than zero, activation dominates. The intersections with the zero line are the
steady-states values of R∗ for this system. From (4.71) we obtain for the steady-states
a hyperbolic function, which gives this module its name:

R∗ss =
SRT

k2/k1 + S
. (4.72)

10The first term k0/k2 in (4.67) is negligible for k0 = 0.01 and S = 2.
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Figure 4.51: Left: The rate curve for the hyperbolic module, assuming bimolecular activation and
monomolecular deactivation, for different signal strengths. The deactivation rate is the
solid line and the rate of response for three values of S are shown by dashed lines. The in-
tersections marked by the black dots are the steady states for the shown parameters k1 = 1,
k2 = 1, RT = 1. Right: Net rate as a function of R∗ for three different stimuli.

For the limits S → 0 and S →∞ we can expand (4.72). For a signal strength S � k2/k1

the contribution of S in the denominator is negligible and the steady-states govern the
linear function

R∗ss ≈
k1

k2
RTS . (4.73)

The ratio of the rate coefficients k1/k2 determines the slope of the asymptote. If for
the signal strength S � k1/k2, the signal S dominates the denominator. In this case all
proteins are phosphorylated and R∗ss ≈ RT . The stimulus-response curve for a hyperbolic
module is shown in Figure 4.52. The straight lines are the asymptotic expansion (4.73).
If the rate coefficient of activation k1 greater than the rate coefficient of deactivation k2,
the hyperbolic properties of the system is in evidence. For small values of this ratio the
hyperbolic system looks like a linear system within the presented signal range.

The temporal evolution of the hyperbolic module is described by the differential equa-
tion (4.71). This is again a first-order linear differential equation that we can solve
analytically:

R∗(t) =
RTS

k2/k1 + S

(
1− exp {−(k2 + k1S)t}

)
+R0 exp {−(k2 + k1S)t} . (4.74)

The first term describes the relaxation to the steady-state while the second term cor-
responds to the degradation from the initial state. In contrast to the linear system the
relaxation time

τ =
1

k2 + k1S

is now dependent on the signal strength. The greater the signal strength, the faster the
steady-state is reached. For times t � τ we can expand the exponential function and
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Figure 4.52: The stimulus-response curve of a hyperbolic module (4.71) for different ratios of k1/k2. The
straight lines are the asymptotes for small signal strength (4.73). Parameters: k1 = 1,
RT = 1.

obtain for small initial times the asymptote

R∗(t) ≈
[
k1(RT −R0)S − k2R0

]
t+R0 . (4.75)

The temporal evolution of the hyperbolic module is shown in Figure 4.53. We compare
solutions for three different ratios of the rate coefficients. For comparison, the small
times asymptotes (4.75) are also drawn.

4.9.3 Sigmoidal module

The next module is an extension of the hyperbolic module. Both activation and deac-
tivation are here considered as Michaelis-Menten type kinetic reactions, leading to the
differential equation

dR∗

dt
=

k1SR

KM1 +R
− k2R

∗

KM2 +R∗

=
k1S(RT −R∗)
KM1 +RT −R∗

− k2R
∗

KM2 +R∗
, (4.76)

where on the second line, the conservation law (4.70) is used to relate the unphos-
phorylated form R of the response component to the phosphorylated form R∗. The
parameter KM1,KM2 are Michaelis-Menten constants. The first term on the ride-hand-
side describes the activation, while the second term corresponds to the deactivation or
dephosphorylation. A comparison of response and deactivation rate is shown by the
rate curve in Figure 4.54. The conservation law (4.70) limits the possible values of R∗

to the interval [0, RT ]. If R∗ reaches the value RT , the activation rate has to be zero,
independent of the signal strength, since there is no more unphosphorylated R available.
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Figure 4.53: Temporal evolution of the hyperbolic module (4.71). The full solution of the differential
equation (4.74) is drawn for three different ratios of k1/k2. Parameters: k1 = 1, S = 1,
RT = 1, R0 = 0.3.

The steady-state of the sigmoidal module (4.76) is determined by the quadratic equa-
tion

0 =
k1S(RT −R∗)
KM1 +RT −R∗

− k2

KM2 +R∗
. (4.77)

For 0 < R∗ < RT , the solution is given by what is known as the Goldbeter-Koshland
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Figure 4.54: The activation and deactivation rate of the sigmoidal module (4.76). The solid line is the
deactivation rate. The dashed lines are the rate of activation for different signal strength.
The black dots mark the points where both rates are in balance. Parameters: k1 = 1,
k2 = 1, KM1 = 0.05, KM2 = 0.05, RT = 1.
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function:

R∗ss
RT

=
k2

(
1 + KM1

RT

)
+ k1S

(
KM2
RT

)

2(k2 − k1S)

+

√[
k2

(
1 + KM1

RT

)
+ k1S

(
KM2
RT

)]2
+ 4KM2

RT
(k2 − k1S)k1S

2(k2 − k1S)
. (4.78)

Since this expression is somewhat complicated we replace it by the short form

R∗ss
RT

= G(k1S, k2,KM1/RT ,KM2/RT ) . (4.79)

The solutions are shown in Figure 4.55. Additionally, the allowed range of R∗ is shown
as a grey-shaded region. Only one solution of (4.77) lies inside this region. The others do
not fulfil the physical restrictions on the response component and are therefore irrelevant
for a biological system. This system is our first example, where a mathematical solution
of (4.66) is not a steady-state. This demonstrates that the conditions (4.65) and (4.66)
are not fully equivalent. Strictly speaking, if condition (4.65) is fulfilled, the system is in
a steady-state. It can but must not be in a steady-state if (4.66) is fulfilled. In case of
the sigmoidal module we cannot derive the solution R∗(t) to differential equation (4.76)
in an analytical form.

The stimulus-response curve of the sigmoidal module is shown in Figure 4.56. The
sigmoidal shape of the curve is determined by the ratio of the Michaelis-Menten con-
stants. If the Michaelis constant of the activation term is much smaller than the constant
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Figure 4.55: Solutions of (4.77) as a function of the signal strength. Only the relevant solution (+
√
. . .)

fulfils the conservation law (4.70). The irrelevant solution (−√. . .) lies in physically un-
reachable state-space. The grey shaded region shows the reachable states that follow from
the conservation law.
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Figure 4.56: The stimulus-response curve for the sigmoidal system (4.76) for different ratios of the
Michaelis-Menten constants KM1 and KM2. Parameters: k1 = 1, k2 = 1, KM1 = 0.05,
RT = 1.

for the deactivation term, the typical sigmoidal shape vanishes. On the other hand, if
the activation constant KM1 is much larger than KM2, we get a switch-like behavior for
the response function. It is for this reason that the system (4.76) is sometimes called
Goldbeter-Koshland switch [GKJ81].

4.9.4 Robust or adaptive module

In the next dynamic module we consider, R(t) is robust to changes in the stimulus.
Looked at from the perspective of X(t) the system is adaptive in that it tracks the stim-
ulus. While there is a transient response of R(t) to step-changes in S(t), the response
returns eventually to its steady state value Rss. Such a behavior can be realised by two
parallel reaction paths pushing the response in opposite directions:

S

X

R
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Figure 4.57: Rate curve of a perfectly-adapted or robust system (4.80) for different external stimuli S
and amounts of X. The rate of response (dashed lines) is proportional to the external signal
and the rate coefficient k1, but constant with respect to R. The solid lines are the rates of
degradation for three different X. These linear functions have the slope k2X. The steady
states, marked by dots, have a constant R-value. Parameters: k1 = k2 = 2, k3 = k4 = 1.

For the simplest case we combine two linear systems

dR

dt
= k1S − k2XR ,

dX

dt
= k3S − k4X , (4.80)

where both systems are coupled through the parallel stimulus by S. The degradation
or deactivation of the response component R depends on the amount of X. Because an
increasing signal will also increase the amount of X, this simultaneously increases the
degradation rate of the response component. The rate curves for this module are shown
in Figure 4.57. For the response component R we have:

rate of response = k1S ,

rate of degradation = k2X R .

The response rate is a linear function of the stimulus S, with slope k1. The degradation
rate is independent of S but dependent on X. For this reason we vary the signal strength
for the rate of production and the amount X in Figure 4.57. The intersections of
corresponding curves are again the steady states of the system. In the representation
of the net rate (Figure 4.58) this is more visible. According to the underlying linear
system, we obtain again linear functions. The slope is given by k2X and the ordinates
by k1S.

For the steady-state Rss we have to solve the system of balance equations

0=k1S − k2X R ,
0=k3S − k4X ,
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Figure 4.58: Net rate for system (4.80) for various external signals S and amounts of X. According to
the underlying linear system, the net rate is a linear function, too. The common intersection
of all three curves approves the behavior of perfect adaptation. Parameters: k1 = k2 = 2,
k3 = k4 = 1.
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Figure 4.59: Temporal evolution of robust-adaptive module (4.80) under the influence of a stepwise
change in stimulus. Parameters: k1 = k2 = 2, k3 = k4 = 1, ∆t = 4, ∆S = 1, S0 = X0 =
R0 = 0.

leading to a constant steady state response

Rss =
k1k4

k2k3
.

The steady state response is therefore determined by the ratios of the rate coefficients for
both channels. In Figure 4.59 we plot the temporal evolution of stimulus S, regulating
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component X, and response component R. We see that the response is only transient
and returns eventually to its steady state. The height of the transient peak depends
on X. The larger X, the smaller the peak. The duration for which S is kept constant
is denoted by ∆t and the height of the step-change by ∆S. The return of R(t) to its
steady state is due to the monomolecular decay that after some time is faster than the
bimolecular degradation of R. Looking at R from S, the system may be considered
robust to changes in S. Looked at from the perspective of X, the system shows perfect
adaptation the changes.

4.9.5 Feedback systems

In previous sections we considered systems without feedback. In the context of this
chapter, feedback means, that the response component influences its own production or
degradation. We refer to the feedback as positive or negative, depending on whether the
response amplified or suppressed [MVHA99]. Positive feedback can be realised through:

1. Acceleration of the production, for instance in an autocatalytic process,

2. Inhibition of the degradation.

Feedback is negative, if it weakens the response signal through:

1. Inhibition of the production,

2. Acceleration of the degradation.

In subsequent sections we discuss different feedback mechanisms, starting with positive
feedback, negative feedback followed by mixed negative and positive feedback.

4.9.5.1 Positive feedback/feedforward - Switches

The present section is to discuss the two ways by which positive feedback/feedforward
control mechanisms can be realised. The acceleration of production of the response
component R is related to mutual activation, while the inhibition of degradation is
related to mutual inhibition. In both cases, the positive feedback/feedforward can create
a switch-like behavior, in which a certain level of stimulus can lead to a sudden change
of the response.

Mutual activation - positive feedback

We add to the linear system (4.64) a backward directed loop, i.e., feedback is realised
through an intermediate enzyme E. The response component activates the enzyme E,
for instance through phosphorylation. The activated enzyme E∗ on the other hand en-
hances the synthesis of R. In this sense, both components S and R mutually activate R:
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R

S

E∗ E

To study the properties of this system we assume that the activation of the enzyme
E can be described by means of the Goldbeter-Koshland function (4.79) such that the
differential equation model of the mutually activated system is

dR

dt
= k0E

∗(R) + k1S − k2R (4.81)

where

E∗(R) = G(k3R, k4, J3, J4) .

The rate of degradation is a linear function of the response component,

rate of degradation = k2R ,

and depends only on R. The proportionality coefficient is again the rate coefficient k2.
In contrast to systems discussed in previous sections, the rate of production,

rate of production = k0E
∗(R) + k1S ,

is now a function of the response component itself as well as signal S. Thereby, we
neglect a signal- and enzyme-independent production of the response component and
assume that the enzyme-catalyzed production is dominant. The comparison of both
rates, shown in Figure 4.60, illustrates new properties. Dependent on the signal strength
S, the number of intersections between the curves varies between one and three. Let
us, for the time being, consider these as steady states, although we have to refine the
meaning of steady-states.

Examining the net-rate of the mutually activated system, with the same parameters as
in Figure 4.60, the resulting curves are shown in Figure 4.61. There is a signal strength,
for which there are cases with a net rate equal to zero. We also notice that there is
a region for which the net-rate increases with R. For this region the lines are dashed
segments. Mathematically this corresponds to the condition

d

dR

dR

dt
> 0 ,

where the derivations are carried out in the given order from left to right. For the
considered system (4.81) we have

d

dR

dR

dt
= k0

dE∗

dR
− k2 . (4.82)
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Figure 4.60: Comparison of the rate of degradation (solid line) and the rate of production for different
signal strengths (dashed lines), for a mutually activated system (4.81). Parameters: k0 =
0.4, k1 = 0.01, k2 = 1, k3 = 1, k4 = 0.2, J3 = 0.05, J4 = 0.05.

This is an expression that is independent of the signal strength. The derivative of
dE∗/dR can be derived analytically, although this is cumbersome and therefore avoided
here. To see what happens, if a zero net-rate is located within this range, let us assume,
that we are in steady state. If we perturb the system a little by increasing the response
component, the rate of degradation will decrease. The system cannot return to its former
state. On the other hand, if we decrease the response component the rate of production
also decrease and the system cannot return. This state is unstable and hence not a
steady or equilibrium state. The necessary condition for a stable (bio)chemical system
is thus

d

dR

dR

dt
< 0 .

Only, if this condition is fulfilled, the system returns to the steady state for small per-
turbations to R. In Figure 4.62 we illustrate the differences between stable and unstable
states, using the analogy of a ball in a landscape of changing altitudes. The only stable
equilibrium11 states are the minima of the height function. As we have seen above, the
ball is moving back to the deepest point of the valley after a small perturbation. The
position on the top of the mountain is very unstable. For a comprehensive discussion of
these issues see [GS94]

Returning to our mutually activated module (4.81), in Figure 4.61 a stimulus inde-
pendent region occurred, for which no stable solution exits. For the chosen parameter
values it lies within the interval 0.147 < R < 0.249. On the other hand, for values of R
outside this region we obtain stable solutions. Dependent on the signal strength, the net

11We assume, that the motion of the ball depends from the height only and that there are no further
macroscopic forces. The system is then closed and can reach a state with minimal potential energy,
an equilibrium state. Nevertheless, there can be more than one equilibrium states.
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Figure 4.61: The net-rate as function of the response component R for the system (4.81). The results for
three different signal strengths are plotted. The curves are separated into two parts. The
solid line represents stable solutions and the dashed lines unstable solutions. Parameters:
k0 = 0.4, k1 = 0.01, k2 = 1, k3 = 1, k4 = 0.2, J3 = 0.05, J4 = 0.05.

rate has now one or two stable zeros. Let us analyze the net-rate for a zero stimulus of
Figure 4.61 in more detail. As S increases, the location of the zero moves to the right.
If the value of the minima is positive, no steady state exists in the lower branch. The
steady states of the mutually activated system are obtained from the balance equation

0 = k0E
∗(R) + k1S − k2R . (4.83)

The analytic solution is lengthy and complicated so that we restrict our discussion to few
important features. Equation (4.83) has three solutions. One is a full real function. The
others are partly complex. Because the response component must be a real measurable

Figure 4.62: Illustration of stable and unstable states for a ball in a landscape of changing altitudes. The
maximum and the minima of this schematic mountain scenery fulfil the necessary condition
dh/dx = 0, where h denotes the height and x the horizontal position. But only the minima
are stable equilibrium states, because the ball will return back from alone to his position
after a small perturbation. The maximum is a unstable state; a small perturbation means
the ball drops down to one of the equilibrium states.
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Figure 4.63: Signal-response curve for the mutually activated system (4.81). The balance equation (4.83)
has three branches. The upper one is the full real solution. The others are only in parts real.
The steady-states (stable solutions) are shown as solid lines. The unstable solution is drawn
as a dashed line. Because of the two stable branches, the system is called bistable. The
grey region of the plots denotes the gap between the upper and the lower stable branches.
Parameters: k0 = 0.4, k1 = 0.01, k2 = 1, k3 = 1, k4 = 0.2, J3 = 0.05, J4 = 0.05.

quantity, such as a concentration, only the real parts are relevant for the analysis. All
three solutions are shown in the signal-response curve of Figure 4.63. The mutually
activated system (4.81) has two stable branches plotted as solid lines with an unstable
branch, shown as a dashed line. Such a system is called bistable. As the stimulus Sbistable switch

increases, the response is low until a critical level of stimulus is reached. At this point
the module’s behavior changes with a sudden increase of response R. If thereafter S
decreases, the response remains high, the switch is irreversible. Because of its irreversible
behaviour this system is also called a toggle switch. Note that the sigmoidal module cantoggle switch

act as a reversible switch. The plot in Figure 4.63 as a (one-parameter) bifurcation
diagram. The critical point is in this context called a bifurcation point .

Note that so far we have looked at steady values of S and R and whenever we spoke
of a change in S, the switch-like behavior was discussed in the stimulus-response plane,
not in the time domain. The transition that occurs with changes to S were not expli-
citly included in our discussion. Figure 4.64 shows numerical solutions to the differential
equations (4.81) for different initial values of R. Figure 4.64 displays solutions to the sys-
tem with mutual activation through positive feedback. The range of the initial response
component R0 can be separated into two parts. The lower part relaxes to the steady
state given by the lower branch of the bifurcation diagram, while for values higher than
Rcrit, the system moves to the upper branch in Figure 4.63. Both parts are separated by
the unstable solution of the balance equation (4.83) not by the critical response Rcrit.
The unstable solution is a separatrix in the phase space. At this point it is a good op-
portunity to point out why stimulus-response curves are valuable. As can be seen from
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Figure 4.64: Relaxation of the mutual-activation module into the steady state for different initial response
signals R0. The unstable solution of the balance equation (4.83) acts as a separatrix, which
separates trajectories. For R0 < Rss(S) the system achieves a steady state on the lower
branch. Outside this range the upper branch becomes the final state. For comparison, the
unstable solution and the critical response signal Rcrit are shown. Parameters: k0 = 0.4,
k1 = 0.01, k2 = 1, k3 = 1, k4 = 0.2, J3 = 0.05, J4 = 0.05, S = 6.

the time-plots, the behavior of the system displayed in those plots depends critically on
the stimulus and initial conditions. The bifurcation plot on the other hand summarises
the behavior in an efficient way.

Figure 4.65 illustrates the irreversibility of the considered system. We compare the
response of the system on a sub- and a supercritical signal step change at t = 0. The
initial response signal is R0 = 0. The signal remains constant until the system reaches a
steady state. After a certain time, t = 15, the signal is switched and the response relaxes
to a new steady state. The sub-critically stimulated system goes back to a zero response
signal, while the supercritical stimulus shows the expected behavior of a continued high
level. In the second case the nonlinearity of the system is visible. Looking at the
response with the subcritical stimulus, one might interpret the temporal evolution R(t)
as the consequence of a linear system. Figure 4.66 illustrates the fact that in addition
to a critical value of S, the stimulus must persist for a sufficient period of time if the
full bistable behavior of the system is to be observed.

Mutual inhibition - positive feedforward

From the above definition of positive feedback/feedforward control, there is another pos-
sibility to increase the response signal. In the previous section we increased the rate of
production via an intermediate enzyme. Now, we use a similar model to inhibit degrad-
ation. Here the response component is acting ‘forward’ via E:
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Figure 4.65: The time evolution for two different stimuli, the first subcritical and the second supercritical.
Once the response relaxes into the S-dependent steady state, the signal is switched off. The
critical response signal Rcrit is important for the change of the behavior of the system.
At this point the activation/deactivation strongly increase from a lower to a high level.
Parameters: k0 = 0.4, k1 = 0.01, k2 = 1, k3 = 1, k4 = 0.2, J3 = 0.05, J4 = 0.05, S = 14,
R0 = 0.
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E∗ E

For mutual inhibition, the response component R facilitates the activation of enzyme
E. The activated E∗ in turn increases R. The corresponding system of differential
equations is

dR

dt
= k0 + k1S −

[
k2 + k′2E(R)

]
R (4.84)

E(R) = G(k3, k4R, J3, J4) ,

where again we assume that the enzyme reaction is much faster than the signalling
reaction. Therefore we can use the steady state solution of this reaction given by
the Goldbeter-Koshland function. The term k′2R describes the direct decay of R and
k′2E(R)R the enzyme catalyzed degradation. The rate curve of this system is shown in
Figure 4.67. The solid line is the rate of degradation and the dashed lines are the pro-
duction rates for different signal strengths. For the mutually inhibited system, the rate
of production is independent of the response component. Again, there are more than
one intersection for some values of the stimulus. The corresponding balance equation is
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Figure 4.66: The temporal evolution of the mutually activated system (4.81) for a supercritical signal
S = 14 of different durations. The activated state is reached only and only if the separatrix
Rss(0) is exceeded. Parameters: k0 = 0.4, k1 = 0.01, k2 = 1, k3 = 1, k4 = 0.2, J3 = 0.05,
J4 = 0.05, S = 14, R0 = 0.

the necessary condition for a steady state:

0 = k0 + k1S −
[
k2 + k′2E(R)

]
R (4.85)

A more detailed study the properties of the system are obtained from the net rate
curve shown in Figure 4.68. We plotted (4.84) as function of the response component
R. The stability criterion

d

dR

dR

dt
< 0

is fulfilled by the solid lines. For the dashed lines we have d/dR dR/dt > 0. Analog to
the discussion in the previous section, the system exhibits instabilities. The derivative

d

dR

dR

dt
= −

[
k2 + k′2E(R) + k′2R

dE(R)

dR

]
(4.86)

is independent of the stimulus S. As described above, the stability criterion has to be
fulfilled for a stable steady state. Otherwise, the state is referred to as unstable.

Up to now, we only discussed the difference between the stable and the unstable steady
state solutions. We pointed out, that the extremum,

d

dR

dR

dt
= 0 ,

of the net rate, limits the unstable range. But, for the critical point we gave no further
conditions. We want to do this now but before that we repeat a restriction to our
solution. It has to be physically relevant and thus the solution has to be positive,
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Figure 4.67: The rate curve of a mutually inhibited system (4.84). The solid line is the rate of degrada-
tion. The dashed lines are the R-independent production rates for different signal strength
S. Note, the change of the number of intersections (black dots) as a function of the signal.
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Figure 4.68: The net rate curve of a mutually inhibited system (4.84) as a function of the response
component for different signal strengths. The solid line are stable ranges of the net rate,
the dashed lines correspond to unstable regions. The intersection between the net rate and
the zero line are solutions of the balance equation (4.85).
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Figure 4.69: The stimulus-response curve for a mutually inhibited system (4.84). The system is partial
bistable. The stable branches are drawn as solid lines and the unstable as dashed lines.
The critical points Scrit1 and Scrit2 limit the unstable solution. The horizontal and vertical
dashed lines corresponds to the signal and response strength of the points. The forbidden
range of the steady state response is denoted as grey box. Parameter: k0 = 0, k1 = 0.05,
k2 = 0.06, k′2 = 0.5, k3 = 1, k4 = 0.2, J3 = 10, J4 = 0.01.

i.e., some quantity proportional to the molecule number (e.g. concentration, density,
. . .). From the net rate plot we obtain the critical point as zeros of the equation that
describes the reaction rate as function of the signal strength. From the balance equation
(4.85), it is this point that is limiting the real solution to the equation. The condition
is fulfilled for two points of the mutually inhibited system (4.84), one minimum and
one maximum. The bifurcation points of the mutually inhibited system both satisfy the
physical restrictions. We could expect, that the stimulus response curve for this system
has two critical points. The stimulus-response curve is shown in Figure 4.69. The stables
branches of the balance equation (4.85) are drawn as solid lines. The system is bistable
for Scrit2 < S < Scrit1 and monostable for all other stimuli. The dashed lines are the
unstable solutions limits, described by the critical points Scrit1 and Scrit2. If we increase
the strength of the stimulus, starting from the upper level, the steady state response
jumps at the first critical point to a high level output. If the stimulus decreases later,
the response decreases accordingly. In contrast to the one-way switch in the previous
section, the response now goes back to low level if the signal strength is smaller than
the second critical point. It is for this reason that we call this system a buzzer . The buzzer

monostable solutions are reversible, the response component is uniquely determined by
the signal strength.

Next, we discuss temporal properties of system (4.84). We assume that the activation
of the enzyme is a much faster reaction than the conversion of the signal component S
such that we can describe it with the Goldbeter-Koshland function. We first investigate
the behavior of the response to a stimulus between the critical points as a function of the
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Figure 4.70: The temporal evolution of the mutually inhibited module (4.84), dependent on the initial
response signal R0. We choose a signal strength between the two critical points and hence
the system is bistable. The unstable solution of the balance equation (4.85) is a separatrix
(dashed horizontal line). For initial states greater than this value the system tends to the
upper steady state. In the other case the lower steady state is reached. At the corresponding
response value of the critical points (dashed horizontal lines) the response signal changes
from unstable to stable behavior. Parameters: k0 = 0, k1 = 0.05, k2 = 0.06, k′2 = 0.5,
k3 = 1, k4 = 0.2, J3 = 10, J4 = 0.01 and S = 1.
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Figure 4.71: Temporal response for the mutually inhibited system (4.84), given a step-like time dependent
stimulus S. The steady state for critical signals (here S = 1.2) is dependent on the previ-
ous state. In the case of subcritical and supercritical stimuli the steady state is uniquely
determined by the signal strength. Parameters: k0 = 0, k1 = 0.05, k2 = 0.06, k′2 = 0.5,
k3 = 1, k4 = 0.2, J3 = 10, J4 = 0.01.
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initial response component R0. For subcritical values S < Scrit2 and supercritical S >
Scrit1 the system is monostable. The response signal moves to the unique steady state
for a constant stimulus. The numerical results are plotted in Figure 4.70. Dependent
on the initial value, the response signal evolves to the lower or upper steady state. The
unstable stimulus dependent solution is again a separatrix. If R0 > Rss(S) the upper
branch is reached, otherwise the lower branch. Figure 4.71 shows the temporal evolution
of the system for successive step-like stimuli of different strengths. Again, we let relax
the system to the corresponding steady state and change the stimulus thereafter. In
Figure 4.73 the influence of the duration of stimulus is investigated. We start with an
initial value R0 = 0 and an external signal S = 0.6. This is a subcritical stimulus
and the response signal keep on the lower branch. We then increase the stimulus to a
critical strength of S = 1.2. The response signal remains on the lower level. With the
following supercritical signal we force the system to the upper branch of the steady state
response. After some time we switch back to the critical signal. As expected, the system
now settles to a steady state on the upper branch. The system remembers its previous
state. The sub critical stimulus brings the system back on the lower branch. Finally, we
switched off the stimulus and the response signal returns to zero.

The temporal evolution of the response component R for different signal strength is
shown in Figure 4.72. We choose an example for each range of the stimulus strength.
Further on we investigate the behavior for two initial values of the response signal R0 = 0
(solid lines) and R0 = 0.7 (dashed lines). The second initial value is above the unstable
region of the steady state response shown as grey box. The limiting horizontal lines
denotes Rcrit1 and Rcrit2. In both situations the response component settles to the same
steady state if we apply a sub- and a supercritical signal. For a critical stimulus the
steady state depends on the initial state. The response component changes its behavior
within the response gap. In this region it is unstable and does never settle to a limiting
value. The value of the inflection points is given by the critical points.

Finally, in Figure 4.73 we vary the duration of a step-like signal. We start with the
high level response signal R0 = 1.1 and the subcritical external stimulus S = 0.5. After
the time ∆t we switch back to the critical stimulus S = 1.4. It follows our previous
discussion, that the response component R is decreasing to its lower level steady state
if the stimulus is constant. This is clearly seen for long signal durations, for instance
∆t = 45. If we switch to a critical stimulus the system will go to a steady state. Which
one, depends on ∆t. Only, if the response signal falls below the separatrix, the lower
branch of the bistable system (Figure 4.69) defines the new steady state. As long as
the response function has not enough time to do this, the system returns to the high
level response. We found a similar behavior for the mutually activated system (4.81) in
Figure 4.66. A stimulus greater than the critical stimulus value is not enough to change
the properties of the system. The duration of the signal must be long enough. The
separatrix works like a filter. Fluctuations are suppressed and do not lead to a change
in the behavior of the system.
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Figure 4.72: Temporal evolution of the response signal for different signal strengths and initial values.
The smallest signal is subcritical, the next is critical and the last is supercritical. Inde-
pendent on the initial state, the system settles to the same steady state for the subcritical
and analogue for the supercritical stimulus. For the critical signal the system shows again
memory and reaches two different steady states. Parameters: k0 = 0, k1 = 0.05, k2 = 0.06,
k′2 = 0.5, k3 = 1, k4 = 0.2, J3 = 10, J4 = 0.01.
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S = 1.4. Note, the final steady states depends on the duration of the subcritical stimulus.
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Parameters: k0 = 0, k1 = 0.05, k2 = 0.06, k′2 = 0.5, k3 = 1, k4 = 0.2, J3 = 10, J4 = 0.01,
R0 = 1.1.
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branches are drawn as solid lines, unstable as dashed lines. The corresponding critical
points are shown as circles. With decreasing k0 the system changes from an irreversible to
a reversible switch. The asymptotic system k0 = 0 is linear. Parameters: k1 = 0.01, k2 = 1,
k3 = 1, k4 = 0.2, J3 = 0.05, J4 = 0.05.

Dependency on parameters

The previous two sections discussed two systems with positive feedback/feedforward
mechanisms, leading to bistability. In the present section we investigate the dependency
of this special systems property on the rate coefficients ki. As an example for the two
systems, let us consider the mutually activated system (4.81) and vary the coefficient
k0. The numerical simulations are shown in Figure 4.74. For a better comparison we
extend the graphical representation to negative values of the external signal strength S.
Remember, the signal strength is per definition a positive definite quantity. Especially,
if we consider biochemical networks the external signal is a concentration of molecules.

For k0 = 0 we have the system discussed in the previous section. The system behaves
like an irreversible switch, once activated the system never return to the inactivated state.
But if we extend our calculations to negative signals we obtain the same hysteresis-
like behavior as for the mutually inhibited system. What happens, if we change the
parameter k0? In Figure 4.74 we show an example investigation.

Beginning with k0 = 0.4, the situation is equivalent to Figure 4.63. For the second
curve, k0 is chosen such that the second critical point is reached at S = 0. For k0 = 0.2,
the mutually activated system has a hysteresis-like behavior, equivalent to (4.84) (Figure
4.69). By changing one parameter we therefore alter the system from an irreversible
switch to a reversible. If we further decrease k0 the critical points coincide. The system
is then continuous. For smaller values of the rate coefficient k0 no more critical points
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exist. For k0 = 0 the system (4.81) is linear:

lim
k0→0

Rss =
k1

k2
S . (4.87)

Equation (4.87) represents an approximation for small signal strengths S. In the limit
E(R) is a small quantity. The product of k0 and E(R) is negligible in comparison
to the remaining terms in (4.81). The then linear system has a signal-response curve
corresponding to (4.87).

The simple investigation of the properties of a mutually activated system illustrates a
major problem in modeling biochemical networks: Often a behavior can be realised by
more than one kinetic model. The falsification of these models is usually not possible
with kinetic methods alone. The concentration of some hypothetic intermediates is
not measurable with direct kinetic methods. As we have seen, by changing one rate
coefficient, the behavior of the system change dramatically. In biochemical networks the
coefficients depend on properties such as temperature, volume and pressure.
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4.9.5.2 Negative feedback - Oscillations

According to the definition of Section 4.9.5, negative feedback means the response coun-
teracts the effect of the stimulus. There are two ways in which a negative influence can
be exerted: through an acceleration of degradation and a deceleration of production of
the response component.

Homoeostasis

In homoeostasis, the response on an external signal (stimulus) is approximately constant homoeostasis

over a wide range of signal strength. This behavior may also be described as a kind of
imperfect adaption. In contrast to the perfectly-adapted system (4.80) the response
component is not changed in response to step-change of the stimulus S (cf. Figure 4.59):

R

S

E E∗

Such a system can be described by the coupled system of differential equations

dR

dt
= k0E − k2SR

dE

dt
=
k3

(
1− E

)

J3 + 1− E −
k4RE

J4 + E





(4.88)

where the response component R inhibits the enzyme catalyzing its synthesis. In (4.88)
E is normalised to the total enzyme concentration ET .

If ones assumes, that the enzyme production reaches its steady state much faster than
the whole system, we can simplify (4.88) using (4.79). The enzyme concentration is now

dR

dt
= k0E(R)− k2SR

dE(R)

dt
= G(k3, k4R, J3, J4)





(4.89)

A comparison of production and degradation rate is shown in Figure 4.75.
The rate of production

rate of production = k0E(R)

implicitly depends from the response component R. The result is a sigmoidal curve.
The degradation rate

rate of degradation = k2SR

is a linear function with slope k2S. For those chosen range, it is assumed that the steady
state response is nearly independent from the external signal. The net rate, shown in
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Figure 4.75: Comparison of rate of response and degradation for the homoeostatic system (4.89) for
stimulus S. The solid lines are the degradation rates, (4.89), i.e., linear functions with slope
k2 ·S. The rate of response depends on R and has the typical sigmoidal shape of (4.79). The
intersections, denoted by dots, are again steady state solutions. Parameters: k0 = k2 = 1,
k3 = 0.5, k4 = 1, J3 = J4 = 0.01, ET = 1.
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Figure 4.76: Net rate for the homoeostatic system (4.89) for different external stimuli. The intersections
with the horizontal dashed line are the corresponding steady states. The steady states are
only weakly dependent on the stimulus S. Parameters: k0 = k2 = 1, k3 = 0.5, k4 = 1,
J3 = J4 = 0.01, ET = 1.

Figure 4.76, displays an analogues behavior. Again, we compare the influence of different
stimuli to the overall rate. The intersections with the dashed line, where the rate is zero,
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Figure 4.77: Stimulus-response curve for system (4.89) as a function of different ratios of rate coefficients
k0 and k2. The steady state response shows, for small ratios, a plateau over a range
of the signal S. The plateau decreases with increasing ratio and eventually disappears.
Parameters: k0 = 1, k3 = 0.5, k4 = 1, J3 = J4 = 0.01, ET = 1.

represent the steady states. The corresponding balance equation

0 = k0E(R)− k2SR (4.90)

can be transformed into
k2

k0
S =

E(R)

R
(4.91)

A solution for the dependence on the response component can only be found numerically.
On the other hand, (4.91) gives a rule to calculate the strength of the stimulus S for
known R. This implies that the ratio of the rate coefficients k0 and k2 plays an important
role for the behavior of the considered system. The corresponding signal-response curve
is shown in Figure 4.77, where we the ratio k2/k0 is varied. The ratio determines the
length of the expected plateau. The amplitude is weakly affected. For small signals the
steady state response is singular and for strong signals it tends to zero.

For a discussion of steady state properties for a homoeostatic system we neglected the
time dependence of the enzyme activation/deactivation reaction in (4.88). For the study
of the temporal behavior of such a system we do not make the assumption of a much
faster reversible enzymatic reaction. Before we continue this, let us return to the steady
state properties, derived from the coupled balance equations

0 = k0E − k2SR

0 =
k3

(
ET − E

)

J3 + ET − E
− k4RE

J4 + E

The solution of the enzymatic equation is again the Goldbeter-Koshland function we
used in (4.89). After insertion into the first equation we obtain again (4.91). The
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Figure 4.78: Comparison of temporal evolution of homoeostatic system (4.88) and its simplified version
(4.89) for different signal strengths S. The solutions of the full system are drawn as solid
lines, while dashed lines are used for the simplified case. Parameters: k0 = k2 = 1, k3 = 0.5,
k4 = 1, J3 = J4 = 0.01, ET = 1.

steady state solution of a coupled system of equations remains therefore unaffected. We
thus expect, that the system will reach the same steady state in its temporal evolution.
In Figure 4.78 we plot numerical solutions of (4.88) for the response component and
compare it with solutions of (4.89). The differences in temporal behavior can be divided
into three classes, corresponding to the three ranges in the stimulus-response curve.
In the homoeostatic range, the system displays damped oscillations around the steady
state. Common for all three cases is a difference in the relaxation time. The system
(4.88) takes longer than (4.89) to reach the steady state. The simplification made in
(4.89) makes it easier to handle the differential equations and does not affect the steady
state. On the other hand, no oscillations occur with this approximation. Nevertheless,
the assumption of a much faster process is often used to simplify the treatment.

Negative feedback oscillator

The previous section showed how negative feedback can introduce damped oscillations.
We here show how negative feedback can lead to stable oscillations. Therefore we con-
sider a system of three components
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S

X

Y Y ∗

R R∗

The mathematical model for this system is defined by the following equations

dX

dt
= k0 + k1S −

(
k2 + k′2R

∗)X
dY ∗

dt
=

k2X (YT − Y ∗)
KM3 + YT − Y ∗

− k4Y
∗

KM4 + Y ∗

dR∗

dt
=
k5Y

∗ (RT −R∗)
KM5 +RT −R∗

− k6R
∗

KM6 +R∗





(4.92)

where X activates the protein Y . The activated protein Y ∗ activates the next protein
R. Its activated form catalyzes the degradation of X. Another possible way to close
the negative feedback loop is the inhibition of production from S. We focus on the first
case. A numerical simulation of (4.92) is given in Figure 4.79. All three components
show oscillations. The third component Y ∗ introduces a time delay in the feedback
loop, causing the control system repeatedly to over- and undershoot its steady state.
Within the shown interval the oscillation are damped. The system takes a certain time
to establish stable oscillations, depending on the chosen set of parameters. For instance,
if one increases the rate coefficient k′2 to 20, the amplitude will initially increase until the
limit cycle is reached. A variation of k0 influences the strength of damping or amplifying
and the amplitude of the limit cycle. In the phase-plane representation, Figure 4.80, it
is shown, how the three components settle towards a limit cycle.

Let us now focus on steady state properties. The state steady state are derived from
the set of coupled balance equations

0 = k0 + k1S −
(
k2 + k′2R

∗)X

0 =
k2X (YT − Y ∗)
KM3 + YT − Y ∗

− k4Y
∗

KM4 + Y ∗

0 =
k5Y

∗ (RT −R∗)
KM5 +RT −R∗

− k6R
∗

KM6 +R∗

(4.93)

The balance equation for each subsystem itself is solvable but the steady state solution of
the coupled system for the response component is lengthy and complicated. Therefore
we prefer a numerical solution of (4.93). The corresponding stimulus-response curve
is plotted in Figure 4.81. The solution is separated into two stable (solid line) and
an unstable range (dashed line). In the unstable range the system performs stable
oscillations. The amplitude of the oscillation depends on the stimulus S as shown by
the dashed-dotted curve.
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Figure 4.79: The temporal evolution of the negative feedback oscillator (4.92). All three components
X, Y ∗, and R∗ perform oscillations. Within the shown time interval these oscillations are
damped. Parameters: k0 = 0, k1 = 1, k2 = 0.01, k′2 = 10, k3 = 0.1, k4 = 0.2, k5 = 0.1,
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Figure 4.80: Phase-plane representation of numerical solution of (4.92). We combine three possible
combinations in this figure. All components perform oscillations and tend to the limit cycle
within a certain number of oscillations. Parameters: k0 = 0, k1 = 1, k2 = 0.01, k′2 = 10,
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Figure 4.81: Stimulus-response curve as function of the external signal strength S for the negative feed-
back oscillator (4.92). The straight line is the numerical steady state solution of (4.93). The
solid parts denote stable ranges. In the interval 0.26 < S < 6, the solution is unstable and
the system performs oscillations, as in Figure 4.79. The maxima and minima as a function
S are plotted as the dash-dotted curve. Parameters: k0 = 0, k1 = 1, k2 = 0.01, k′2 = 10,
k3 = 0.1, k4 = 0.2, k5 = 0.1, k6 = 0.05, KM3 = KM4 = KM5 = KM5 = 0.01.

4.9.5.3 Mixed control mechanisms

In the present section, different feedback mechanisms are combined.

Activator-Inhibitor-Oscillator

Our first example combines the mutually activated system (4.81) and an autoinhibition
of the response component.

R

S

E∗ E

X

The response component R is produced in an autocatalytic process. It activates the
enzyme E∗ which accelerate the production of R. On the other hand, the response
component promotes the production of the inhibitor X at the same time. The inhibitor
speeds up the removal of R. Again, we assume that the enzyme is always in its steady
state described by the relation (4.79), assuming the activation/deactivation process is
much faster than the other reactions in the system. This assumption simplifies our
further discussion and restrict the (mathematical) dimension of the corresponding system
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Figure 4.82: The temporal evolution of system of an activator and an inhibitor (4.94) as function of time.
The solid line is the response component and the dashed line the inhibitor. After a short
starting time the system carries out stable oscillations. Parameters: k0 = 4, k1 = k2 = k′2 =
k3 = k4 = 1, k5 = 0.1, k6 = 0.075, J3 = J4 = 0.3, S = 0.2, R0 = 0, X0 = 1.2.

of differential equations

dR

dt
= k0E

∗(R) + k1S −
(
k2 + k′2X

)
R

dX

dt
= k5R− k6X

E∗(R) = G(k3R, k4, J3, J4)

(4.94)

For this composed system an analysis in terms of rate of production/degradation and the
net rate is only possible in three dimensions12. The assumption of the steady state for the
enzyme avoids an additional fourth dimension. The temporal evolution of the response
signal R(t) and the inhibitor X(t) is numerically solvable from the coupled differential
equations (4.94). For the chosen set of parameters we obtain stable oscillations in Figure
4.82 for both components. If the amount of R small, the production of the response
component is the main process. The degradation of the inhibitor is faster than its
production. This results in an increase of the response component. With increasing R
also the production of the inhibitor is increasing. The acceleration of the degradation of
R leads to a decrease of the response component, returning us to where we started.

The phase plane representation of the oscillations is shown in Figure 4.83. Additionally
to the limit cycle of the oscillation we plotted the steady states as a function of the
response component R andX. The steady states are obtained from the balance equations

dR

dt
= k0E

∗(R) + k1S −
(
k2 + k′2X

)
R = 0 (4.95)

12One for the response component R, one for the rate of change of the response component, and one for
the rate of change of the inhibitor X.
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and
dX

dt
= k5R− k6X = 0 (4.96)

Equation (4.96) for the inhibitor can be solved analytically leading to a straight line
with slope k6/k5:

R =
k6

k5
X . (4.97)

In Figure 4.83, the closed curve is the phase-plane representation of the temporal evolu-
tion shown in Figure 4.82. After an initial time the system reaches a stable limit cycle.
The straight line and the line that is in parts dashed, are the stimulus-response curves of
the subsystems. The straight line is the analytic solution (4.97). The solution of (4.95)
is numerically found. The stable solutions are shown as solid sections of the line and the
unstable solution as a dashed line. The corresponding critical points are shown as filled
dots. The solutions of the balance equations (4.95) and (4.96) have an intersection, which
is the steady state solution shown as a dot on the straight line. For the chosen para-
meters the steady-state is unstable leading to an oscillating behavior. As one subsystem
tries to reach one of its two stable states, the resulting production or degradation of X
forces it back to the unstable state and the cycle starts again. The intersection depends
on the signal strength S. By an increase or decrease of S we move the solution of (4.95)
in Figure 4.83 until the intersection is stable. For the corresponding signal strengths
the activator-inhibitor system has an stable steady state. No more stable oscillations
occur. Such a situation is shown in Figure 4.84. At the intersection both solutions are
stable, although near the critical point. The system (4.94) shows damped oscillations
and reaches a stable steady state. The phase plane shows a typical spiralling curve with
decreasing amplitude. For still higher signal strengths the intersection moves further
away from the critical point and the damped oscillations will disappear.

As discussed above, the oscillatory behavior of the considered system (4.94) strongly
depends on the strength of external signal S. Oscillations occur only if the intersection
between the steady states of each subsystem is on the unstable branch of (4.95). The
parameter we can change is the external signal S. The internal parameter we assume
as inherent, uniquely determined by conditions like temperature, pH-value and so on.
The stimulus-response curve shows a new qualitative property. There are intervals in
the signal strength S, where the system tends to a steady state. For the chosen values
of the rate coefficients, see Figure 4.85, this behavior is established in the intervals
0 < S < 0.066 and S > 0.41. In the intermediate range the response signal R oscillates
around the unstable steady state, shown as a dashed line in Figure 4.85. The amplitude
and minimal (Rmin) and maximal (Rmax) values are functions of the stimulus signal S.

Substrate-Depletion-Oscillator

As second example of an oscillating mixed system we choose a substrate-depletion-
oscillator.
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Figure 4.83: Phase-plane representation and stimulus-response curve for the activator-inhibitor system
(4.94) with a constant external signal strength. Parameters: k0 = 4, k1 = k2 = k′2 = k3 =
k4 = 1, k5 = 0.1, k6 = 0.075, J3 = J4 = 0.3, S = 0.2, X0 = 1.2, R0 = 0.
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Figure 4.84: Phase-plane representation and stimulus-response curves for the activator-inhibitor subsys-
tems (4.95)-(4.96). In contrast to Figure 4.83 the system reaches a stable steady state.
Starting with R0 the system has damped oscillations around this stable state and ends
finally in it. Parameters: k0 = 4, k1 = k2 = k′2 = k3 = k4 = 1, k5 = 0.1, k6 = 0.075,
J3 = J4 = 0.3, S = 0.43, X0 = 1.2, R0 = 0.5.
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Figure 4.85: The stimulus-response curve for the system (4.94). The steady state solutions of the coupled
system of equation (4.95) and (4.96). The stable solutions are drawn as solid and the
unstable solution as the dashed section of the line. The closed curve shows the maximal
and minimal values of the response signal in the case of stable oscillations. On the critical
points S1 ≈ 0.066 and S2 ≈ 0.41 the system changes is behavior abruptly. Parameters:
k0 = 4, k1 = k2 = k′2 = k3 = k4 = 1, k5 = 0.1, k6 = 0.075, J3 = J4 = 0.3.
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E∗ E

The signalling component S is converted into the intermediate X. From the intermedi-
ate the response component R is produced. On the other hand the response component
activates the enzyme E∗, increasing the conversion rate from X to R. For such a reaction
scheme we obtain the following system of coupled differential equation

dX

dt
= k1S −

(
k′0 + k0E

∗(R)
)
X

dR

dt
=
(
k′0 + k0E

∗(R)
)
X − k2R

E∗(R) = G(k3R, k4, J3, J4) .

(4.98)

We again assume that the activation/deactivation of the enzyme is much faster than
the other reaction. Hence, the enzyme E∗ is assumed to be always in a steady state.
The corresponding steady state solution is then (4.79). In Figure 4.86 the numerical
simulation of (4.98) is shown. For the chosen set of parameters the system displays
stable oscillations. First, the amount of the intermediate X increases faster than it is
converted into the response component R. But R promotes its own production via the
enzyme E∗. According to the sigmoidal shape of (4.79), the positive feedback term k0E

∗
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Figure 4.86: The oscillatory behavior of the system (4.98). The response signal R(t) is drawn as solid
line and the intermediate X(t) as a dashed line. Parameters: k0 = 0.4, k′0 = 0.01, k1 =
k2 = k3 = 1,k4 = 0.3, J3 = J4 = 0.05, S = 0.2, X0 = 1, R0 = 0.2.

is small in comparison to the direct transformation with k′0. The response component
will increase approximately linear. If R exceeds a critical value the enzyme concentration
jumps to a high value. The conversion from X into R is now determined by the reaction
of the activated enzyme and the intermediate. This reaction is faster than the production
of X. The result is a strong increase of the response component until the intermediate
is depleted. Then the fast production of R breaks down. On the other hand, the decay
of the response component is now faster as its slow production and its concentration
decrease. In the mean time the amount of X increase again.

Next we investigate the system (4.98) in more detail. We start with a computation of
the steady state, solving the coupled system of balance equations

0 = k1S −
(
k′0 + k0E

∗)X , (4.99)

0 =
(
k′0 + k0E

∗)X − k2R . (4.100)

For the respective subsystems we derive

X =
k1 S

k′0 + k0E∗(R)
(4.101)

from (4.99) and

R =
k′0 + k0E

∗(R)

k2
X (4.102)

for the second equation (4.100). Both solutions are shown in Figure 4.87, together with a
phase-plane representation of the temporal evolution in Figure 4.86. Whereas, (4.101) is
a monostable function, the stimulus-response curve of the R-subsystem is bistable. This
bistability triggers the occurrence of oscillations. Remember, the steady state of the
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Figure 4.87: Phase-plane representation of the substrate-depletion oscillator (4.98) combined with
stimulus-response curves of the subsystems. The solid black line is the limit cycle of the
stable oscillations of intermediate X and response component R. The balance equations
(4.99) and (4.100) were numerically solved. The steady state solution, the intersection of the
stimulus-response curves, is located in the unstable branch of the response component, the
system therefore displays oscillations around this point. Parameters: k0 = 0.4, k′0 = 0.01,
k1 = k2 = k3 = 1, k4 = 0.3, J3 = J4 = 0.05, S = 0.2, X0 = 1, R0 = 0.2.

substrate-depletion oscillator is given by the intersection of both curves. Mathematically
we have to derive the balance equations (4.99) and (4.100) simultaneously. The result is
the linear function

Rss =
k1

k2
S . (4.103)

But for a stable steady state all subsystems have to be in a stable steady state. This
is not the case for the given set of parameters in Figure 4.87. The system performs
oscillations around the steady state solution (4.103).

If we choose other rate coefficients the intersection of (4.101) and (4.102) change its
position. Again, in analogy to the activator-inhibitor system (4.94) the state space
of substrate-depletion oscillator (4.98) is separated into a region of stable oscillation
and a non-oscillating part, where the system tends to a stable steady state. In Figure
4.88 this is illustrated with the stimulus-response representation. The straight line are
the steady state solutions (4.103) following from (4.99) and (4.100) as a function of
the external signal strength S. Solid parts of the line corresponds to a stable steady
state. With the dashed part the system performs stable oscillations around the formal
solution. The closed line corresponds to maximal and minimal values of the amplitude.
This pictures shows a sharp transition between both behaviors. The value of minimal
response component is nearly constant, where the maximum depends on the external
signal.
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Figure 4.88: Stimulus-response curve for the substrate-depletion oscillator (4.98). The straight line are
the steady states. In the interval 0.132 < S < 0.365 the system has no stable solution of the
balance equations, shown as a dashed segment of the line. Under these conditions oscillations
occur. The maximal and minimal values of the response component are shown as a closed
curve. Again the amplitude of oscillations depends from the signal strength. Outside the
unstable region the response component tends to the steady state value. Near the critical
points damped oscillations occur. Parameters: k0 = 0.4, k′0 = 0.01, k1 = k2 = k3 = 1,
k4 = 0.3, J3 = J4 = 0.05.
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Where a cell arises, there must be a previous cell, just as animals can only arise from
animals and plants from plants. This cell doctrine, proposed by the German pathologist
Rudolf Virchow in 1858, carried with it a profound message for the continuity of life.
Cells are generated from cells, and the only way to make more cells is by division of those
already exist. All living organisms, from the unicellular bacterium to the multicellular
mammal, are products of repeated rounds of cell growth and division extending back in
time to the beginning of life on Earth over three billion years ago.

A cell reproduces by performing an orderly sequence of events in which it duplicates
its contents and then divides in two. This cycle of duplication and division, known as
cell cycle, is the essential mechanism by which all living things reproduce. In unicellular
species, such as bacteria and yeasts, each cell division produces a complete new organism.
In multicellular species, long and complex sequences of cell divisions are required to
produce a functioning organism. Even in the adult body, cell division is usually needed
to replace cells that die. In fact, each of us must manufacture many million of cells every
second simply to survive: if all cell division were stopped - by exposure to a very large
dose of x-rays, for example - we would die in few days.

The minimum set of processes that a cell has to perform are those that allow it to
accomplish its most fundamental task: the passing on of its genetic information to the
next generations of cells. To produce two genetically identical daughter cells, the DNA
in each chromosome must first be faithfully replicated to produce two complete copies,
and the replicated chromosomes must then be accurately distributed (segregated) to the
two daughter cells, so that each receives a copy of the entire genome. In addition to
duplicating their genetic material, most cells also duplicate their other organelles and
macromolecules; otherwise, they would get smaller which each division. To maintain
their size, dividing cells must coordinate their growth (i.e., their increase in cell mass)
with their division.

5.1 An Overview of the Cell Cycle

For this overview about the cell cycle we follow the representation of Alberts et al.
[AJL+02]. The most basic function of the cell cycle is to duplicate accurately the vast
amount of DNA in the chromosomes and then segregate the copies precisely into two
genetically identically daughter cells. These processes defines the two major phases
of the cell cycle. DNA duplication occurs during the S phase (S for synthesis), which
requires 10-12 hours and occupies about half of the cell-cycle time in a typical mammalian
cell. After S phase, chromosomes segregation and cell division occur in M phase (M for
mitosis), which requires much less time (less than an hour in a mammalian cell).
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Figure 5.1: The phases of the cell cycle. The cell growths continuously in interphase, which consists of
three phases: S phase where the DNA is replicated; G1 is the gap between M phase and S
phase, which can be interrupted by a resting phase G0. G2 is the gap between S phase and
M phase. In M phase, first the nucleus and then the cytoplasm divide.

Most cells requires much more time to grow and double their mass of proteins and
organelles than they require to replicate their DNA and divide. Partly to allow more
time for growth, extra gap phases are inserted in most cell-cycles — a G1 phase between
M phase and S phase and a G2 phase between S phase and mitosis. Thus, the eucaryotic
cell cycle is divided into four sequential phases: G1, S, G2, and M. G1, S, and G2 together
are called interphase, see also Fig. 5.1. In a typical human cell proliferating in culture,
interphase might occupy 23 hours of a 24 hours cycle, with an 1 hour for M phase.

The two gap phase serve as more than simple time delays to allow cell growth. They
also provide time for the cell to monitor the internal and external environment to ensure
that conditions are suitable and preparations are complete before the cell commits itself
to the major upheavals of S phase and mitosis. The G1 phase is especially important in
this respect. Its length can vary greatly depending on external conditions and extracellu-
lar signals from other cells. If extracellular conditions are unfavorable, for example, cells
delay progress through G1 and may even enter a specialised resting state known as G0,
in which they can remain for days, weeks, or even years before resuming proliferation. If
extracellular conditions are favorable and signals to grow and divide are present, cells in
early G1 or G0 progress through a commitment point near the end of G1. After passing
this point, cells are committed to DNA replication, even if the extracellular signals that
stimulate cell growth and division are removed. An introduction to underlying modules
and control mechanisms is given in Chapter 4.9.

The cell cycle is separated roughly into four phases (excluding an additional resting
phase). But Mitosis and S-Phase play a special role in this complex sequence of cellular
events. During these phases some remarkable changes in the contents and functionality
of the cell are occurring.
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5.1.1 Mitosis - Key events

Mitosis is the final step in the process of cell division. But before the cell can divide into
two daughter cells some preparing steps are necessary. Mitosis can be separated into
four key events as represented [MK89]. In the Prophase, the dispersed duplicated chro-
mosomes are condensed into a state suitable for transport. Additionally, the metabolic
activity is reduced. The condensed and inactive chromosomes are position at the equator
of the nuclei in the Prometaphase. This phase is followed by the Anaphase, where the
duplicated chromosomes are separated into two identical parts. Due to the progress in
experimental technique and technology, this can now be observed in experiments. Sub-
sequently, the chromosomes move towards opposite ends of the nuclei. In the Telophase
the chromosomes decondensates and become metabolic active. Simultaneously, there is
a reformation of the nuclei.

Additionally to the processes inside the nuclei, there are further rearrangements in the
cytoplasm providing the cell division. For example, the microtubuli and microfilaments
of the cytoskeleton are rearranged, the Golgi apparatus is dispersed into a large number of
small vesicles and is distributed throughout the cell. Additionally, the protein synthesis
is slow down to about 25% of its normal rate.

5.1.2 S-Phase

As mentioned earlier, the chromosomes are doubled during the S-phase. But the syn-
thesis not only replicates the chromosomes completely and precisely. In addition, the cell
also has to duplicate the complex chromosome architecture [LFB89]. Especially, it cop-
ies the specific patterns of gene activity and inactivity. For this reason, a specialised cell
divides into two daughter cells with the same functionality. A further sub-specialisation
of the daughter cell is possible during their life time. Additionally to functional in-
formation, also cell cycle specific data are stored and transferred during the S-phase.
Eukaryotic cells tag the replicated DNA and distinguish between replicated and unrep-
licated DNA. Hence, the replication of DNA take place only once between cell divisions.
This is a hallmark of eukaryotic cells distinguishing them from prokaryotes. Further-
more the most differentiate cells contains information about the number of replications.
It prohibits the infinite division of a cell line. After a certain number of replications the
cell cannot duplicate the chromosomes. The cell cycle cannot be finished and internal
regulatory mechanisms drive the cell into Apoptosis.

5.2 The Cell-Cycle Control System

Eucaryotic cells have evolved a complex network of regulatory proteins, known as the
cell-cycle control system, that governs progression through the cell cycle. The core of
this system is an ordered series of biochemical switches that control the main events
of the cycle, including DNA replication and the segregation of the replicated chromo-
somes. In most cells, additionally layers of regulation enhance the fidelity of cell division
and allow the control system to respond to various signals from both inside and outside
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the cell. Inside the cell, the control system monitors progression through the cell cycle
and delays later events until earlier events have been completed. Preparations for the
segregation of replicated chromosomes, for example, are not permitted until DNA rep-
lication is complete. The control system also monitors the conditions outside the cell.
In a multicellular organism, the system is highly responsive to signals from other cells,
stimulating cell division when more cells are needed and blocking it when they are not.
The cell-cycle control system therefore has a central role in regulation cell numbers in
the tissues of the body. When the system malfunctions, excessive cell division can results
in cancer.

In principle, one can imagine that the most basic control system should possess the
following features:

• A clock, or timer, that turns on each event at a specific time, thus providing a
fixed amount of time for the completion of each event.

• A mechanism for initiating events in the correct order; entry into mitosis, for
example, must always come after DNA replication.

• A mechanism to ensure that each event is triggered only once per cycle.

• Binary (on/off) switches that trigger events in a complete, irreversible fashion. For
example, once initiated the DNA synthesis must be completed.

• Adaptability, so that the system’s behavior can be modified to suit specific cell
types or environmental conditions.

• Robustness: backup mechanisms to ensure that the cycle can work properly even
when parts of the system malfunction.

• Abnormal termination: control mechanisms to ensure that the cycle results in a
perfect’ copy of the mother cell. For instance, if there are unrecoverable errors
in the duplicated genome the cell cycle has to stop definitively and the cell death
(apoptosis) must be initiated.

Especially, the required robustness and the ability of an abnormal termination are ant-
agonists in the optimisation process of the cell cycle. A very robust design might be
insusceptible to malfunctions but crucial errors, e.g. in the DNA duplication, remains
without consequences in the further course. On the other hand, an undersized error
tolerance leads to a very fragile and inflexible cell cycle.

An adjustable cell-cycle control system is an very important feature for the adaptation,
e.g. on environmental changes, of the cell cycle. The control system of simple embryonic
cells is based on a clock. The timer is unaffected by the events it regulates and will
progress through the whole sequence of events even if one of those events has not been
successfully completed. In contrast, the control system of most cell cycles is responsive
to information received back from the processes it is controlling. Sensors, for example,
detect the completion of DNA synthesis, and, if some malfunction prevents the successful
completion, signals are sent to the control system to delay or stop progression to the
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next phase. These delays provide time for the machinery to be repaired and also prevent
the disaster that might result if the cycle progressed prematurely to the next stage.

In most cells there are several points in the cell cycle, called checkpoints, at which
the cell cycle can be arrested if previous events have not been completed or extracellular
conditions are unfavorable. For example, the progression through G1 and G2 is delayed
by braking mechanisms if the DNA in the chromosomes is damaged by radiation or
chemicals. The delays provide time for the damaged DNA to be repaired.

Furthermore, the cell cycle can be regulated by extracellular signals from other cells
at the checkpoints. These signals can either promote or inhibit cell proliferation.

Although most checkpoints are not essential for normal cell-cycle progression under
ideal conditions, populations with checkpoint defects often accumulate mutations due to
occasional malfunctions in DNA replication, DNA repair, or spindle assembly. Some of
these mutations can promote the development of cancer.

5.2.1 Cell-Cycle control system and cyclically activated protein kinase

At the heart of the cell-cycle control system is a family of protein kinases known as
cyclin-dependent kinases (Cdk). The activity of these kinases rises and falls as the cell
progress through the cycle. The oscillations lead directly to cyclical changes in the
phosphorylation of intracellular proteins that initiate or regulate the major events of the
cell cycle — DNA replication, mitosis, and cytokinesis. An increase in Cdk activity at
the beginning of mitosis, for example, leads to increased phosphorylation of proteins that
control chromosome condensation, nuclear envelope breakdown, and spindle assembly.

Cyclical changes in Cdk activity are controlled by a complex array of enzymes and
other proteins. The most important of these Cdk regulators are proteins known as
cyclins. Cdks are dependent on cyclins for their activity: unless they are tightly bound
to a cyclin, they have no protein kinase activity. Cyclins were originally named as such
because they undergo a cycle of synthesis and degradation in each cell cycle. Cdk levels,
by contrast, are constant, at least in the simplest cell cycles. Cyclical changes in cyclin
levels result in the cyclic assembly and activation of the cyclin-Cdk complexes. This
activation in turn triggers cell-cycle events, as it is outlined in Figure 5.2.

There are four classes of cyclins, each defined by the stage of the cell cycle at which
they bind Cdks and function. Three of these classes are required in all eucaryotic cells:

1. G1/S-cyclins bind Cdks at the end of G1 and commit the cell to DNA replication.

2. S-cyclins bind Cdks during S-Phase and are required for the initiation of DNA
replication.

3. M-cyclins promote the events of mitosis.

The fourth class, the G1-cyclins, helps promote passage through Start or the restriction
point in late G1. Whereas in yeast a single Cdk protein binds all classes of cyclins and
drives all cell-cycle events by changing cyclin partners at different stages of the cycle, in
vertebrates cells there are four Cdks. Two interact with G1-cyclins, one with G1/S- and
S-cyclins, and one with M-cyclins.
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Figure 5.2: Simplified view of the core of the cell-cycle control system [AJL+02]. For demonstration
purposes, only the cyclins that act in S phase (S-cyclin (blue)) and M phase (M-cyclin (green))
are shown. The interaction between a single Cdk and a cyclin results in a cyclin-Cdk complex
referred to as S-Cdk and M-Cdk, respectively.

The rise and the fall of cyclin concentrations is the primary determinant of Cdk
activity during the cell cycle. Several additional mechanisms, however, are important
for fine-tuning Cdk activity at specific stages in the cell cycle.

The activity of a cyclin-Cdk complex can be inhibited by phosphorylation at a pair
of amino acids in the roof of the active site. Phosphorylation of these sites by a protein
kinase known as Wee1 inhibits Cdk activity, while dephosphorylation of these sites by
a phosphatase known as Cdc25 increase the activity, as shown in Figure 5.3[a]. This
regulatory mechanism is particular important in the control of M-Cdk activity at the
onset of mitosis.

A further regulation arises from the binding of Cdk inhibitor proteins (CKI), see
Figure 5.3[b]. There are a variety of CKI proteins, and they are primarily employed in
the control of G1 and S phase.

5.2.2 Cell cycle and cell growth

For proliferating cells to maintain a relatively constant size, the length of the cell cycle
must match the time it takes the cell to double in size. If the cycle time is shorter
than this, the cells will get smaller with each division. The cells will get bigger with
each division, if it is longer. Because cell growth depends on nutrients and growth
signals in the environment, the length of the cell cycle has to be adjustable to varying
environmental conditions. There must be a correlation between cell growth and cell
cycle. However, it is not clear how proliferating cells coordinate their growth with the
rate of cell-cycle progression to maintain their size.
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Figure 5.3: Regulation of Cdk activity by inhibitory phosphorylation and a CKI [AJL+02]
[a] Inhibitory phosphorylation: The active cyclin-CDK complex is deactivated when the
kinase Wee1 phosphorylates two closely spaced sites above the active site. The phosphatase
Cdc25 removes these phosphates and activates the complex.
[b] Inhibition by CKI: The CKI binds to both the cyclin and Cdk in the complex, distorting
the active site of Cdk. It also inserts into the ATP-binding site, further inhibiting the enzyme
activity.

There is evidence that cells coordinate their growth and cell-cycle progression by
monitoring the total amount of a G1 cyclin, which is synthesised in parallel with cell
growth. But the mechanism, how the cell measures the total amount rather than its
concentration, is still unclear.

Whereas cells of simple organisms grow and proliferate constitutively if nutrients are
plentiful, animal cells generally grow and proliferate only when they are stimulated to
do so by signals from other cells. The size at which an animal cell divides depends
on, at least in part, on these extracellular signals, which can regulate cell growth and
proliferation independently. Animals cells can also completely uncouple cell growth
and division so as to grow without dividing or to divide without growing. The eggs
of many animals, for example, grow to an extremely large size without dividing. After
fertilisation, this relation is reversed, and many rounds of division occur without growth.

Thus, cell division and cell growth are usually coordinated, but they can be regulated
independently. Cell growth does not depend on cell-cycle progression. Neurons and
muscle cells, for example, grow large after they are withdrawn permanently from the cell
cycle.

5.3 Model Systems to Study the Cell-Cycle Control System

The cell-cycle can be investigated experimentally on some ‘simple’ model systems. In
studies of the genetics of the cell cycle a tiny, single-celled fungi, Yeast, is used. Two
species are generally used in experiments. The fission yeast Schizosaccharomyces pombe
is named after the African beer it used to produced. The budding yeast Saccharomyces
cerevisiae is used by brewers, as well as by bakers. These two species share a number of
features that are extremely useful for genetic studies.

They reproduce almost as rapidly as bacteria and have a genome size less than 1%
that of a mammal. They are amenable to molecular genetic manipulation, whereby genes
can be deleted, replaced, or altered. Most importantly, they have the unusual ability to
proliferate in a haploid state, in which only a single copy of each gene is present in the
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cell. In such cells one avoids the complication of having a second copy of the gene in the
cell and it is easy to isolate and study mutations that inactivate a gene. Many of these
mutations cause cells to arrest at a specific point in the cell cycle, suggesting that the
normal gene product is required to get the cell past this point.

While yeasts are ideal for studying the genetics of the cell cycle, the biochemistry of
the cycle is most easily analyzed in the giant fertilised eggs of many animals, which carry
large concentrations of the proteins needed for cell division. The egg of the frog Xenopus,
for example, is over 1mm in diameter and carries about 105 times more cytoplasm than
an average cell in the human body. Fertilisation of the egg triggers an astonishingly
rapid sequence of cell divisions, in which the single giant cell divides, without growing,
to generate an embryo containing thousands of smaller cells. In this process, almost
the only macromolecules synthesised are DNA — required to produced the thousands
of new nuclei — and a small amount of proteins.

The cells in early embryos of Xenopus, as well as those of the clam Spisula and the
fruit fly Drosophila are thus capable of exceedingly rapid division in the absence of
either growth or many of the control mechanisms that operate in more complex cell
cycles. These early embryonic cells cycles therefore reveal the working of the cell-cycle
control system stripped down and simplified to the minimum needed to achieve the
most fundamental requirements — the duplication of the genome and its segregation
into two daughter cells. Another advantage is their large size. It is relatively easy to
inject test substances into an egg to determine their effect on cell-cycle progression. It
is also possible to prepare almost pure cytoplasm from Xenopus eggs and reconstitute
many events of the cell cycle in a test tube.

5.4 Modeling the Cell Cycle of Yeast

A often used model organism for studying the cell cycle, its components and its regula-
tion is the single celled yeast. Because of its known gene sequence we can identify the
encoding genes of proteins. With this knowledge knock-out experiments were made to
identify the proteins participating on the cell cycle. Furthermore we obtain information
of their function during the cycle, e.q. if a specific protein triggers the transition from G2

to M phase. If we know the components and their function, we are able to build a math-
ematical model. The numerical simulation of this model provides us with information of
the temporal operation of the cell cycle. This we demonstrate now using a model of the
yeast cell cycle developed by Novak et al. [NPCT01]. But before we discuss the math-
ematical representation of the cell cycle engine in yeast we want to shortly introduce the
molecular basis of the model.

5.4.1 Molecular components of the yeast cell cycle

Lower eukaryotes, like yeast, use only one essential Cdk subunit (generally called Cdk1).
In yeast Cdk1 is often called Cdc2, in recognition of the gene (cdc2) that encodes this
protein in fission yeast [Nur90]. In fission yeast complexes between Cdc2 and the B-type
cyclin Cdc13 play the major roles in cell cycle regulation [FN95, Nas96b]. Deletion of
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the gene encoding this essential cyclin produces mutant cells that cannot enter mitosis
[HFWN94].

DNA replication occurs once per cycle because Cdk activity not only triggers DNA
replication but also inhibits replication of DNA [SN96]. To start DNA synthesis, Cdk
activity causes properly licensed origins of replication to begin copying the chromosomes,
and the same time it phosphorylates licensing factor molecules, making them more sus-
ceptible to degradation. Disappearance of licensing factors from the nucleus prevent
further rounds of replication. Cdk activity increases to higher level in late G2, thereby
initiating M phase. As cells exit M phase, Cdk activity must be destroyed, to permit
accumulation of licensing factors at replication origins in the next G1 phase.

Destruction of Cdk activity as cells exit mitosis is the job of the anaphase promoting
complex (APC). The APC is a large protein complex that attaches ubiquitin tags to
target proteins, which are then rapidly degraded by proteasomes. The APC has two
important functions at anaphase:

1. to initiate degradation of the cohesion proteins that hold two sister chromatids
together, thereby initiating mitotic anaphase

2. to initiate degradation of B-type cyclins, thereby permitting cells to re-enter G1

phase

To recognise the proper substrates for ubiquitination, the APC core requires specific
“auxiliary” proteins. Slp1 targets the cohesion complex for disassembly, and both Slp1
and Ste9 present Cdc13 to the APC for ubiquitination [YON00, BSDdPM00]. Proper
timing of these events is controlled by phosphorylation and dephosphorylation of Slp1
and Ste9.

5.4.1.1 MPF’s enemies and friends

The activity of the Cdc2/Cdc13 complex (also called “M-phase promoting factor” MPF)
is controlled by antagonistic interactions with its enemies. These enemies have negative
effects on MPF, but MPF can down-regulate all of its enemies. Two of these enemies
are active in G1 phase, while a different group regulates the G2/M transition.

The first G1 enemy, Ste9 [YMO97, KMS98] targets Cdc13 to the APC core and pro-
motes its degradation. On the other hand, phosphorylation of Ste9 by MPF inhibits its
association with the APC core, rendering it inactive [YON00, BSDdPM00].

The other G1 enemy of MPF is a stoichiometric inhibitor, called Rum1 [MN94], which
can bind to Cdc2/Cdc13 complexes and inhibits their activity [CBN95, MCLM96]. On
the other hand, a phosphorylation of Rum1 by MPF promotes its ubiquitination and
rapid degradation [BMCM98]. Hence, there is antagonism between MPF and Rum1, as
well as between MPF and Ste9.

Because of these antagonistic relationships, MPF and its G1 enemies cannot coexist.
Either the enemies win and the cell is in G1 phase corresponding to a low MPF activity
or MPF wins and the cell is in S/G2/M phase of the cycle [NCNB+98]. The balance
between MPF and its enemies is shifted by helper molecules in one direction or the other.
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The Start transition (G1 → S) is supported by a “starter” kinase (SK), a group of
Cdk/cyclin complexes. It helps the Cdc2/Cdc13 complex (MPF) to get the upper hand
by phosphorylating Rum1 and Ste9. The helper molecule for the transition M → G1 is
the Slp1(APC complex, which promotes the degradation of Cdc13 and activates Ste9.
Slp1 can help the enemies because it is not inactivated by MPF phosphorylation, as is
Ste9.

The duration of G2 phase is regulated by different mechanism, namely enzymatic
inhibition of MPF activity. The kinases Wee1 and Mik1 [RN87, LWB+91] can inactivate
Cdc2. In return, MPF can also phosphorylate and inactivate them. So we have another
case of mutual antagonism and alternative steady states: an S/G2 state and an M state.

The G2/M transition is accelerated by a direct positive feedback loop. The inhibitory
phosphate group of Cdc2 is removed by a specific phosphatase, called Cdc25 [MR92].
This phosphatase is phosphorylated by MPF, but the phosphorylated form is mire active.
Here, MPF helps its friend, Cdc25.

5.4.1.2 Feedback loops

For cells to proliferate, to make a repetitive sequence of properly controlled Start, G2/M
and Finish transitions, the helper molecules must be removed after they have done their
jobs, because they are inhibitory for the next cell cycle. For instance, the starter kinase
(SK) would inhibits the Finish transition, when the MPF enemies must come back.
Therefore, MPF inhibits the synthesis of SK by phosphorylating its transcription factor
(TF).

In analogy, Slp1 must disappear after Finish transition; otherwise, it would inhibit the
next Start transition. The synthesis and activation of Slp1 depends on MPF creating
a negative feedback loop [MR92]. It is essential that Slp1/APC complex is not directly
activated by MPF, but rather through an intermediary enzyme (IE), which provides a
time delay in the loop. This delay gives the chromosomes enough time to align before
Slp1/APC breaks down their cohesion.

5.4.2 Surveillance mechanisms, checkpoints

These helper molecules are regulated by surveillance mechanisms (also called check-
points) [Nas96a]. Start is controlled by cell mass, Finish by the state of the cell’s
chromosomes, and the G2/M transition is affected by both. The chromosome cycle,
regulated by the cell cycle engine, must run in concert with overall cytoplasmic growth.
Else the cells becoming hopeless small or enormously large. Without such a coordination
mechanism, cells cannot be kept alive over the long term.

How cytoplasmic mass exerts its control over the cell cycle engine is not clear at
present.

5.4.3 Mathematical model

After we identified the key proteins in the cell cycle of yeast and its functional rela-
tionships, we want to represent the cycle within a mathematical representation. From
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Figure 5.4: The wiring diagram of the fission yeast cell cycle engine according to Novak et al. [NPCT01].
The core of the engine is the Cdc2/Cdc13 (MPF) complex, which is regulated by proteolysis
of the Cdc13 component, phosphorylation of Cdc2 subunit, and stoichiometric inhibition of
the complex. These processes are arranged according to the cell cycle transitions in which
they are involved.
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the graphical representation as wire diagram, Figure 5.4, we can establish a model of
coupled ordinary differential equations (5.1)-(5.12)[NPCT01].

d [Cdc13T]

dt
= k1M −

(
k
′
2 + k

′′
2 [Ste9] + k

′′′
2 [Slp1]

)
[Cdc13T] , (5.1)

d [preMPF]

dt
= kwee ([Cdc13T]− [preMPF])− k25 [preMPF]

−
(
k
′
2 + k

′′
2 [Ste9] + k

′′′
2 [Slp1]

)
[preMPF] , (5.2)

d [Ste9]

dt
=

(
k
′
3 + k

′′
3 [Slp1]

) 1− [Ste9]

J3 + 1− [Ste9]

−
(
k
′
4 [SK] + k4 [MPF]

) [Ste9]

J4 + [Ste9]
, (5.3)

d [Slp1]

dt
= k

′
5 + k

′′
5

[MPF]4

J4
5 + [MPF]4

− k6 [Slp1T] , (5.4)

d [Slp1∗]
dt

= k7 [IEP]
[Slp1T]− [Slp1]

J7 + [Slp1T]− [Slp1]
− k8

[Slp1]

J8 + [Slp1]

−k6 [Slp1] , (5.5)

d [IEP]

dt
= k9 [MPF]

1− [IEP]

J9 + 1− [IEP]
− k10

[IEP]

J10 + [IEP]
, (5.6)

d [Rum1T]

dt
= k11 −

(
k12 + k

′
12 [SK] + k

′′
12 [MPF]

)
[Rum1T] , (5.7)

d [SK]

dt
= k13 [TF]− k14 [SK] , (5.8)

d [M]

dt
= µM, (5.9)

[Trimer] =
2 [Cdc13T] [Rum1T]

Σ +
√

Σ2 − 4 [Cdc13T] [Rum1T]
, (5.10)

[MPF] =
([Cdc13T − [preMPF]]) ([Cdc13T]− [Trimer])

[Cdc13T]
, (5.11)

[TF] = G
(
k15M,k

′
16 + k

′′
16 [MPF] , J15, J16

)
(5.12)

where

kwee = k
′
wee +

(
k
′′
wee − k

′
wee

)
G (Vawee, Viwee [MPF] , Jawee, Jiwee) , (5.13)

k25 = k
′
25 +

(
k
′′
25 − k

′
25

)
G (Va25 [MPF] , Vi25, Ja25, Ji25) , (5.14)

Σ = [Cdc13T] + [Rum1T] +Kdiss. (5.15)

We use the Michaelis-Menten scheme for describing the activation an deactivation re-
actions of the participating proteins, whereby we assume the formed intermediate com-
plexes in a quasi-steady state. As result we obtain Michaelis-Menten like expressions
within our system of coupled differential equations, see for instance Eq. (5.3) for the
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protein ste9. A further simplification arises from the assumption of a quasi-stationary
state for the following proteins

1. the transcription factor (TF) for the synthesis of the starter kinase (SK), Eq. (5.12),

2. the trimeric complexes of Cdc13/Cdc2 and Rum1 (Trimer), Eq. (5.10),

3. the enzymatic inhibitors Wee1, Eq. (5.13), and cdc25, Eq. (5.14).

Then their concentrations can be expressed in terms of the Goldbeter-Koshland function
[GKJ81, TCN03]

G(a, b, c, d) =
2ad

b− a+ bc+ ad+
√

(b− a+ bc+ ad)2 − 4ad(b− a)
(5.16)

describing the steady state solution of an activation/deactivation cycle (see section 4.9.3).

Furthermore we used conservation laws for the proteins Wee1, cdc25, IE, and ste9 to
reduce the model structure. We assume further, that Rum1 binds to unphosphorylated
(MPF) and the phosphorylated (preMPF) form of the Cdc13/Cdc2 complex.

For the protein slp1 we have to distinguish between its deactivated form slp1 and its
activated form slp1∗, Eqs. (5.4) and (5.5).

As shown in the wiring diagram, Figure 5.4, the proteins rum1 and slp1 are also
produced outside from the cell cycle engine. We assume a constant external production
rate represented by zero-order rate constants k

′
5 and k11. The cell mass M takes in a

special position in the presented model. Because of a lack of knowledge of the feedback
regulation and to simplify the model we treat the cell growth as an independent dynamic
variable, as shown in the corresponding differential equation (5.9). At the end of mitosis
the cell mass is divided by two triggered by a decreasing MPF level through 0.1.In the
model we assume an instantaneous cell division into two daughter cells of the same mass
and volume, although daughter cells do not physically separate from another until 15-20
min after mitosis [NPCT01]. Due to this boundary condition we simulate a regulatory
relationship between the cell cycle and the cell growth. Notice, that during the division
the concentrations of the proteins remain unchanged1. But the new cell mass influence
the production rate of the protein Cdc13, see Eq. (5.1), which affects in succession all
other components of the cell cycle engine. A possible resting phase G0 or differences of
growth behavior in G1, G2, M, and S phase are not included in this model [NPCT01].
Also, it does not describe the influence of changing external conditions to the cell cycle.
We assume constant and ideal external conditions resulting in a exponential growth.
The exponential function is characterised by the constant growth rate µ.
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Cdc13 synthesis and degradation:

k1 = 0.03, k
′
2 = 0.03, k

′′
2 = 1, k

′′′
2 = 0.1

Ste9 activation and deactivation:

k
′
3 = 1, k

′′
3 = 10, J3 = 0.01, k

′
4 = 2, k

′′
4 = 35, J4 = 0.01

Slp1 synthesis, degradation, activation, and deactivation:

k
′
5 = 0.005, k

′′
5 = 0.3, J5 = 0.3, k6 = 0.1

k7 = 1, J7 = 0.001, k8 = 0.25, J8 = 0.001
IE activation and deactivation:
k9 = 0.1, J9 = 0.01, k10 = 0.04, J10 = 0.01

Rum1 synthesis, degradation, and inhibition:

k11 = 0.1, k12 = 0.01, k
′
12 = 1, k

′′
12 = 3, Kdiss = 0.001

SK synthesis and degradation:
k13 = k14 = 0.1

TF activation and deactivation:

k15 = 1.5, J15 = 0.01, k
′
16 = 1, k

′′
16 = 2, J16 = 0.01

Wee1 activation and deactivation:
Vawee = 0.25, Jawee = 0.01, Viwee = 1, Jiwee = 0.01

Cdc25 activation and deactivation:
Va25 = 1, Ja25 = 0.01, Vi25 = 0.25, Ji25=0.01

Rate of phosphorylation and dephosphorylation

k
′
wee = 0.15, k

′′
wee = 1.3, k

′
25 = 0.05, k

′′
25 = 5

Growth rate
µ = 0.005

Table 5.1: Parameter values for the cell cycle model of Novak et al. [NPCT01], Eqs. (5.1)-(5.14) .
All constants have units min−1, except the dimensionless Michaelis constants Ji and the
dissociation constant of the trimer Kdiss.
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5.5 Numerical Simulations

After we introduced the mathematical model of the cell cycle of yeast and its biological
background, we now simulate the cell cycle. We compare the cell cycle of wild-type cells
with mutant cells and investigate the differences in the dynamic change of key proteins
[NPCT01]. Due to the mathematical complexity of the cell cycle model we can only
numerically solve the system of coupled differential equations (5.1)-(5.14). The used
parameter values of wild-type fission yeast are given in Table 5.1.

5.5.1 Wild-type cells

The temporal changes of the concentrations of components of the cell cycle of yeast are
shown in Figure 5.5. We separate this graphical representation into three parts:

[a] temporal evolution of the cell mass

[b] temporal evolution MPF, preMPF and Cdc13T

[c] temporal evolution of the enemies of MPF (Ste9, Slp1, Rum1) and of the starter
kinase (SK)

Additionally we draw the phases of the cell cycle on top of the figure and extend the
separations with dashed lines into all three plots. The events determining the different
stages are discussed in the further course.

The evolution of the cell mass is shown in Figure 5.5[a]. As mentioned before, it
follows an exponential monotone increasing law until the Mitosis is finished. During the
time between two divisions a common yeast cell double their mass. According to Figure
5.5[a] it takes about 140 minutes to complete the cell cycle of wild type yeast cells. If
we further assume an ideal environment there are no fluctuations in the maximal cell
mass and the cycle time. If the Mitosis finishes the cell mass is halved and the arisen
daughter cells will growth with the same rate.

The duration of Mitosis is determined by the MPF level plotted in part [b] of Figure
5.5. In order to enter the Mitosis the MPF level has to change from low to high. A
requirement for this is a previous production of Cdc13 which can combine with cdc2 to
the inactive form of the mitosis promoting factor, preMPF. As shown in the figure all
the three components of yeast cell cycle among three levels. After a short time delay,
Slp1/APC is activated by the high MPF activity in Mitosis, shown in part [c] of the
figure, initiating the rapid degradation of Cdc13. As a consequence, MPF activity drops.
Simultaneously, the increase of Slp1/APC activates Ste9. Because MPF inhibits the Ste9
activation, the low level of MPF has a further positive effect on the production of active
Ste9. The period of high Ste9 level determines the G1 phase. The low MPF concentration
leads to an inactivation of Slp1 and relieves the inhibition on the transcription factor

1Concentrations are intensive quantities, whereas the mass is an extensive one. A doubling of the
considered system doubles extensive quantities, but the intensive keep constant. In particular, the
ratio of two extensive quantities, for instance number of molecules and volume, results in an intensive
quantity, for our example in a concentration
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TF responsible for the synthesis of cyclin subunit of the SK. The SK level increases
and inhibits the MPF enemies Ste9 and Rum1. Actually, G1 is so short that Rum1
does not have time to come up [CBN95]. As soon as Ste9 gets inactivated, the Cdc13
level rises and the cell passes the G1/S transition. However, SK does not inactivate the
third enemy, Wee1, which phosphorylates Cdc2/Cdc13. The phosphorylated from has
reduced protein-kinase activity, which seems to be enough to initiate S phase but not
mitosis. When the cell reaches a critical size, the positive feedbacks for G2/M transition
turn on. Abrupt activation of MPF by Cdc25 drives the cell into mitosis. During this
process virtually all Cdc13 is bound in MPF, the precursor form preMPF is completely
converted into MPF. Hence, we come back to our starting point and a new cell cycle
begins.

The SG2 transition was arbitrarily chosen. A theoretical model of this transition is
not included in the presented cell cycle model.

5.6 Mutations

Mutations play an important role in the development of organisms. Due to the increasing
knowledge of proteins and their encoding genes and the arising new technologies to alter
the genome of an organism in a well defined manner, it is possible to investigate the role
of individual proteins and their influence on the cell cycle in experiments.

5.6.1 wee1− - mutants

The inhibition of MPF by Wee1 is an crucial step in the cell cycle of wild type cells. In
order to inactivate Wee1, cells must grow to a critical size, which necessitates an extended
S+G2 phase (about 100 minutes). Hence, a change in the Wee1 activity strongly affects
the duration of the cell cycle and the cell mass. The cell cycle of these wee1− cells
is investigated in Figure 5.6. Again, we use the same representation as described in
the previous section. The activity of Wee1 is expressed in the rate constants for its
inactivation k′wee and for its activation k′′wee. A smaller activation constant of k′′wee =
0.3 (for wild-type cells see Table 5.1) shifts the concentration of activated Wee1 to a
decreased concentration [NPCT01]. As consequence a smaller critical mass is needed to
pass the S transition. As in Figure 5.6[a] is shown, the cell mass is smaller than the mass
of a wild-type cell. This is the defining characteristic of ’wee mutants [Nur75].

The G2/M transition is not size controlled. Consequently, the S+G2 phase is much
shorter (≈ 45 min) than in wild type. To adjust their cycle time to the mass doubling
time (140 min), wee1− cells have an extended G1 phase, stabilised by up-regulation of
Rum1 and Ste9 (Figure 5.6[c]).

Because of the extend M phase, ≈ 25 min, which is about the twice of the M phase
of wild-type cells, and the stronger increase of MPF during the S+G2 phase, the starter
kinase shows a pronounced oscillatory behavior. The suppression of TF activation during
the M phase leads to an almost complete degradation of SK. If the MPF concentration
decreases at the end of mitosis the SK level rises until the comparable small cell size
prefers the degradation again. First with increasing cell mass the SK production gets
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Figure 5.5: Numerical solution of the cell cycle model of yeast of Novak et al. [NPCT01], Eqs. (5.1)-
(5.14), for wild-type cells. The corresponding parameters values are given in Table 5.1. Two
complete cell cycles are shown. The figure is divided into three parts:

[a] The temporal evolution of the cell mass.
[b] The temporal evolution of the Mitosis-promoting factor (MPF), its

inactive form (preMPF) and the cyclin Cdc13, one of its main proteins.
[c] The temporal evolution of enemies and friends of MPF.
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the upper hand until the negative feedback of MPF gets the dominant part in Eq. (5.12).
The Rum1T, on the other hand, benefits from the low level of starter kinase during the
G1 phase. Its antagonist SK is down-regulated and its inhibitor MPF can be neglected
within this period. Hence, it can reach a pronounced maximum in G1. If the MPF
concentration and the SK concentration increase, Rum1T is degraded to a similar low
level as in wild-type cells, see Figure 5.5.

5.6.2 wee1− cdc25∆ mutants

Wee1 and Cdc25 are the major tyrosine-modifying enzymes in fission yeast. If Wee1
(the inhibitor) is missing, then cells should not need Cdc25 (the activator). Indeed,
wee1− cdc25∆ double-mutant cells are viable, but they exhibit abnormal progression
through the cell cycle.

For the simulation of these yeast mutants we use the rate constants k′wee = 0.15 and
k′′wee = 0.3 (for wee1− mutation) and k′25 = k′′25 = 0.02 (for cdc25∆ mutation) [NPCT01].
In comparison to wild-type cells the mutated rate constants are reduced (see Table 5.1).

The numerical results are shown in Figure 5.7. The cells alternate between short cycles
(about 110min) and long cycles (about 170min). As observed experimentally [SNM99],
the mutant cells always divide at size larger than wild type. Cells born at larger size
are committed to the shorter cell cycle, and smaller newborns have longer cycles. Due
to the larger cell size the mutants have a much shorter G1 phase than wild-type cells.

The reason for the quantised cell cycle is the weak positive feedback in mitotic control
due to lacking of activated Wee1 and Cdc25 [NPCT01]. The mitosis promoting factor is
not activated abruptly, Figure 5.7[c], when cells are supposed to enter the M phase. As in
Figures 5.5 and 5.6 we use the abrupt change in MPF behavior as the transition G2/M .
Then the wee1− cdc25∆ double-mutant cells have an extended M phase compared to the
previously considered fission yeast cells. Furthermore, only a small part of preMPF is
activated during this phase. During the M phase of wild-type cells and wee1− mutants
the conversion to MPF was almost complete.

Because MPF rise is sluggish, it may not turn on the fully the exit-from-mitosis
pathway. The negative feedback loop generates a rebound in MPF activity leading to
a degradation and inactivation of the involved proteins. After a delay a ‘second try’ is
started when the cell size is larger which leads to a successful mitosis.

Because of the comparable small MPF concentration in the cell cycle of wee1− cdc25∆
double-mutants the inhibitory effect on the transcription factor TF is weak and the
concentration of the starter kinase SK is almost constant and on a high level over the
whole cycle. Consequently, the MPF enemy Rum1 is suppressed.
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Figure 5.6: Numerical solution of the cell cycle model of yeast of Novak et al. [NPCT01], Eqs. (5.1)-
(5.14), for wee1− mutants. The corresponding parameters values are given in Table 5.1,
except k′′wee = 0.3. Two complete cell cycles are shown. The figure is divided into three
parts:

[a] The temporal evolution of the cell mass.
[b] The temporal evolution of the Mitosis-promoting factor (MPF), its

inactive form (preMPF) and the cyclin Cdc13, one of its main proteins.
[c] The temporal evolution of enemies and friends of MPF.
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Figure 5.7: Numerical solution of the cell cycle model of yeast of Novak et al. [NPCT01], Eqs. (5.1)-
(5.14), for wee1− cdc25∆ mutants. The corresponding parameters values are given in Table
5.1, except k′′wee = 0.3 and k′25 = k′′25 = 0.02. Two complete cell cycles are shown. The figure
is divided into three parts:

[a] The temporal evolution of the cell mass.
[b] The temporal evolution of the Mitosis-promoting factor (MPF), its

inactive form (preMPF) and the cyclin Cdc13, one of its main proteins.
[c] The temporal evolution of enemies and friends of MPF.
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6 Metabolic Control Analysis

In the previous chapters we dealt with autonomous nonlinear systems and investigated,
how the structure of a set of ordinary differential equations determines the properties
and the structure of the corresponding solutions. There we focused on

• Structural properties of biochemical networks;

• Dependencies of the dynamic and transient behavior on initial states;

• Dependencies of the dynamic and transient behavior on rate coefficients.

Several methods for the analysis of nonlinear systems were introduced in Section 4.5 and,
from a more system theoretic point of view, in subsequent sections. Simple examples
were given that demonstrate how changes in parameters, initial conditions, and structure
can change systems properties.

In this chapter, we introduce a general approach to investigate and quantify such
changes in a systematic way. We are interested in the control exerted by the various
reactions over the fluxes or rates and over the concentrations, especially at steady state.
The main questions, which to be addressed during the course are:

• How much does the steady state change if one varies the concentration of parti-
cipating species?

• How much does the steady state change if one varies the rate coefficients?

• How is the reaction network controlled and regulated?

This approach was developed for investigations of metabolic networks thus, it is called
Metabolic Control Analysis (MCA). Nevertheless, it should be mentioned here that the
mathematical framework is not restricted to metabolism. It can be applied to any prob-
lem that considers the transformations of elements or, more general, which considers the
fluxes of some elements, e.g. economics, traffic and crowd control. The mathematical
formalism, introduced in the next sections, provides us with a method to describe the
control of metabolic systems. For this reason, we will use the usual terminology of MCA.
The first species of a reaction network are referred to as substrates, intermediary com-
ponents as metabolites and the final components of the metabolic pathway are products.
Thereby, we follow the convention that the direction of the reaction goes from the sub-
strates to the products [HS96]. This implies that there is a continuous conversion of
substrate into products. The amount of converted material per unit of time is described
as flux, for example as number of particles per second. In analogy to the definition
of fluxes in Irreversible Thermodynamics, the fluxes in the Metabolic Control Analysis
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have a unique direction. However, a generalisation for arbitrary direction is possible
[Fel97]. Nevertheless, before we introduce the mathematical framework of MCA we will
introduce some fundamental quantities in the next section.

Our notation follows the convention proposed by several leading authors of the MCA
community [WGW84, BCBG+85]. Even if this notation differs from the one used in the
original papers of Kacser and Burns [KB73] and Heinrich and Rapoport [HR73, HR74,
HR75], it becomes more and more accepted in recent publications.

6.1 Fundamentals

6.1.1 Control and regulation

Metabolic control analysis is a means to study the control of metabolic processes. It
ascribes a specific meaning to the term control. The terms control and regulation are
often used interchangeable, but here they have a distinct meaning. Control is the abilitycontrol

to make changes in the behavior of a system, whereas regulation is the maintenanceregulation

(or the lack of it) of constant internal conditions when a system is exposed to external
disturbances.

In this course, we consider control as the ability to influence something. For example,
if an enzyme controls the flux of a pathway, a change in the concentration of that enzyme
changes the flux of the pathway.

Regulation describes whether any control (by a controller), is actually affected or not.
In metabolism, regulatory mechanisms often exist to maintain a degree of homoeostasis.
As well as maintaining constant conditions, regulatory mechanisms can also improve the
performance of control.

When describing control we must be careful to define what is being ’controlled’ and
what is doing the ’controlling’. A controller is a component that controls some other
component(s) of the system. In contrast to this, a component is controlled, if it is
determined by another component. As we see later, these definitions are closely related
to parameters and variables. However, it is important to note that the definition of
what is ’controlled’ (a variable) and what is the controller (a parameter) is arbitrary
and depends on the system under investigation.

6.1.2 Parameters and variables

Parameters are quantities that can be changed independently, and they typically (but
not always) remain constant during the evolution of the system toward its steady state.
Examples include kinetic coefficients, enzyme concentrations, and external inhibitors,
but also physical quantities like temperature and pH-value. Parameters can be classified
as internal and external [HCB91]. Internal parameters have values that, although not
invariant in the absolute sense, are fixed characteristics of a particular system, e.g. the
thermodynamic and kinetic coefficients of the enzyme reactions. External parameters
are those quantities through which the environment can affect the system. Most real-
istically external parameters are concentrations, e.g. of enzymes, terminal metabolites,
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and external effectors, such as inhibitors, activators, hormones or growth factors; their
levels are determined by the environment of the system and do not depend in any way
on what happens in the system. Consequently, changes in the environment can only be
communicated to the system through changes of external parameters.

Variables are quantities determined by the system, and they are time-dependent before
reaching their steady state. The most common variables are metabolite concentrations.
Other important variables are the rates of reactions. These are functions of concentration
variables and kinetic parameters. In most cases, the reaction rates will be described by
enzyme kinetics. However, they may also represent other types of reactions or transport
processes. A change in systems parameters will lead to a change of systems variables.

6.2 Control Coefficients

Control coefficients are fundamental to Metabolic Control Analysis. In general, a control
coefficient is a relative measure of how much a perturbation of a systems parameter control coefficient

affects a systems variable. In other words, a control coefficient describes how sensitive
a system variable is towards changes of a system parameter. Hence, an approach that
determines control coefficients is called a sensitivity analysis.

The above definition of control coefficients contains an implicit assumption – the meas-
urement of control coefficients requires a reference point. In metabolic systems, a natural
choice for the reference point is the steady state. Hence, unless noted otherwise, we meas-
ure the relative changes in the considered system against the steady state determined
by the system parameters. Usually, this means for metabolism that we investigate the
modification of the steady state through parameter variation.

However, before we can investigate metabolic pathways in more detail, we have to
identify a set of variables and parameters that determines the considered metabolic
system uniquely. As an example, we use the linear pathway represented in Figure 6.1.
Its steady state can be characterised by different quantities. First, we can consider
the concentrations of substrates, intermediates, and products as in the investigation of
transient phenomena in the previous sections. Second, the network can be characterised
by the overall rate at steady state. From the definition of an open system and the
convention that the net conversion of the investigated pathway is directed from the
substrates to the products [HS96]1, it follows that the flux is always positive. The rate
describing the amount of substrates that are converted into products per unit of time is
usually called flux of the pathway in MCA.

S X1

v1

E1

X2

v2

E2

X3

v3

E3

P
v4

E4

Figure 6.1: Linear four step pathway. The substrate S is converted into the product P via four subsequent
steps with the intermediates X1, X2, and X3. Each reaction is facilitated by a specific enzyme
Ei and is characterised by the reaction rate vi.

1Nevertheless, a generalisation to arbitrary directions is discussed in [Fel97]
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At steady state, each enzymatic reaction of the metabolic pathway is operating at the
same rate. No reaction is running slower than any other. Hence, we cannot deduce a
controlling step from the fluxes. However, this does not exclude that only few enzymes or
even one single enzyme may control the steady state of the considered pathway(Principle
of rate-determining step introduced in Section ??). The relation of MCA and this
principle shall be discussed later in Section 6.3.

Flux and concentrations are determined by kinetic parameters, such as rate coeffi-
cients, Michaelis constants or Hill coefficients, depending on the chosen level of mathem-
atical description. In our example, at steady state, all fluxes vi are equal. Nevertheless,
we identify a flux for each intermediary step, because these fluxes are determined by the
parameters of the corresponding step and can therefore be of different importance to the
control of the considered pathway. Furthermore, the concentration of enzyme facilitat-
ing a step of the metabolic pathway is treated as a parameter. Finally, we assume that
the substrate and product concentrations remain constant and can be treated as system
parameters.

The fluxes vi of the pathway and the concentrations of the intermediates are variables
that are determined by the system parameters. The changes in the system variables are
described by various control coefficients, which we introduce now.

6.2.1 Flux control coefficient

First, we want to investigate, how a change of parameters changes the overall flux J of a
pathway. Originally, Kacser and Burns [KB73] investigated how the concentration [Ei]
of the enzymes acting as catalysts of the individual reaction i affects the metabolic flux.
Correspondingly, they defined a flux control coefficient as followsflux control

coefficient

C =
∆J

∆[Ei]
, (6.1)

which relates the fractional change in the steady-state flux ∆J to the fractional change
in the total enzyme concentration ∆[Ei]. In the present representation, the control
coefficient depends on the units and the actual experimental conditions. Consequently,
this absolute control coefficient will be different for other experimental setups and a
comparison of different experiments and situations is, thus, not possible. This problem
is resolved by normalisation with the former steady-state flux J and the corresponding
enzyme concentration [Ei]

CEi =
[Ei]

J

∆J

∆[Ei]
. (6.2)

We consider only infinitesimal changes in the enzyme concentration, and obtain the flux
control coefficient [KB73]

CJEi =
[Ei]

J

∂J

∂[Ei]
, (6.3)

where the subscript Ei denotes the considered enzyme of the metabolic pathway. The
superscript J indicates the control coefficient as a flux control coefficient. For further
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simplification of (6.3), we use the mathematical properties of the derivative of the log-
arithmic function

∂ ln f(x)

∂x
=

1

x

∂f(x)

∂x

which leads to the logarithmic flux control coefficient

CJEi =
∂ ln J

∂ ln[Ei]
. (6.4)

As represented in Figure 6.2, the control coefficient is the tangent of the curve flux J
versus the enzyme concentration [Ei] at the considered steady state.

[Ei]

J

0.01 0.1 0 10 100

0.01

0.1

1

10

100 ∂ lnJ
∂ ln[Ei]

Figure 6.2: Logarithmic representation of flux J of a metabolic pathway as function of the enzyme
concentration [Ei] (solid line). The flux control coefficient (6.4) defines the tangent (blue
dashed-dotted line) of the curve at a considered steady state (dashed lines).

Taking into account that other parameters than enzyme concentrations may affect
reaction rates vi and, thus, steady-state fluxes, Heinrich and Rapoport [HR73, HR74]
defined the flux control coefficient in a more general way:

CJvi =
vi
J

∂J/∂pk
∂vi/∂pk

=
vi
J

∂J

∂vi
, (6.5a)

=
∂ ln J/∂ ln pk
∂ ln vi/∂ ln pk

=
∂ ln J

∂ ln vi
, (6.5b)

where pk is the changing parameter. Mathematically, the fluxes J cannot be directly
expressed as function of the rates vi, thus, the simpler forms at the right are not strictly
correct and have to be regarded as an abbreviated notation. However, it is acceptable
keeping in mind that there is always an implied external parameter pk even if it is not
shown explicitly.

From Eqs. (6.4) and (6.5) it follows that the flux control coefficient is state dependent.
It varies according to the steady state (i.e. the value of J) at which it is measured. Note,
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that the analysis assumes that only one parameter, e.g. the concentration of enzyme Ei,
is changed and all other parameters remain constant. Hence, each parameter in the
considered pathway is characterised by one flux control coefficient. The overall flux of
a metabolic pathway is determined by a set of control coefficients, where the number
of coefficients is equal to the number of parameters. Usually, the metabolic pathway
is investigated in terms of its enzymes. Then, we have one control coefficient for each
enzyme.

6.2.2 Concentration control coefficient

Apart from the flux, we can also use the concentrations of intermediary metabolites Xi

to characterise the considered pathway. In analogy to the previous section substituting
the system variable flux J for the concentration of the metabolites Xi, we obtain the
concentration control coefficient [HR73, HR74] asconcentration control

coefficient

CCvi =
vi

[Xi]

∂[Xi]

∂vi
, (6.6a)

=
∂ ln[Xi]

∂ ln vi
, (6.6b)

where we have to keep in mind that the rates depend on the external parameters pk
2. The

concentration control coefficient measures the degree of control of an external parameter,
as the total enzyme concentration, to the concentration of metabolites. Again, the
concentration control coefficient is calculated at steady state.

6.2.3 The summation theorem

In the previous two sections we introduced control coefficients measuring the effect that a
change of an enzyme concentration has on the flux or the metabolite concentration. From
the definitions of flux control coefficient (Eqs. (6.3) and (6.4)) and concentration control
coefficient (Eqs. (6.6a) and (6.6b)) it appears that the control coefficients for different
enzymes are independent from each other. However, one can show within the framework
of MCA that this is not the case. This dependency conclusion is one of most important
results of this approach to biochemical networks. It concerns the summation of all the
control coefficients of a pathway. By various procedures [KB73, HR75, Gie88, Red88] itsummation theorem

can be demonstrated that for a given flux the sum of its flux control coefficients of all
steps in the system is constant.

The simplest way in which this property can be derived is by considering a simultan-
eous small relative increase ∆v in all reaction rates of a metabolic system. Since for
each metabolite the relative rates of its production increase exactly by the same amount
∆v as the relative rates of its consumption, the metabolite concentrations remain un-
changed. The flux of the system increases exactly by ∆v. This means that the flux is
a homogeneous function of first order and the metabolite concentrations homogeneous

2See the comment to flux control coefficients below Eq. (6.5).
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functions of zeroth order3. The summation theorems follow by applying a corollary of
the Euler’s homogeneous function theorem4 for homogeneous functions [Gie88]. Due
to the normalisation, Euler’s theorem simplifies to the summation theorem for fluxes flux summation

theorem[KB73] ∑

i

CJvi = 1 (6.7)

and to the summation theorem for concentrations [HR75] concentration
summation theorem∑

i

C
Xj
vi = 0 . (6.8)

Note, that the sum over the control coefficients is equal to the order of homogeneity of
the corresponding system’s variable.

It clearly follows from both summation theorems that the control coefficients are not
independent of each other. If, for example, one coefficient increases, one or more of the
other coefficients have to decrease.

If and only if a flux control coefficient CJj ≈ 1 and all other Ci 6=j ≈ 0, then the j-
th enzymatic reaction is rate-determining. In general, the control of the pathway may
be distributed over more than one steps. This is summarised in the famous dictum –
“Control can be shared!”

However, the flux summation theorem does not restrict the flux control coefficients to
the interval [0; 1]. Some coefficients may well be negative and some coefficients of the
considered pathway can exceed unity.

For a concentration control coefficient CXiEi ≈ 0, the enzymatic reaction is limited by
other factors than the enzyme concentration, and a change of the enzyme concentration
does not change the intermediate concentration.

6.2.3.1 Number of summation theorems

The number of summation theorems is determined by the structure of the investigated
metabolic pathway. A summation theorem exists for each systems variable, i.e. flux. A
short list is given in the following table

3A function f(αx1, α x2, . . .) is homogeneous of order n if the equation

f(αx1, α x2, . . . , α xk) = αn f(x1, x2, . . . , xk)

holds for all α, xi ∈ R.
4Euler’s homogeneous function theorem

n · f(x1, x2, . . . , xk) =

k∑
i=1

∂f

∂xi
xi

relates a homogeneous function f(xi) to its partial derivatives, its coordinates xi (i.e. enzyme con-
centrations), and its order of homogeneity n.
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structure # of fluxes # of summation theorems
linear pathway 1 1
two branches 2 2
... . . . . . .

The number of summation theorems will increase with the complexity of metabolic
pathways.

6.3 Metabolic Control Analysis and Rate-Determining Step

In previous sections we already mentioned the principle of a rate-determining step. In
metabolic control analysis this principle leads to a controversial discussion, see for in-
stance [Fel97]. The origin is a traditional view of metabolic control which assumes that
there has to be a rate-limiting step in a metabolic pathway. On the other hand, from the
summation theorem (6.7) follow that control can be distributed over several enzymes.
This is also supported by some experiment, i.e. see [GWW+82]. Before we continue our
discussion, we will cite two different definitions of the principle of rate-determining step.
The first one is from Blackman (1905) [Bla05]:

When a process is conditioned as to its rapidity by a number of separate
factors, the rate of the process is limited by the pace of the slowest factor.

and the second definition is a combination from the famous book of Atkins, “Atkins’
Physical Chemistry” [AdP02] and from the book of Schwetlik [SDPS73] about Chemical
Kinetics :

If there is in a consecutive reaction a step much slower than all subsequent
steps, see Figure 6.3[a] and [b], this step is rate-determining. The rate-
determining step controls the rate of all subsequent steps. However, the
rate-determining step is not just the slowest step: it must be slow and be
a crucial gateway for the formation of products. If a faster reaction can also
lead to products, then the slowest step is irrelevant because the slow reaction
can then be side-stepped, as in the example in Figure 6.3[c].

In comparison to the modern definition of the rate-determining step in Chemical Kin-
etics, the definition of Blackman is vague. On the one hand, the kind of process or
biochemical reaction is not specified. On the other hand, the slowest factor is a very
imprecise specification. Considering, one factor may have a value of f1 = 10 and an-
other the value f2 = 10.5. Then, both factors are similar. According to Blackman, the
factor f1 is rate-determining. However, as investigations of consecutive reactions show,
see Section 2.6.3, similar reaction rates do not fulfill the principle of a rate-determining
step.

In general, the principle of rate-determining step is defined only for consecutive reac-
tions or processes5. These kind of processes have at least one irreversible step [SDPS73].

5For a more detailed discussion of complex reactions see Section 2.6 and for consecutive reactions
Section 2.6.3.
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Fast

Slow Fast

Fast

Slow

Slow

Fast

ProductsReactants

[a]

[b]

[c]

Figure 6.3: Rate-determining steps in consecutive reactions. Heavy arrows represent fast steps and light
arrows represent slow steps. [a] The second step is rate-determining; [b] the first step is rate
determining; [c] although one step is slow, it is not rate-determining because there is a fast
route that circumvents it.

Then the principle is a direct consequence from the principle of cause and effect. The
cause triggers the effect.

Whereas this condition is clearly fulfilled in industrial production processes, where it
leads to the so-called bottleneck problem, it is rare in chemical processes. A further well-
known example for a rate-determining step can be often observed at construction areas
of highways. At the construction area the lanes are reduced, for instance from three lanes
to a single lane. If the flux of cars exceed the passage limit of the bottleneck it determines
the rate of all subsequent events. consequently, this will result in an increasing traffic
jam before the construction area. In metabolic pathways such bottlenecks are usually the
result of some limitations, for example in food, light, or necessary additional reactants.
Only, in these limiting cases a metabolic pathway may have a rate-determining step.
However, this is not the usual case. Interestingly, Blackman [Bla05] mentioned this
already in 1905.

However, the modern definition characterises only the necessary conditions for a rate-
determining step, it does not predict the existence of such a step. An a priori assumption
of a rate-determining step is a misinterpretation of the principle.

In the investigation of the dynamics of a biochemical system, the principle of a rate-
determining step plays a major role, although it is often not obvious. Whereas in consec-
utive reactions the rate-determining step controls the overall reaction rate, the situation
in more complex biochemical reaction networks is different. Here, there is usually not a
global rate-determining step, similar to metabolic networks. If we model the network,
we decompose it into a set of smaller subnetworks. Some of them may consist of consec-
utive reactions. For these reactions, local rate-determining steps can exist that enable
a simplification of the mathematical representation. As example, the Michaelis-Menten
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equation 2.150, discussed in Section 2.7.1, is often used as a template to describe the
conversion, the (de)activation or degradation of a protein. Here, the dissociation of the
enzyme-substrate complex into product and enzyme has to be rate-determining, other-
wise the quasi-steady-state assumption (see Section 2.6.3.2) is not applicable and the
Michaelis-Menten equation is not an appropriate description of the dynamics. Never-
theless, the identification of a rate-determining step is crucial because it is dependent on
the current situation. During the time course or through a change in the environmental
conditions, the local rate-determining step may change or disappear.

6.4 Elasticity Coefficients

In Section 6.2 we investigated how a change in enzyme concentrations changes the flux
and the metabolite concentrations. These are properties of the whole intact metabolic
pathway, referred to as global properties. In contrast, biochemists have traditionally
studied enzymes in isolation, as represented in Fig. 6.4. For this reason, we now in-
vestigate, how MCA can be used to describe the effect of changes in substrate, product
or enzyme concentration on the individual reaction rates vi. Furthermore, the rate vi

X1 X2

v1

E1

Figure 6.4: Simple example of an isolated intermediary step of a metabolic pathway. The metabolite X1

is converted to X2 with the rate v1. The reaction is facilitated by the enzyme E1.

depends on external parameters, such as kinetic coefficients. The elasticity coefficientselasticity coefficient

measure the changes to the individual reaction as a consequence of a change of these
parameters. According to Heinrich and Schuster [HS96], we distinguish between to kinds
of parameters: a) ε-elasticities describing the effects of changes in the concentrations of
participating species, and b) π-elasticities describing the effects of varying kinetic coef-
ficients to the rate of change. The elasticities are local or systemic coefficients because
they consider only an isolated reaction.

6.4.1 Elasticity coefficients for metabolites

The rate of change of the conversion of a metabolite Xi to a metabolite Xi+1 depends
on the concentrations of the metabolites, of the enzymes facilitating the reaction, and
of inhibitors or further influencing proteins. The elasticity coefficients are defined as
[KB73, BCBG+85]:

ε
Xj
vi =

[Xi]

vj

∂vj
∂[Xi]

, (6.9)

where the subscript i denotes the i-th metabolite Xi and the superscript j the rate
vj of the j-th reaction. The derivation of this expression is equivalent to the control
coefficients represented in Section 6.2.1. The ε-elasticity quantifies how the reaction rate
is modulated by the metabolite Xi. A positive coefficient corresponds to an increase of
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the rate and a negative coefficient to a decrease. A zero-valued elasticity coefficient may
have two different causes. First, the metabolite Xi is no part of the considered reaction
and, therefore, the rate remains unchanged. Second, the metabolite Xi participating on
the reaction but does not change the rate. This is common for reactions that follow a
Michaelis-Menten regime. If the enzyme is saturated, a further increase of the metabolite
does no longer increase the reaction rate. For a more detailed discussion of different
reaction mechanisms and their related elasticities, see Section 6.9.

6.4.2 Elasticity coefficients for parameters

As mentioned earlier, the rates vi may also depend on external parameters. Kinetic
parameters, such as rate coefficients and Michaelis-Menten constants, are functions of
environmental conditions, e.g. temperature, pH-value or water balance. They vary over
time and experiments. Hence, the rates vi change if kinetic parameters change. Addi-
tionally, the reaction rates also depend on some model parameters. Depending on the
used framework, these could be for example Hill parameters or kinetic orders. Due to the
uncertainty of experimental data, these model parameters can be determined only with a
certain limited accuracy. Within the confidence interval the values may change. There-
fore, it is important to investigate how these changes affect the rate of the considered
reaction.

A relative measure of how a variation in external parameters modulate the rate is the
π − elasticity. It is defined as [KSA90, SK90]

πvipk =
pk
vi

∂vi
∂pk

, (6.10)

where pk is the changing external parameter and vi the considered rate. If the π-
elasticity is positive, the rate vi increases if the parameter pk increases. For negative
values it decreases if the parameter decreases. If the π-elasticity is zero, the parameter
pk does not affect the rate vi. Either no step of the considered reaction is determined by
this parameter or the rate is fully determined by other factors, e.g. a rate-determining
step which is not affected by pk.

6.4.3 The connectivity theorem

One of the major objectives of MCA is to reveal how the properties of a whole system, i.e.
its control coefficients, can be explained in terms of the properties of its components, i.e.
in terms of the elasticities. This is especially important, because the control coefficients
are usually not easy to measure. However, many data are available for isolated (in
vivo) enzymatic reactions. Thus, one is trying to assess the systemic behavior that is of
fundamental interest but difficult to measure in terms of quantities that can be measured
very easily. It turns out that for any pathway there are exact relationships between the
control coefficients and the ε-elasticities. The first connectivity theorem relates the flux connectivity theorem

control coefficients and the ε-elasticities in a sum over products between both coefficients.
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It was found by Kacser and Burns as [KB73]:
∑

i

CJviε
Xj
vi = 0 . (6.11)

As opposed to the summation theorem (6.7), the flux connectivity theorem depends on
the kinetic expressions through the ε-elasticities.

An analogous theorem was derived for metabolite concentrations [WC84]:
∑

i

C
Xj
i ε

Xj
vi = −1 . (6.12)

It connects the concentration control coefficients C
Xj
i to the elasticities of metabolites

that participate in the i-th step of the pathway.
With summation theorems (6.7) for fluxes and (6.8) for concentrations and the above

connectivity theorems, we have now a tool to investigate metabolic pathways from their
global and their local properties. Moreover, we are able to determine control coefficients
from elasticity coefficients using these relations. In the next section, we demonstrate how
one can use summation and connectivity theorems on the example of a linear pathway.
Later on, we generalise the treatment for arbitrary structures introducing the matrix
representation of metabolic control analysis.

6.5 Using the Summation and the Connectivity Theorem

As mentioned earlier, the connectivity theorems (6.11) and (6.12) relate the control coef-
ficients and the elasticities. For linear pathways, this fact can be used to express the
control coefficients in terms of elasticity coefficients. As an example, we investigate a
three step pathway which converts the substrate S into the product P via the interme-
diary metabolites X1 and X2, see Fig. 6.5. We restrict the analysis to the flux control
coefficients, but an analogues treatment is possible for concentrations control coefficients.

S X1

v1

E1

X2

v2

E2

P
v3

E3

Figure 6.5: Linear three step pathway converting substrate S into product P. vi are the reaction rates of
the conversion reactions, Ei the catalyzing enzymes and Xi intermediary metabolites.

Since, we consider a linear pathway, there is only one flux and, thus, we have only
one summation theorem. Nevertheless, due to the two intermediates, we have to take
into account two connectivity theorems, one for the metabolite X1 and a second for the
metabolite X2. The corresponding theorems are:

Summation theorem (6.7): CJ1 +CJ2 +CJ3 = 1 (6.13a)

Connectivity theorem (6.11) for X1: CJ1 ε
1
X1

+CJ2 ε
2
X1

= 0 (6.13b)

Connectivity theorem (6.11) for X2: CJ2 ε
2
X2

+CJ3 ε
3
X2

= 0 (6.13c)
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where we can rearrange both connectivity relations with respect to the flux control
coefficients:

CJ1 = −CJ2
ε2
X1

ε1
X1

and

CJ3 = −CJ2
ε2
X2

ε3
X2

.

Substitution into the summation theorem (6.13a) leads to the equation

−CJ2
ε2
X1

ε1
X1

+ CJ2 − CJ2
ε2
X2

ε3
X2

= 1 ,

holding only on flux control coefficient CJ2 and all elasticities. A transformation with
respect to the flux control coefficient leads to the final result

CJ2 =
ε1
X1
ε3
X2

ε1
X1
ε3
X2
− ε2

X1
ε3
X2
− ε1

X1
ε2
X2

(6.14)

for the second control coefficient. It combines global properties (CJ2 ) with local properties
described by the elasticities εji . These local properties can be measured by in vitro
enzyme kinetic experiments and can be applied around the considered steady state.
Nevertheless, a support with in vivo data is strongly recommended to exclude differences
for in vitro and in vivo experiments.

Similar expressions can be derived for the remaining flux control coefficients CJ1 and
CJ3 . For real metabolic pathways, with many intermediary metabolites and branching
points, this method becomes intractable very fast. Moreover, it is not accessible for
systematic numerical calculation. Hence, we want to generalise the method in the next
section within a matrix approach that resolves the mentioned disadvantages.

6.6 Matrix Methods in Metabolic Control Analysis

As shown in the previous Section 6.5, the combination of summation and connectivity
theorem enables the determination of global flux control coefficients through the local
elasticity coefficients. Furthermore, if we consider all the theorems for an investigated
metabolic pathway, we obtain a system of n2 coupled equations. In this system, n is the
number of all participating metabolites, where the substrate is the zeroth component
and the product the n-th component, as in the generalised linear pathway

X0︸︷︷︸ X1 X2
. . . Xn−1 Xn︸︷︷︸

substrate product

It is clear that with increasing complexity of metabolic pathways the treatment in-
troduced in the last section becomes intractable. Hence, we use a more convenient and
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elegant method to represent the metabolic pathway in terms of the Metabolic Control
Analysis. The matrix approach was originally introduced by [Red88] and developed
further e.g. by [SSF87, SF89, HCBR93, HS96, HW01].

Prior we introduce the matrix approach in more detail, we summarise the theorems of
MCA, that play a central role in this approach. First, there are the summation theorems

∑

i

CJi = 1 Flux Control Coefficients (6.15a)

∑

i

C
Xj
i = 0 Concentration Control Coefficients (6.15b)

for the flux and the concentration control coefficients. The connectivity theorems relate
control coefficients to elasticity coefficients. For the combination of the flux related
coefficients, they hold: ∑

i

CJi ε
i
Xj = 0 . (6.16)

The connectivity theorem for concentrations (6.12) has to be generalised in order to
distinguish between perturbed and unperturbed metabolites [WC84]. The theorem for
the perturbed metabolite Xj was introduced in Section 6.4.3 as

∑

i

C
Xj
i εiXj = −1 .

However, we have to consider also the case where the metabolite Xj is not perturbed.
Then, the connectivity theorem becomes:

∑

i

C
Xj
i εiXk = 0 .

Summarising both equations, we obtain the generalised version of the connectivity the-
orem [WC84] ∑

i

C
Xj
i εiXk = −δjk , (6.17)

where δij is the Kronecker-Delta [AS72]

δjk =

{
1 if j = k
0 if j 6= k

.

These information we now combine into in some matrices. This allows us to use matrix
algebra to derive control coefficients in terms of elasticity coefficients. Since the intro-
ductional nature of this chapter, we here follow a more practical guide [SSF87, CB95b]
instead of the theoretical approach based on structural properties of the pathway in
[Red88, HCBR93, HS96, HW01].

The information about the metabolic pathway are represented in three quadratic
matrices of order n. In the so-called E-matrix we collect elasticities, where the rows
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contains information about the fluxes Ji and the metabolites Xi. The rates are arranged
over the columns of the matrix. The C-Matrix contains the control coefficients of the
considered system. The arrangement with respect to the fluxes, metabolites and rates is
now transposed in comparison to the E-matrix. Matrix multiplication of both matrices
results in the M-matrix. In fact, this resulting matrix consists of a combination of the
theorems which we summarised above. Finally, the metabolic pathway under investiga-
tion is described by the matrix equation




ε1
1 ε2

1 · · · εn1
ε1

2 ε2
2 · · · εn2

...
...

. . .
...

ε1
n ε2

n · · · εnn







C1
1 C2

1 · · · Cn1
C1

2 C2
2 · · · Cn2

...
...

. . .
...

C1
n C2

n · · · Cnn


 =




M1
1 M2

1 · · · Mn
1

M1
2 M2

2 · · · Mn
2

...
...

. . .
...

M1
n M2

n · · · Mn
n


 (6.18)

or in its short representation

E ·C = M . (6.19)

This compact representation of the metabolic control analysis has some advantages over
the classical treatment of the previous section: I.) The matrix representation makes it
better amenable to numerical and symbolic approaches with suitable software packages
or programming languages and to analytical investigation. II.) The matrices can be
constructed directly from stoichiometric data as is shown in [Red88, HS96]. Hence, this
approach can be connected to graphical tools.

Whereas the M-matrix is determined by the summation (6.15a) and connectivity the-
orems (6.17), and the E-matrix by local properties of the pathway, the C-matrix and its
elements are unknown. Therefore, we are now seeking an expression for C in terms of
the other matrices. To this end, we calculate the inverse matrix of E which is defined
by the relation

E ·E−1 = 1 .

The multiplication of a matrix with its inverse results in the identity matrix. The inverse
matrix we multiply from left to matrix equation (6.19)

C = E−1 ·M (6.20)

and obtain the matrix of control coefficients as the product of the inverse of the E-matrix
and the M-matrix6.

In the above definition (6.18) we only introduced the elements of this matrix. Now,
we give some rules for the construction of the matrices. Towards this end, we relate
the matrix elements to the properties of the metabolic pathway. Here, we distinguish
between two kinds of elements, flux related and elasticity related. If an element is part of
a row describing a flux through the metabolic pathway, then its value is simply 1. In order

6Note the order of multiplication of matrices! Generally, the matrix multiplication is not commutative.
This means

A ·B 6= B ·A .

Hence, we distinguish between multiplication from left and multiplication from right.
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to determine the elasticity related elements we have to consider the current metabolite
Xi and the current rate vj . If the metabolite Xi participate on the j-th reaction, then

the value of element εji follows from the definition of the elasticity coefficient (6.9), else
it is zero.

After defining the structure and the values of the E-matrix, we can now calculate
the M-matrix. The element-wise calculation of the elements M j

i reproduces exactly the
theorems (6.15a) and (6.17). Thus, we can represent the derivation of the matrix in a
simple schematic way [CB95b].

b

n∑
i=1

C
Xj

i εik = 0
Concentration connectivity
theorem (heterogeneous)

J

X1

X2

v1

v2

v3

b

n∑
i=1

C
Xj

i εij = −1
Concentration connectivity
theorem (homogeneous)

J

X1

X2

v1

v2

v3

b

n∑
i=1

CJ
i ε

i
Xj

= 0 Flux connectivity theorem
J

X1

X2

v1

v2

v3

b

n∑
i=1

C
Xj

i = 0 Concentration control coefficient
summation theorem

J

X1

X2

v1

v2

v3

b

n∑
i=1

CJ
i = 1 Flux control coefficient

summation theorem

J

X1

X2

E1 E2 E3 J X1 X2

v1

v2

v3

Figure 6.6: Schematic representation of the element-wise calculation of the M-matrix [CB95a]. It is
obvious that the matrix equation (6.19) contains all information about the metabolic pathway
which we derived in the previous sections. In general, for a system of n enzymes there are
n2 such relations which fall into five classes expressed by Eqs. (6.15 - 6.17).

Note, that in principle the arrangement of the elements is arbitrary, but most authors
prefer the convenient rule that one starts with fluxes in the first rows followed by the
metabolites. Also, some authors use the matrix equation

C ·E = M

instead of (6.19). Due to the permuted order of the matrix multiplication one has to
use the transposed versions of the E- and C-matrix which was introduced in (6.18).
Furthermore, the multiplication with the inverse E-matrix have to carried from right.

In the next subsections, we apply the matrix method to the example of an unbranched
and a branched pathway.
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6.6.1 Control coefficients in an unbranched pathway

The introduced matrix approach is used to investigate an unbranched pathway. We
consider again a linear metabolic pathway with two intermediary metabolites (Figure
6.7). The corresponding matrix equation is

S X1

v1

E1

X2

v2

E2

P
v3

E3

Figure 6.7: Three step unbranched pathway. The vi are the reaction rates of the conversion reactions,
Ei are the catalyzing enzymes and Xi are intermediary metabolites.

E1 E2 E3 J1 X1 X2

J1

X1

X2




1 1 1
ε1

1 ε2
1 0

0 ε2
2 ε3

2





CJ1 CX1

1 CX2
1

CJ2 CX1
2 CX2

2

CJ3 CX1
3 CX2

3



v1

v2

v3

=




1 0 0
0 −1 0
0 0 −1


 . (6.21)

Due to the linear character of the pathway, there is only one flux which is determined by
the three rates vi. Furthermore three enzymes Ei affect these rates. Hence, the matrix
equation consists of matrices of the order 3× 3. As noted in Eq. (6.21), the first row of
the E-matrix is related to flux J and is, therefore, a unity matrix. The other two rows
describe the elasticities of the reactions involved in the linear pathway. The elements ε3

1

and ε3
2 are zero because the enzyme E3 does not affect the metabolite X1 and the enzyme

E1 does not affect the metabolite X3. We conclude that in general a metabolite of a linear
pathway has only two non-vanishing elasticities, namely one elasticity for the producing
reaction and the second one for the degrading reaction. The control coefficients for the
metabolic pathway are collected in the C-matrix. The elements of the first column are
the flux control coefficients. The remaining columns consist of the concentration control
coefficients with respect to the metabolites X1 and X2. The M-matrix can be constructed
according to the scheme represented in Figure 6.6. The first column of the M-matrix is
given by the flux summation theorem (6.15a) and the second and third element by the
connectivity theorem between flux control coefficients and elasticities. All non-diagonal
elements of the next columns vanish as a consequence of the concentration summation
theorem (6.15b) and the connectivity theorem (6.17) for the heterogenous case. The
diagonal elements are determined by the control coefficients and the elasticities for the
same metabolite (homogenous). Hence, these matrix elements have the value −1. Note
also the diagonal structure of the M-matrix. This is typical for linear pathways. Due to
their special stoichiometric form, all non-diagonal elements have to equal zero.

After we constructed all three matrices, we now calculate the inverse E-matrix

E−1 =
1

ε1
1ε

2
2 − ε1

1ε
3
2 + ε2

1ε
3
2




ε2
1ε

3
2 ε2

2 − ε3
2 −ε2

1

−ε1
1ε

3
2 ε3

2 ε1
1

ε1
1ε

2
2 ε2

2 ε2
1 − ε1

1


 (6.22)
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which we multiply from left with matrix equation (6.21). As result we obtain the matrix
of control coefficients in terms of a new matrix



CJ1 CX1

1 CX2
1

CJ2 CX1
2 CX2

2

CJ3 CX3
3 CX3

3


 =

1

ε1
1ε

2
2 − ε1

1ε
3
2 + ε2

1ε
3
2




ε2
1ε

3
2 ε2

2 − ε3
2 −ε2

1

−ε1
1ε

3
2 ε3

2 ε1
1

ε1
1ε

2
2 −ε2

2 ε2
1 − ε1

1


 (6.23)

consisting of combinations of the elasticity coefficients. If analytical rate laws are known,
the control coefficients can be obtained simply by calculating the partial derivatives of
the definitions of the elasticity coefficient (6.9). Otherwise, they have to be measured
experimentally.

6.6.2 Control coefficients in a branched pathway

As a further example, we consider a branched pathway. The substrate S is converted via
the intermediate X1 into the products P1 and P2 (Figure 6.8). Because of the branching

S X1

v1

E1

P1

P2

v2

v3

E2

E3

J1

J2

Figure 6.8: An example of a branched pathway. The net rate of each step is denoted as vi, wheras Ei
is the facilitating enzyme. Note, due to the branching point, the flux is splitting into two
parts, J1 and J2.

point we now have to consider two fluxes J1 and J2. An important property of this
branching point follows from the mass conservation in chemical reactions. The flux
through the reaction v1 has to be equal to the sum of the fluxes through the reactions
v2 and v3. This fact is a chemical equivalent to Kirchhoff’s law for electrical circuits and
is expressed mathematically as:

n∑

i=1

Ji = 0 . (6.24)

Furthermore, we follow the usual convention that ingoing fluxes are positive and outgoing
fluxes are negative. This law (6.24) can be used to search for missing branches or to
estimate the crosstalk between different pathways. If one knows, e.g. all ingoing fluxes,
and their sum is not equal to the sum of all considered outgoing fluxes, it is probable
that there are further outgoing fluxes which one has to consider. On the other hand, one
can use the normalised outgoing fluxes to estimate the crosstalk or the contribution of
branches to the whole investigated system, whereby the normalisation factor is the sum
over all ingoing fluxes.
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However, the matrix equation of the branched pathway of Figure 6.8 is:

E1 E2 E3 J1 J2 X1

J1

J2

X1




1 1 0
1 0 1

εX1
1 εX1

2 εX1
3





CJ1

1 CJ2
1 CX1

1

CJ1
2 CJ2

2 CX1
2

CJ1
3 CJ2

3 CX1
3



v1

v2

v3

=




1 1 0
1 1 0
0 0 −1


 , (6.25)

with consideration of two fluxes and the metabolite. In contrast to the E-matrix for
an unbranched pathway, the flux related rows are not unity matrices. The element in
the matrix corresponding to J1 and E3 has to be zero, because the reaction catalyzed
by the enzyme E3 have no contribution to the flux J1. In analogy, the element ε2

2 has
to be zero, too. The metabolite X1 participates on all reactions, and thus it has three
elasticities. The construction of the M-matrix follows again the scheme 6.6. The inverse
of E-Matrix is then

E−1 =
1

εX1
1 − εX1

2 − εX1
3




−εX1
2 −εX1

3 1

εX1
1 − εX1

3 εX1
3 −1

εX1
2 εX1

1 − εX1
2 −1


 (6.26)

which leads finally to a C-Matrix of


CJ1

1 CJ2
1 CX1

1

CJ1
2 CJ2

2 CX1
2

CJ1
3 CJ2

3 CX1
3


 = − 1

εX1
1 − εX1

2 − εX1
3



εX1

2 + εX1
3 εX1

2 + εX1
3 1

−εX1
1 −εX1

1 −1

−εX1
1 −εX1

1 −1


 . (6.27)

The control coefficients of the branched pathway are expressed in terms of elasticities
which can be measured experimentally.

6.7 Response Coefficients

Studies of metabolism have identified different mechanisms that regulate and coordinate
the activity of metabolic pathways. Generally, these mechanisms involve ‘effectors’.
These effectors may originate ‘internally’ from the pathway (e.g. a pathway intermediate)
or ‘externally’ (e.g. a hormone, drug or change in the physical conditions).

Analogous to a control coefficient expressing the dependence of a system variable,
such as flux, on an internal parameter, such as enzyme concentration, one can derive a
response coefficient RJz to express the dependence of a system variable on an external response coefficient

parameter, such as the concentration [Z] of an external effector Z. Towards this end, we
define the flux as a multiparametric function

J(k1, . . . , ki;X1, . . . , Xj ;E1, . . . , Ek;Z, T, pH, ...) = J(ξi)

and collect all the different parameters in the parameter set ξ. The effect of a change in
the parameter P on the flux can be evaluated applying the chain rule

∂J

∂P
=
∑

i

∂J

∂ξi

∂ξi
∂P

. (6.28)
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Hence the parameter P may affect more parameters we have to sum over the whole
parameter set ξ in the above equation.

To normalize the expression (6.28) we now transform the left hand side

∂J

∂P
=

∑

i

∂J

∂ξi

ξi
J

∂ξi
∂P

J

ξi

=
∑

i

∂ ln J

∂ ln ξi

∂ ln ξi
∂P

J

and multiplay the equation with P and divide it with J which leads to the expression

P

J

∂J

∂P
=

∑

i

∂ ln J

∂ ln ξi

∂ ln ξi
∂P

P

∂ ln J

∂ lnP︸ ︷︷ ︸
RJP

=
∑

i

∂ ln J

∂ ln ξi︸ ︷︷ ︸
CJi

∂ ln ξi
∂ lnP︸ ︷︷ ︸
εPi

.

The response coefficient is then defined as the logarithmic derivative

RJP =
∂ ln J

∂
lnP . (6.29)

which can be calculated as the product of corresponding control coefficients and elasti-
cities

RJP =
∑

i

CPi ε
P
i (6.30)

=
∑

i

∂ ln J

∂ ln ξi

∂ ln ξi
∂ lnP

(6.31)

In the case of an external effector that acts on a single enzyme, the degree to which
it influences the pathway flux depends on the degree to which it affects the activity of
the target enzyme, expressed by its elasticity, and the degree of control this enzyme
has on the pathway flux, expressed by the flux control coefficient of the enzyme. This
relationship was proven by Kacser and Burns [KB73] and formulated in the so-called
partitioned responsepartitioned response

RJP,i = CJi ε
P
i . (6.32)

The partitioned response generalizes our previous definitions of control and elasticity
coefficients. It follows from Eq. (6.32) that all the introduced coefficients can be treated
as response coefficients. Let’s consider the change of a single enzyme concentration Ej .
The corresponding response coefficient is given by Eq. (6.31). Because of the enzyme Ei
affects no other parameters of the parameter set ξ the second derivative in Eq. (6.31)
follows by the relation

∂ ln ξi
∂ lnEi

=





0 for ξi 6= Ei ,

1 for ξi = Ei .
(6.33)
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As consequence the some in the definition of the response coefficient (6.30) has only one
non-zero element which is the partioned response with respect to the considered enzyme
Ei. Additionally, relation (6.33) simplifies Eq. (6.32) to

RJEi =
∂ ln J

∂ lnEi
= CJi . (6.34)

The partioned response of the enzyme Ei is determined by the control coefficient only.
In general, if the parameter ξi affects no further parameters, the response coefficient
reduces to a control or elasticity coefficient.

6.8 Limits of Metabolic Control Analysis

At present, metabolic control analysis is largely concerned with steady states. Never-
theless, there are first approaches to extend it to transient phenomena [KC82, ASK89,
MHTSK90, HR91, IS03, HBB+05].

Moreover, it assumes that a steady state exists and that it is stable and unique. As it
is relatively easy to construct models, even for systems of only two enzymes, that have
no steady state, one should not assume the existence of a steady state automatically.

Compartmentation might also seem to pose a problem but, in fact, MCA can read-
ily accommodate multiple compartments as long as there are well defined connections
between them and the components are distributed homogeneously within each compart-
ment.

Some further restrictions follow from the mathematical framework of MCA. It deals
with infinitesimal changes only, as it was shown in the schematic derivation in Section 6.2.
Hence, it cannot predict the consequences of large changes in an experiment. Analytical
considerations are more flexible but once a certain steady state was chosen as reference
point, one is restricted to its neighborhood. This leads directly to the next point. As
mentioned earlier, the coefficients are state depended and cannot be assigned to other
situations.

6.9 Elasticity Coefficients for Specific Rate Laws

As we demonstrated in the previous sections, the control coefficients are closely related
to the elasticities of an isolated reaction in the metabolic pathway. Therefore, we want
to discuss the elasticities of some well-known rate laws in the this section [HS96].

6.9.1 Michaelis-Menten equation

A commonly used reaction motif of a conversion of a substrate into a product was
proposed by Michaelis and Menten [MM13] as follows:

S + E
k1−−⇀↽−−
k−1

C
k2−→ P + E , (6.35)
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where the enzyme E catalyzes the conversion of the substrate S into the product P. One
can derive the famous Michaelis-Menten equation

v =
Vmax S

KM + S
(6.36)

for the reaction rate if one assumes the intermediary complex C in a quasi-steady state
(see Sec. 2.7.1 for a more detailed discussion). Vmax = k2E

T is the limiting rate, ET the
total enzyme concentration, and KM = (k−1 +k2)/k1 the Michaelis constant. According
to the definition (6.9), the elasticity with respect to the substrate is

εS =
S

v

∂v

∂S
,

=
S

v

∂

∂S

Vmax S

KM + S
,

=
S

v

[
Vmax

KM + S
− Vmax S

(KM + S)2

]
, (6.37)

where we use the quotient rule to get the derivative. Then we use the Michaelis-Menten
equation (6.36) to substitute the terms inside the brackets by the reaction rate v

εS =
S

v

[
v

S
− v

KM + S

]

which enables us to cancel the reaction rate v from the left hand side. After a reduction
to the common denominator we obtain the final result

εS =
KM

KM + S
(6.38)

for the substrate elasticity of the Michaelis-Menten equation. Since the Michaelis con-
stant KM is positive, thus is a monotonically decreasing function with respect to the
substrate concentration S.

In the limiting case of a small substrate concentration S � KM, we can neglect the
substrate compared to the Michaelis constant, and the elasticity becomes εS ≈ 1. A
small change in the substrate concentration has a huge effect on the reaction rate. On
the other hand, in the limit of a exceedingly substrate concentration S � KM, the
elasticity is vanishing. A change of the concentration does not affect the reaction rate.
The enzyme is completely saturated. It follows from both limits that the substrate
elasticity is in the range

0 ≤ εS ≤ 1 .

Besides the substrate concentration, the reaction rate also depends on the Michaelis
constant and the limiting rate. Both quantities are assumed to be parameters of the
enzyme kinetic reaction. The effect of a change in their values is measured by the π-
elasticities which we calculate now. From Eq. (6.10) follows for the elasticity with respect
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to the Michaelis constant KM

πKM
=

KM

v

∂v

∂KM

=
KM

v

[
− Vmax S

(KM + S)2

]
. (6.39)

Again we can substitute the rational expression in the brackets with the reaction rate.
It follows for the elasticity

πKM
= − KM

KM + S
= −εS (6.40)

which is a monotone decreasing function in the range [−1; 0]. The lower limit is valid
in the case KM � S where a further increase of the Michaelis constant will decelerate
the reaction. Additionally, the reaction rate is very sensitive to a change in the constant
in that regime. In the limit of KM � S the elasticity is approximately zero. Here, the
saturation of the enzyme is the dominating effect. A change of KM has no or only a
small effect on the reaction rate.

The limiting rate Vmax is the second parameter in the Michaelis-Menten equation
(6.36). Its elasticity coefficient is

πVmax = 1 . (6.41)

The reaction rate is direct proportional to the limiting rate.

6.9.2 Reversible Michaelis-Menten equation

The original Michaelis-Menten scheme (6.35) does not include a reverse reaction in the
enzymatic reaction. For a well-founded investigation of biochemical pathways one has
to consider such a reaction [HCB97]. Otherwise, the chosen description might be valid
only in a restricted region of the parameter and variable space. Often these are very
special limiting cases. Therefore we now include a reverse reaction into the enzyme
kinetic reaction

S + E
k1−−⇀↽−−
k−1

C
k2−−⇀↽−−
k−2

E + P (6.42)

which results in the rate equation (see Sec. 2.7.6)

v =
Vmax1 S/KM1 − Vmax2 P/KM2

1 + S/KM1 + P/KM2
. (6.43)

The parameters are now

KM1 =
k−1 + k2

k1
Vmax1 = k2E

T ,

KM2 =
k−1 + k2

k−2
Vmax2 = k−1E

T .
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From Eq. (6.9) we obtain for the substrate elasticity

εS =
S

v

∂v

∂S
,

=
S

v

[
Vmax1/KM1

1 + S/KM1 + P/KM2
− 1

KM1

Vmax1 S/KM1 − Vmax2 P/KM2

(1 + S/KM1 + P/KM2)2

]
. (6.44)

We can substitute Eq. (6.43) in the second term and cancel the reaction rate from the
prefactor. The first term we multiply with the inverse reaction rate. Then we reduce
the resulting expression to the common denominator

εS =
S

KM1

[
Vmax1

Vmax1S/KM1 − Vmax2P/KM2
− 1

1 + S/KM1 + P/KM2

]

and obtain the substrate elasticity

εS =

[
Vmax1 + (Vmax1 + Vmax2) P

KM2

]
S

KM1(
Vmax1S
KM1

− Vmax2P
KM2

)(
1 + S

KM1
+ P

KM2

) (6.45)

which is positive if v > 0 corresponding to a flux from substrate to product. An increase
of substrate concentration will increase the flux and the production rate of the product,
respectively.

In contrast to the irreversible Michaelis-Menten equation (6.36) the reaction rate de-
pends now also on the product. The corresponding product elasticity is

εP =
P

v

∂v

∂P
,

=
P

v

[
Vmax2/KM2

1 + S/KM1 + P/KM2
− 1

KM2

Vmax1 S/KM1 − Vmax2 P/KM2

(1 + S/KM1 + P/KM2)2

]
,

=
P

KM2

[
Vmax2

Vmax1S/KM1 − Vmax2P/KM2
− 1

1 + S/KM1 + P/KM2

]
,

=

[
Vmax2 + (Vmax1 + Vmax2) S

KM1

]
P

KM2(
Vmax1S
KM1

− Vmax2P
KM2

)(
1 + S

KM1
+ P

KM2

) , (6.46)

which one obtains in the same way as described for the substrate elasticity above. The
product elasticity is negative for a reaction rate v > 0. Hence, an increase of the product
will decrease the reaction rate.

6.9.3 Hill equation

Many enzymes show a much more complicated behavior than considered in the derivation
of the Michaelis-Menten equation. The corresponding reaction rates can be described
by the phenomenological Hill equation

v =
Vmax(S/K)n

1 + (S/K)n
, (6.47)
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where Vmax is a limiting rate, K an enzyme specific constant, n the Hill coefficient and
S the substrate concentration. The substrate elasticity for the Hill equation is

ε =
S

v

∂v

∂S

=

[
Vmax(S/K)n−1

1 + (S/K)n
− Vmax(S/K)n(S/K)n−1

[1 + (S/K)n]2

]
S

K

n

v
, (6.48)

which we can transform with Eq. (6.47) into the expression

εS =

[
v − v (S/K)n

1 + (S/K)n

]
n

v

leading to the final result

εS =
n

1 + (S/K)n
. (6.49)

The substrate elasticity is a decreasing function with respect to the substrate concen-
tration.

In the limit of small concentrations S � K we neglect the substrate dependent term
in the denominator and obtain the asymptotic elasticity

εS ≈ n .

Again, the reaction rate is very sensitive to changes in the substrate concentration.
The sensitivity increases if the Hill coefficient increases. In the limit of high substrate
concentrations S � K the elasticity becomes

εS ≈
n

(S/K)n

which simplifies further if we assume (S/K)n � n to

εS ≈ 0 .

The Hill equation is insensitive to changes in the substrate concentration. Here, the
enzyme saturation is dominant and determines the reaction rate.

Similar to the substrate elasticity we obtain the π-elasticity with respect to the
enzyme-specific constant K

πK =
K

v

∂v

∂K

= − n

1 + (S/K)n
= −εS . (6.50)

In analogy to the treatment of the Michaelis-Menten equation the reaction rate decreases
with increasing constant K. Since the limiting rate Vmax acts only as constant factor in
the Hill equation (6.47), its π-elasticity is again

πVmax = 1 .

An increase in the limiting rate will increase the reaction rate in the same manner.
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6.9.4 S-Systems

S-Systems [Sav69b] can be used to approximate the reaction rate near the steady state.
Within this approach we aggregate all contributions to the formation of Xi in one single
term and all contributions to the degradation of Xi in a second one. The rate law for
the j-th reaction is now

vj = k+j

∏

i

X
n−ij
i

︸ ︷︷ ︸
production

− k−j
∏

i

X
n+
ij

i

︸ ︷︷ ︸
degradation

(6.51)

with the forward rate constant k+j and the reverse rate constant k−j and the stoi-
chiometric coefficients n−ij for reactants and n+

ij for products. In contrast to the kinetic

orders of elementary reactions introduced in Section 2.5, the kinetic orders n±ij can have
real values. Note that a stoichiometric coefficient of zero has two possible interpreta-
tions: i.) the metabolite does not take part at the considered reaction and ii.) the rate
with respect to the considered species is limited by physical processes (see also Section
2.5.5.1). The steady state is then determined by a generalised law of mass action:

Keq =
k+j

k−j
=

∏
iX

n+
ij

i
∏
iX

n−ij
i

. (6.52)

The elasticity for the j-th reaction and with respect to the metabolite Xi is in the
S-Systems approach

εji =
Xi

vj

∂vj
∂Xi

=
Xi

vj

[
k+j

∂

∂Xi

∏

l

X
n−lj
l − k−j

∂

∂Xi

∏

l

X
n+
lj

l

]
.

The partial derivatives of products in the above equation is

∂

∂Xi

∏

l

X
n±lj
l = n±ijX

n±ij−1

i

∏

l 6=i
X
n±lj
l ,

where the metabolite Xi is excluded from the product. Furthermore, its kinetic order is
reduced by one. But a multiplication with the normalisation factor restores the original
order, and we can group again all participating metabolites in a common product. If
we apply the definition of the reaction in the S-System approach (6.51), the elasticity
becomes

εji =
k+j n

−
ij

∏
lX

n−lj
l − k−j n+

ij

∏
lX

n+
lj

l

k+j
∏
lX

n−lj
l − k−j

∏
lX

n+
lj

l

. (6.53)

The π-elasticities of the rate constants are easy to derive. We obtain an elasticity of

πjk±i = ±δij
k±i

∏
lX

n∓lj
l

k+j
∏
lX

n−lj
l − k−j

∏
lX

n+
lj

l

, (6.54)
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where

δij =





0 for i 6= j

1 for i = j

is the Kronecker-Delta [AS72]. The π-elasticity is non-vanishing only if the rate con-
stant determines the considered reaction. Otherwise, the rate does not depend on the
investigated rate constant and the elasticity is zero. If vj > 0, then the π-elasticity with
respect to the forward rate constant is always positive. Its increase further increases
the reaction rate. In contrast, the π-elasticity of the reverse rate constant is negative,
corresponding to a decreasing reaction rate with increasing rate constant.

6.9.5 Elasticity calculus

As demonstrated in the previous sections the derivation of elasticity coefficients becomes
more and more complicated if the complexity of the considered reactions increases. Due
to the resulting partial derivatives the expressions are very complex. Formally, due to
the normalisation often a simplification arises because of cancelations between numerator
and denominator terms with the normalisation factor. Hence, one can use an elasticity
calculus [Fel97] to avoid the generation of terms that will subsequently cancel.

Often the reaction rate is a rational form of

v =
N

D
(6.55)

where both function N and D depend on the metabolite concentration Xi. The corres-
ponding elasticity is

εi =
Xi

v

∂v

∂Xi

= Xi
D

N

[
∂N/∂Xi

D
−N ∂D/∂Xi

D2

]
(6.56)

which simplifies if both terms in the brackets are multiplied with the inverse reaction
rate of the normalisation factor. Finally we obtain with

εi = Xi

[
1

N

∂N

∂Xi
− 1

D

∂D

∂Xi

]
(6.57)

a simple rule for the calculation of the elasticity coefficients. Nevertheless, we must
emphasise, that the introduced calculus is applicable only if the reaction rate has a
rational form as proposed in Eq. (6.55). Otherwise, one has to use the general definition
(6.9). In this case a step by step derivation, as shown on the examples in the previous
section, cannot be avoided.
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7 Inferring Interactions in networks

It is important to note at the beginning of this chapter that in other chapters we used
capital letters for matrices and small letters for elements. This would not be possible in
this chapter and we will therefore introduce bold font to denote matrices.

Motivation

Consider the example of a four-gene network model depicted in Figure 7.1(a). Note that
genes do not actually interact directly with each other (neither do the corresponding
mRNAs); instead, gene induction or expression occurs through the action of specific
proteins, metabolites, or complexes. By abstracting these actions, we represent the
interaction of genes in a gene network and refer to the interactions as functional in- gene network

teractions. The functional interactions in a gene network are also called wiring . Any functional
interactions

wiring

metabolic pathway, signal transduction pathway, or gene interaction circuit can be mod-
elled as a network with nodes corresponding to metabolites, proteins, or genes, and links
between nodes corresponding to the interactions of nodes. These interactions proceed
through a number of protein products (for example, transcription factors) and metabolic
intermediates.

The functional interactions between the nodes of an interaction network can be ex-
pressed at different levels. Figure 7.1(a) shows only the topology of connections, where
a link represents either some association between two genes, or correlation between their
expression profiles. In Figure 7.1(b), the concept of direction is added to each interac-
tion. Direction implies some causality in a relation. Causality can be direct or through
a chain of relations. For example, gene 1 directly affects the expression of gene 3, but
not vice versa. On the other hand, gene 3 affects gene 1 indirectly through a chain of
connections which can be shown as 3 → 4 → 2 → 1. Another possible chain of connec-
tions through which gene 3 indirectly affects gene 1 would be 3→ 4→ 1. It is however
impossible to answer the question, how much gene 3 affects gene 1 with the information
inferred from Figure 7.1(b). To answer such a question, more information should be
added to the interaction network.

The effect of one gene on another one can be stimulatory or inhibitory. A stimulatory
connection directly increases the transcription rate of the target gene. Such a connection
is shown with a positive sign on the corresponding connection in Figure 7.1(c). An
inhibitory connection in contrast, directly decreases the transcription rate of the target
gene. Such a connection is shown with a negative sign on the corresponding connection
in Figure 7.1(c). Figure 7.1(d) shows another way to illustrate Figure 7.1(c). In Figure
7.1(e) the strength of each interaction which is the strength of the direct stimulatory or
inhibitory affect of one node on another one is added to the interaction network. In the
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Figure 7.1: Different descriptions of a four-gene transaction network.
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former case, the strength can be shown with a positive number; whereas, in the latter
case with a negative number. In Figure 7.1(e), the absolute values of the connection
strengths can be regarded as a measure of comparison between connection strengths.
Figure 7.1(f) shows another way to illustrate Figure 7.1(e).

It is important to find out in which level of description the considered gene or sig-
nalling network can be accessible. Different description levels of a gene or signalling
network require different types of mathematical model, different algorithms for con-
structing the network from stationary or time series data, different methods of analysis
of their behaviour, and yield different types of biological information [K+02].

If the variables x1, ..., x4 represent the expression levels of genes 1 to 4 respectively,
one can describe the dynamical behaviour of the network shown in Figure 7.1(e) by a set
of differential equations. In each equation, the rate of change of the transcription level
of one gene is described as a function of the expression levels of other genes as follows.

d

dt
x1 = f1 (x1, x2, x3, x4)

d

dt
x2 = f2 (x1, x2, x3, x4)

d

dt
x3 = f3 (x1, x2, x3, x4)

d

dt
x4 = f4 (x1, x2, x3, x4) (7.1)

In most cases, these functions are known but likely to be non-linear. The fact that
the rate of transcription of a gene would saturate after reaching a maximum, justifies
the likelihood of f -functions being non linear. It is also typical that the transcription
rate of a gene would only depend on the expression level of some of other genes in the
network. Thus, for instance, in Figures 7.1(e), gene 1 depends directly on gene 2 and 4;
gene 2 depends directly only on gene 4; gene 3 depends directly on gene 1 and gene 2;
gene 4 depends directly only on 3. Hence, the above equations simplify to the following
equations.

d

dt
x1 = f1 (x2, x4)

d

dt
x2 = f2 (x4)

d

dt
x3 = f3 (x1, x2)

d

dt
x4 = f4 (x3)

Generally, a node of an interaction network can be a single protein, or a group of
proteins, a gene (as in the interaction network of the example shown in Figure 7.1), a
group of genes, enzymes or other cellular components of arbitrary complexity. These
nodes are connected by physical and/or chemical interactions which together perform
one or more identifiable tasks. A node of the interaction network is also called a module. module
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7 Untangling the Wires

According to the type of the network nodes, an interaction network can be classified
as signalling, gene or metabolic network. For example, in gene networks, modules can
involve mRNAs of a particular gene or gene cluster with regulatory interaction loops
running through metabolic and signalling pathways.

The basic concept of quantifying the strengths of interactions between nodes of an
interaction network is to analyse the direct effect of a small change in one node on
another node, while keeping the remaining nodes unchanged to prevent the spread of
the perturbation. For example, continuing with the example of the gene network shown
in Figure 7.1, we ask how much the transcription level of gene 1 changes in response to
a change in the transcription level of gene 4, while the transcription level of all other
gene are kept constant. This can be shown by the partial derivatives of f1 with respect
to x4, written as:

J14 =
∂f1

∂x4

These quantities can conveniently be arranged in a matrix J, known in as the Jacobian
matrix. The Jacobian matrix is here of particular interest. Each off-diagonal element of
the Jacobian matrix describes the change of one node, relative to another. Positive and
negative entries correspond to activation, respectively inhibition of one node by another.
The definition of J14 is illustrated in Figure 7.2(b).

In Figure 7.2, the propagation effect of a change in the level of one gene through the
whole interaction network is partly shown. In Figure 7.2(a), the network is assumed
to be in a reference steady state. Therefore, there are no observable changes in the
transcription levels of the genes depicted as the nodes of the network. In this case, right
hand sides of the differential equations shown in equation (7.1) equal zero. As in Figure
7.2(b) is shown, a perturbation increasing the level of gene 4 leads to an increase in
the transcription level of gene 1. This in turn results in a decrease in the transcription
level of gene 3 shown in Figure 7.2(c). The change in the level of gene 3 affects the
transcription level of gene 4 as highlighted in Figure 7.2(d). It is important to note that
the propagation does not stop at this point. The propagation of the changes spread
through the whole interaction network until all the genes have found a new steady state
level.

Another point to consider is the possibility of having different paths for the propaga-
tion of changes in an interaction network. This fact is shown in Figure 7.3. The network
is assumed to be in a reference steady state in Figure 7.3(a). A perturbation then in-
creases the level of gene 4, which has the effect of increasing the rate of transcription of
2 as illustrated in Figure 7.3(b). The sequence is continued in Figure 7.3(c) to highlight
the stimulating effect of an increase in the level of 2 on the transcription level of 3. This
in turn leads to an increase in 4 as shown in Figure 7.3(d). Again, the changes propagate
throughout the whole interaction network until a new steady state is established.

As once mentioned, the amount of change in the transcription level of gene 1 as a
result of a change in the level of gene 4 is quantified by the partial derivative J14 shown
in Figure 7.2(b). This quantifying is done in the context of a process called linearisation.
Linearisation of a non-linear system around a critical point requires infinitesimally small
perturbations around the reference state, so that in practise we replace J14 by a finite
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Figure 7.2: Propagating effect of an increase in the level of gene 4 through the whole interaction network
is shown partly.
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difference approximation. If this requirement is encountered, the system of differential
equations of 7.1 can be replaced by a system defined by the Js using a first order Taylor
series approximation of the functions f1, ..., f4.

Functions f1, ..., f4 in equation 7.1 determine the dynamics of the interaction network
as well as its architecture. Therefore, to discover the architecture of an interaction net-
work, the f functions should be estimated from experimental data. Using the notion of
linearisation, this problem deforms to the problem of estimating the direct influence (or
local response) of the variation of each node on all other nodes in a network. Having this
information, one can identify the local network structure and from this refer the global
network structure. In other words, the identification of the functional interaction struc-
ture of a biomolecular network can be considered as unraveling all of the corresponding
local interaction networks.

Global interactions in a biomolecular network can be considered as a sum of local
interactions of individual nodes. This is illustrated in Figure 7.4. Note that an arrow
indicates a positive direct influence. On the other hand, a line with the end of a vertical
segment shows a negative direct influence and a line with the end of a black circle
represents no direct influence. A positive influence is referred also as an up-regulation up-regulation

influence whereas a negative influence can be referred as a down-regulation influence. down-regulation
Fortunately, advances in genomics and proteomics analysis facilitate the monitoring of

the expression levels of large gene sets and the activity states of signalling proteins in liv-
ing cells. However, inferring and quantifying interconnections within complex signalling
and gene networks is still considered a fundamental problem in cell biology. It is difficult
to directly measure the local responses (for example, estimating J14) from experiments.
As it is highlighted in Figure 7.2 and Figure 7.3 , the variation of one node promptly
spreads over the other nodes of the network till the whole network reaches a new steady
state. Carrying out practical experiments in order to quantify the change in the tran-
scription level of one gene, owing to a change in another gene while keeping everything
else constant is practically impossible. Instead, the global change in the transcription
level of a gene owing to some perturbation to the system can be measured. Thus, a
method which can be used to indirectly infer the local responses based on information
from global changes measured in a practical experiment is required.

Various qualitative and mechanistic modelling methods have been used to infer the
structure of bio-molecular networks. These include Boolean networks, genetic algorithms,
dynamic simulations, Bayesian models (to infer the gene circuitry) [LFS98], and meta-
bolic control analysis (to determine interactions between metabolites and enzymes)
[LD93, Bra96, VH02]. These mechanistic bottom-up approaches have the advantage of bottom-up

approachesbeing readily testable against experiments as a computer replica of cellular networks and
providing a wealth of detail. However, a major disadvantage of the mechanistic mod-
elling is the necessity of modelling a large number of molecular processes , complicated
by the fact that the values of multiple kinetic parameters may be unknown. Moreover,
a button-up approach inevitably misses the interactions and regulatory feedbacks which
are still not discovered. Therefore, a button-up approach would be less applicable to
poorly characterised networks [dlFBM02, K+02, SKK04]. In the reverse engineering of
a gene network, detailed information about the network is in general deficient when
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Figure 7.4: Global interactions of a biomolecular network (the upper box) can be seen as a sum of local
interactions of individual nodes (the lower box).
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compared to the case of a metabolic network. In this context, the metabolic control
analysis (MCA) techniques have been extended by de la Fuente in [dlFBM02] to infer a
gene network structure with the assumption that each node of the network is a single
gene and the parameters corresponding to gene transcription rates can be perturbed.
Recently, however two important approaches to this problem have been proposed by
Kholodenko et al. [K+02] and Sontag et al. [SKK04]. These two approaches can be
classified as top-down approaches of studying interaction networks. top-down approaches

The bottom-up approaches rely on the numerical simulation of a mechanistic model
of an interaction network and quantitatively compare the results of such simulations
to experimental observations [HMIC01, KDMH99, MMD+02, SHY+02, SBB98, Tys01,
vDMMO00]. In contrast, top-down approaches infer the architecture of the interac-
tion network based on observed global responses of the system to a series of signals or
experimental perturbations. Hormones, growth factors, neurotransmitters, or experi-
mental interventions such as chemical inhibition are some examples of perturbation to
a system. The global responses that could be measured include changes in the phos-
phorylation states or activities of proteins, mRNA levels, or transcription rates. From
these global responses, top-down analysis methods attempt to recover the local inter-
actions between interaction network nodes, which in turn form a map of the network.
Inferring the architecture of an interaction network is also called reverse engineering of
an interaction network [AKLS05]. Contrary to the bottom-up approaches which are less
applicable to poorly characterised networks, top-down approaches are more appropriate
for network discovery in the cases where the bottom-up approaches by nature miss in-
teractions and regulatory feedbacks that still await discovery [Bra96, dlFBM02, K+02].
Top-down approaches have also the great advantage of being applicable to regulatory
networks of arbitrary complexity.

Top-Down Methods

Definitions

The concept of a modular framework [HHLM99, Lau00] was considered in top-down ap-
proaches as a way to facilitate the process of understanding the coordinated behaviour
of numerous molecular interactions in an interaction network and inferring its architec-
ture. The extensive use of the concept of modules gives the top-down approaches the
advantage of being applicable to networks of arbitrary complexity. This way, instead of
considering numerous molecular reactions happening inside an interaction network, we
divide it into m reaction groups referred to as functional units or modules. The concept
of a module was introduced in the last section. As a remark, a module can be a group
of genes, enzymes, or other cellular components of arbitrary complexity, connected by
physical and/or chemical interactions which together perform one or more identifiable
tasks. Generally, a module involves many cellular components (intermediates) connected
by chemical reactions. However, the task(s) which a module performs usually depends on
one or a small number of components of the module. Each of these components is called
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input

MAPKKK MAPKKK-P MAPKKK-PP

MAPKK MAPKK-P MAPKKK-PP

MAPK MAPK-P MAPK-PP

output

Figure 7.5: General outline of the MAPK pathway.

a communicating intermediate . A communicating molecule may be the active form of acommunicating
intermediate kinase, mRNA, or transcription factor influencing other modules. Thus, communicating

intermediates form molecular connections between modules, referred to as intermodular
interactions . The top-down approaches black-box the molecular organisation of networkintermodular

interactions modules. In order to untangle and quantify the web of intermodular interactions, only
the concentration or chemical states of the communicating intermediates (the module
outputs) is monitored. The probably complex internal structure of the module plays no
role in the analysis of the interaction network. This is considered the big advantage of
using top-down models to find network interaction maps.

In [K+02, AKLS05], the mitogen-activated protein kinase (MAPK) signalling net-
work shown in Figure 7.5 is considered as an example to show the usage of the module
concept in simplifying an interaction network. Each of the three tires of the mitogen-
activated protein kinase (MAPK) cascade can be considered as a functional module that
involves unphosphorylated, mono-phosphorylated, and biphosphorylated forms of a pro-
tein kinase and the reactions converting these forms. Note that modules need not be
rigid, and entire MAPK cascades can serve as functional modules in a signalling net-
work that involves growth factor and stress-activated pathways. However, if we consider
a tire as a module, we see that only the doubly phosphorylated forms of the kinases
have any interactions with components on other tires/levels of the network. The un-
phosphorylated and singly phosphorylated forms only interact with components on the
same tire/level. If we black-box the tires and consider them as modules, the dimen-
sionality of the problem reduces by a factor of 3. This is due to the fact that although
there are a total of nine components in this prototypical network, we can treat it from
a modular point of view as consisting of three modules. The modules correspond to the
MKKK, MKK, and MAPK levels and are represented by the communicating intermedi-
ates MKKK-PP, MKK-PP, and MAPK-PP, respectively. The order of simplification is
considerably greater in case of the networks having more complex internal structure in
each module [AKLS05]. Another point to consider in Figure 7.5 is that not all the con-
nections between modules are shown. Especially, no repression is shown in this figure.
Actually, modules of an interaction network can be interconnected in multiple way,many
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of which may be unknown. The aim in the present chapter is to represent some of the
methodologies capable of unraveling and quantifying unknown modular connections in
signalling and gene networks.

Consider that the interaction network is divided into m reaction groups referred to
as functional units or modules and let xi, i = 1, ...,m be the activities or concentrations
of communicating intermediates. Then, the intermodular interactins can be quantified
in terms of the fractional changes (∆xi

xi
) in the activity of communicating intermediates

(xi) of a particular module (i) brought about by a change in the (output) activity (xj) of
another module (j). Output activities of all other modules (xk, k 6= i, k 6= j) are assumed
to remain fixed, whereas the affected module (i) is allowed to relax to its steady state. A
mathematical definition requires the changes (∆x

x ) to be infinitesimally small, resulting
in log-to-log derivatives,

rij = lim
∆xj→0




∆xi
xi

∆xj
xj


 =

(
∂ lnxi
∂ lnxj

)

module i in steady state

, i 6= j (7.2)

Where rij is referred to as local response or local coefficient which quantifies the local response

local coefficientsensitivity of module i to module j. The term ”local” indicates that the response results
from immediate interactions between two modules when all other network interactions
are held constant. A response coefficient rij less than 1 means that (small) fractional
changes in module j output are attenuated in module i, whereas a response greater
than 1 means that these fractional changes are amplified by the factor rij . A response
coefficient of 0 means that module j has no direct effect on module i, whereas a negative
response coefficient means inhibition.

If each module is assumed to have a single communicating intermediate, all interactions
between network modules are quantified by m·(m−1) intermodular response coefficients
rij . These ”connection” coefficients indicate how the network is ”wired” and compose
the m × m matrix, r , hereafter referred to as the network interaction map. The ith network interaction

maprow of the matrix r quantifies how module i is affected by each network module through
intermediate interaction, whereas the jth column of r measures how module j directly
influences each network module. The diagonal elements (rii) of the matrix r are assigned
to be −1, i.e, rii = −1, i = 1, ...,m.

If we consider the module i ”in isolation” from the network, the local response coeffi-
cient ripi of xi to a perturbation of parameter pi, intrinsic to module i can be determined
as follows,

ripi =

(
∂ lnxi
∂pi

)

module i in steady state

It is clear that when module i is isolated from the network, changes in parameters pj ,
influencing other module j, have no effect on module i, and therefore the local response
of xi to a perturbation in pj equals zero. Local responses to perturbations, affecting
single modules only, form the diagonal m×m matrix, diagrP , with diagonal elements
ripi and all off-diagonal elements equal to zero.

If following a parameter pi perturbation intrinsic to module i an entire network is
allowed to relax to a steady state, this perturbation not only causes changes in those
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7 Untangling the Wires

modules directly affected by module i, but also propagates further into the network
through interactions between other modules. The resulting time-dependent or stationary
responses are called ”global” responses of the network. We designate by Rjpi the global
response coefficient of module j to a perturbation in pi and by RP the m ×m matrix
composed of these coefficients,

Rjpi =

(
d lnxj
dpi

)

system in steady state

j, i = 1, ...,m. (7.3)

Understanding the difference between the local and global interaction network responses
to perturbations is of great importance. The difference between the local diagrP and
global RP response matrices is that only module i is allowed to reach the steady state
to determine ripj , whereas an entire network is permitted to relax to its steady state to
measure Ripj .

Global responses to perturbations can be measured in experiments with intact cellular
systems. However, local responses governed by the network interaction map can not be
captured using intact cells. To measure the kinetics of local interactions between two
modules (proteins) directly, they should be isolated from the network. Sometimes the
interaction of interest can be reconstituted in vitro, but often only an entire system is
accessible experimentally. The question of how to determine quantitatively the network
interaction map if only the global responses can be assessed is addressed in the rest of
this chapter. It is showed that by making parameter perturbations to all modules and
measuring the global network responses, the unknown interaction map can be retrieved.

7.1 Method of Kholodenko et al.

7.1.1 Mathematical Derivation

In Appendix 2 published as supporting information to [K+02] on the PNAS web site, an
abstract mathematical derivation of the method presented in [K+02] is provided.

Let us assume that the modules have just one communicating intermediate as the
output, i.e, the considered perturbations affect only single modules. Consider a dynamic
system represented as,

dx

dt
= f (x, p) (7.4)

where the vector of variables x = (x1, ..., xn) and the vector of parameters p = (p1, ..., pn)
belong to open subsets of the Euclidean space. It is assumed that the system has a stable
steady state (x0, p0) and f(x0, p0) = 0. Then, where the Jacobian matrix J = ∂f

∂x is non-
singular, there exists a unique vector x(p) solving f(x, p) = 0 in some neighbourhood of
a particular p0 . The objective is then to determine the Jacobian matrix J, assuming
that one can determine the global response matrix RP = ∂x

∂p .

Unfortunately, such an objective is impossible to achieve. The reason is that the
equation f(x, p) = 0 is equivalent to the equation 2f(x, p) = 0, and thus there will

be no way to distinguish between
(
∂f
∂x

)
and 2

(
∂f
∂x

)
. Thus, the objective should be
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7.1 Method of Kholodenko et al.

restated as finding the matrix r of rij . The coefficients rij correspond to the elements

J , ”normalised” by the diagonal elements
(
∂fi
∂xi

)
, i.e.,

rij =
∂xi
∂xj

= −

(
∂fi
∂xj

)

(
∂fi
∂xi

)

In matrix notation,
r = − (diagJ)−1 · J (7.5)

Solving f(x, p) = 0 in some neighbourhood of a particular p0 allows us to relate the global
response matrix RP , the Jacobian matrix J, and the matrix of the partial derivatives of
functions f with respect to the vector of parameters p,

RP =
∂x

∂p
= −

(
∂f

∂x

)−1

·
(
∂f

∂p

)
= − (J)−1 ·

(
∂f

∂p

)
(7.6)

It is assumed that the matrix
(
∂f
∂p

)
is nonsingular in the vicinity of the state (x0, p0).

Because the perturbation of each of the parameters, namely (pi) affects only a single

module i, the matrix
(
∂f
∂p

)
turns out to be diagonal,

∂f

∂p
= diagfP

The matrix diagfP is related to the local response matrix, diagrP according to the
following relation,

diagrP = − (diagJ)−1 · (diagfP ) (7.7)

Equation (7.7) is obtained by differentiation of the equation fi(x, p) = 0 with respect to
pi assuming that all other variables except xi remain fixed. Using (7.5), (7.6), (7.7) , we
find,

RP = − (J)−1 · (diagfP ) = − (J)−1 · (diagJ) · (diagJ)−1 · diagfP = −r−1 · diagrP (7.8)

From equation (7.8) , the matrix r is expressed as follows,

r = −diagrP ·RP
−1 (7.9)

Because all the diagonal elements of the matrix r are equal to −1, it can be written,

I = diagrP · diag
(
RP
−1
)

(7.10)

Where I is the identity matrix and diag
(
RP
−1
)

is a diagonal matrix with diagonal
elements

(
RP
−1
)
ii

and all off-diagonal elements equal to zero. By expressing diag (rP )
from this equation, we obtain,

r = −
(
diag

(
RP
−1
))−1 ·

(
RP
−1
)

(7.11)
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This final expression gives us the answer: If the global responses of a cellular network
to perturbations to all modules have been measured, the network interaction map r can
be retrieved by the inversion of the global response matrix RP .

Now we generalise the method for the case where modules have more than one com-
municating intermediate as output. In Appendix 1, which is published as supporting
information to [K+02] on the PNAS web site, an abstract mathematical derivation of
this generalised case is provided. In this case, the resulting expression for the network
interaction map becomes slightly more complicated. Instead of the diagonal matrix(
diag

(
RP
−1
))−1

, the block diagonal matrix B is determined using the elements of the
inverse matrix RP

−1 as follows,

B =
(
blockdiag

(
RP
−1
))−1

(7.12)

Then, instead of using (7.11), the following equation would be used in order to find the
network interaction map.

r = −B ·
(
RP
−1
)

(7.13)

As an example, remember that we assumed that the interaction network has m modules.
For such a network, the matrix B has m central minors/square blocks with nonzero
elements. All other elements in B are zero. The dimension of each block correspond
to the number of the communication intermediates or in other words, outputs of the
related module.

Suppose that the mth module has c communicating intermediates/outputs. Then, the
mth principal minor of the block diagonal matrix B looks as follows,




Bm,m Bm,m+1 . . . Bm,m+c

Bm+1,m Bm+1,m+1 . . . Bm+1,m+c
...

...
. . .

...
Bm+c,m Bm+c,m+1 . . . Bm+c,m+c


 =




R−1
m,m R−1

m,m+1 . . . R−1
m,m+c

R−1
m+1,m R−1

m+1,m+1 . . . R−1
m+1,m+c

...
...

. . .
...

R−1
m+c,m R−1

m+c,m+1 . . . R−1
m+c,m+c




−1

(7.14)

7.1.2 Enhancement

There are cases where it is difficult or impossible to measure or estimate the parameter
changes (∆pi). In order to enhance the applicability of the proposed approach in these
cases one can simply consider the global (∆i lnxj) fractional changes in communicating
intermediates (xj) caused by a parameter change (∆pi). This representation in terms
of the relative values may help where quantitation of the absolute activities is difficult.
For example, when Western blotting is used to quantify the relative amount of a protein
or determining the ratio of the fluorescence intensities from gene arrays [dlFBM02]. To
reach the goal, the global response matrix RP with the coefficients Rjpi is redefined to
be determined by the global fractional changes brought about by a perturbation (∆pi).

Rjpi = (∆i lnxj)system in steady state
, i, j = 1, ...,m. (7.15)
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7.1 Method of Kholodenko et al.

Here the derivatives, which were considered in

Rjpi =

(
d lnxj
dpi

)

systeminsteadystate

j, i = 1, ...,m.

are substituted by the finite changes (divided by the initial or mean value). However, the
crucial distinction is that according to the equation (7.3), the parameter changes (∆pi),
should be known, whereas equation (7.15) merely considers the differences in intermedi-
ates (xj) before and after perturbations in order to determine the global response matrix
RP . Using equation (7.15) , one obtains exactly the same relationship as (7.11), which
expresses the network interaction map in terms of the measured changes in the levels of
the communicating intermediates without requiring any knowledge about the values of
parameter changes.

7.1.3 Practical Application

According to the method of Kholodenko et al., the following four steps should be applied
in an experiment in order to discover the network interaction map by making systematic
perturbations and measuring global responses.

• Conceptually divide the network under consideration into interacting modules and
identify communicating intermediates.

• Identify the modules which have just one communicating intermediate as output.
For these modules, use an inhibitor or other perturbation which affects that single
network module only, e.g., module j, and measure the difference in the steady
state levels of communicating intermediates before xj

0 and after xj
1 the perturb-

ation. Then, calculate the jth column of the matrix RP by using, e.g., the central
fractional differences defined as the finite difference in the activities divided by the
mean value,

∆j lnxj ≈ 2
xj

1 − xj0

xj1 + xj0
= 2

(
xj

1

xj0 − 1
)

(
xj1

xj0 + 1
) (7.16)

Repeat for the remaining network modules which also have just communicating
intermediate/output, using a perturbation directly affecting that module only, and
calculate the corresponding columns of the matrix RP (∆i lnx1, ...,∆i lnxm)T .

• This step is applied to the remaining modules (which have more than one commu-
nicating intermediate as output). For these modules, the number of independent
perturbations applied to each module should be more than one and equal to the
number of communicating intermediates in that module. Determine the block
diagonal matrix B using equation (7.12) and according to (7.14).

An important point to notice during the last two steps is that perturbations of
different kinds can be applied to the modules. This shows the fact that network
interactions to be detected by the method would not depend on which particular
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7 Untangling the Wires

modular processes within each module are affected. This emphasises the fact that
the method black-boxes the modules.

• Apply the equation (7.13) to reveal and quantify the network interaction map in
terms of the matrix r of intermodular (local) response coefficients. For the case
a single communicating intermediate in each module, the matrix B is identical to

the diagonal matrix
(
diag

(
RP
−1
))−1

.

In [K+02], two examples of applying the proposed methodology are represented. We
show some important aspects of these applications in the following.

Unraveling the MAPK cascade interaction map

In this section, the method represented by Kholodenko et al. is used to retrieve the inter-
action map of the MAPK pathway from computer generated responses of a kinetic model
of the cascade to perturbations. These responses simulate experimental interventions.

The mitogen-activated protein kinase (MAPK) cascade is a part of the growth-factor/Ras
pathway in eucaryotic cells. The cascade is highly conserved, which means that the
same principles can be observed in a variety of organisms and cell types. This shows the
importance of the cascade. However, although some regulatory feedbacks are well doc-
umented, the complete interaction map of the MAPK pathway is unknown. Moreover,
both stimulatory and inhibitory feedbacks may differ in various cell types.

To retrieve the MAPK cascade interaction map, we go through the steps in section
7.1.3.

• We consider each of the three tires of the mitogen-activated protein kinase (MAPK)
cascade as a functional module that involves unphosphorylated, mono-phosphorylated,
and biphosphorylated forms of a protein kinase and the reactions converting these
forms. Then, we see that only the doubly phosphorylated forms of the kinases
have any interactions with components on other tires/levels of the network. The
unphosphorylated and singly phosphorylated forms only interact with components
on the same tire/level. Therefore, in this network, the modules correspond to
the MKKK, MKK, and MAPK levels and are represented by the communicating
intermediates MKKK-PP, MKK-PP, and MAPK-PP, respectively.

• According to the last step, all modules have just one communicating intermedi-
ate as output. Then, for each modules, an inhibitor or other perturbation should
be used which affects that single network module only. In [K+02] the following
perturbations are used. As a perturbation to the first module, the input signal
is inhibited by decreasing the Ras-GTP concentration. As a perturbation to the
second module, either the maximal activity of the phosphatase, which dephos-
phorylates MKK-PP and MKK-P, or the kinase that acts on MKK were inhibited.
The third module was perturbed by inhibiting either the maximal activity of the
MAPK phosphatase or the kinase. 12 different perturbations are used in [K+02]
to perturb the whole MAPK cascade.
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7.1 Method of Kholodenko et al.

Before a perturbation to the module j, the steady state level of the communicating
intermediate related to this module is measured. After the perturbation, the whole
MAPK cascade should be allowed to reach a new steady state. Then, the new
steady state level of the communicating intermediate related to the module j is
measured. Now, the column j of the matrix RP can be calculated using (7.16).
You can refer to [K+02] to see the global fractional responses times 100, which
shows the changes to communicating intermediates as a percentage of the mean.

• Apply the equation (7.11) to reveal and quantify the network interaction map in
terms of the matrix r of intermodular (local) response coefficients.

A comparison between the retrieved experimental interaction maps and known theoret-
ical interaction map can be seen in [K+02]. It is observed that both different simulated
inhibitors and perturbation values, which brought about widely diverse global changes in
communicating intermediates, resulted in four nearly identical experimental interaction
maps.

Let us consider one of the retrieved interaction maps in [K+02], shown in (7.17), in
order to reveal the interactions between MAPK cascade modules.



−1.0 0.0 −1.1
1.9 −1.0 −0.6
−0.0 2.0 −1.0


 (7.17)

Remember the definition of the network interaction map, r. The ith row of the matrix
r quantifies how module i is affected by each network module through intermediate
interaction, whereas the jth column of r measures how module j directly influences each
network module. Therefore, according to the retrieved network interaction map, module
1 directly affects module 2 because r21 > 0 and but not vice versa, because r12 = 0.
Moreover, the affect of module 1 on module 2 is stimulatory because r21 � 0. In the
same manner is module 3 affected by Module 2. From this interaction map, two other
direct affects are retrieved which are inhibitory. Module 3 affects module 1 and module
3 affects module 2. The inhibitory nature of these affects is observed from the sign
of the corresponding entry in the network interaction map, r13, r23, which is negative.
Therefore, the general outline of the MAPK pathway shown in Figure 7.5 can be refined
as shown in Figure 7.6 in which the modular framework is used to black box the layers
of the cascade.

Unraveling the wiring of a gene network

In this section, the method represented by Kholodenko et al. is used to untangle gene
network interactions (wiring) by carrying out specially designed gene microarray experi-
ments. To retrieve the gene network interaction map, we go through the steps in section
7.1.3.

• As described before in the definition of the gene networks, the interactions pro-
ceed through multiple protein products (for example, transcription factors) and
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Figure 7.6: Revealed interactions between MAPK cascade modules.

metabolic intermediates. These protein products and metabolic intermediates are
not considered explicitly in the method of Kholodenko et al. Instead, the mRNAs
are considered as communicating intermediates. It is assumed that no knowledge
about the interactions is in hand. Actually, Figure ?? shows the only information
about the network at this point, which is just the topology of connections. A
link represents some association between genes, or more specifically, correlation
between the mRNAs.

• According to the last step, all modules have just one communicating intermediate
as output. Then, for each modules, an inhibitor or other perturbation should be
used which affects that single network module only. In [K+02] two series of four
different perturbations to the network. In each set of perturbations, the transcrip-
tion rate of each gene is perturbed independently by decreasing or increasing its
maximal activity.

Before a perturbation to the module j, the steady state level of the communicating
intermediate related to this module is measured. After the perturbation, the whole
gene network should be allowed to reach a new steady state. Then, the new steady
state level of the communicating intermediate, (mRNA response), related to the
module j is measured. Now, the column j of the matrix RP can be calculated
using (7.16). You can refer to [K+02] to see the two matrices of global fractional
responses times 100, which shows the changes to communicating intermediates
(mRNAs) as a percentage of the mean.

• Apply the equation (7.11) to reveal and quantify the gene network interaction map
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in terms of the matrix r of intermodular (local) response coefficients.

A comparison between the retrieved experimental gene interaction maps and known the-
oretical interaction map can be seen in [K+02]. It is observed that both different simu-
lated inhibitors and perturbation values, which brought about different global changes
in communicating intermediates, resulted in two nearly identical experimental interac-
tion maps. Moreover, all the gene interactions were retrieved successfully. Therefore,
experimentally obtained network wiring and its quantitation was very near to the known
interaction map for this system.

From the application of the method of Kholodenko at al. to the above networks, it is
concluded in [K+02] that the method is a powerful tool for unraveling the interactions
in signalling and gene networks.

7.2 Method of Sontag et al.

The method of Kholodenko et al. represented in the last section has some limitations
when to be applied to in vivo systems. These limitations appear when for example a
biological process is in nature time dependent. The cell cycle is an examples of such a
process. In this case, the method of Kholodenko et al. which deals only with steady
state behaviour can not be applied to such a system. The second case where the method
of Kholodenko et al. can not be applied is when the biological system includes both
information feedbacks and mass flow connections through biochemical conversions. The
method of Kholodenko et al. implies that network nodes are connected through regu-
latory interactions that exclude mass flow. Moreover, the perturbations applied to the
system in the method of Kholodenko et al. should influence just one node at a time. In
reality, it happens often in an experiment that an intervention influences more than one
module simultaneously [KDMH99, Tys01, SKK04].

In chapter we referred to the realisation of a stochastic process as a time series, which
is actually a sequence of observations. For a time series, an observation at time t is mod-
elled as the outcome of a random variable. Compared to stationary data, time series
data enable us to understand the dynamics of biological processes. The method repres-
ented by Sontag et al. in [SKK04] offers a quantitative technique to unravel functional
interactions between genes, transcription factors, and metabolites from monitoring time
dependent responses of a biological system (in the form of time series data) to perturb-
ations. Using this method, it is possible to untangle functional interactions even when
not all the modules can be perturbed directly. In such a case, two or more independent
perturbations should be applied to other nodes. In the extreme case, it is possible to
deduce all the connections related to a special node in an interaction network from the
system responses to perturbations none of which directly influence that particular node.

The method of Kholodenko et al. showed how the connection coefficients can be
inferred from steady state measurements [K+02]. Method of Sontag et al., published
in [SKK04] demonstrates a technique allowing for determination of the dynamics of
gene interactions described by the elements of the Jacobian matrix from time dependent
network responses to experimental interventions. The inferred interaction dynamics
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7 Untangling the Wires

offers a more valuable and complete description of a cellular network than the less
informative steady state data.

7.2.1 Mathematical Derivation

A mathematical description of the method offered by Sontag et al. and published in
[SKK04] is represented in the following.

Consider again the set of differential equations describing the dynamic behaviour of a
system as follows.

dx

dt
= f (x, p)

Where the vector x = (x1, ..., xn) consists of the state variables, each assigned to one
network node. Each state variable represents the concentration or the activity level of
the corresponding network node. The vector p = (p1, ..., pn) consists of the parameters
present in the system. Each parameter represents an external or internal condition
maintained constant. Examples of internal parameters can be rate constants. External
parameters can be PH and temperature. The f functions describe how the rate of change
of each state variable depends on all other state variables and parameters present in the
system.

Here starts the distinguishing feature of this approach from other network identi-
fication techniques. We assume that for each state variable xi, a set of experimental
interventions that do not directly influence xi exists. Let us assume node i, one of the m
nodes present in the network, and call the subset of the parameters which do not affect
xi directly as Pi. From now on, we refer to each member of Pi as pj . Therefore,

∂fi
∂pj

(x, p) = 0, pj ∈ Pi (7.18)

For each perturbation, we measure the original and perturbed time series (also called
trajectories) describing the time dependence of network variables. These trajectories
are solutions to equation (7.4) corresponding to parameter values pj and pj + ∆pj ,
respectively, and to the same initial condition x0 (unless a perturbation is a change in
the initial condition). The time dependent response Rij(t) of each network variable xi
to a perturbation of pj is defined as the parameter sensitivity of the solution xi

(
t, x0, p

)

to equation (7.4),

Rij(t) =
∂xi

(
t, x0, p

)

∂pj
= lim

∆pj→0

(
xi (t, pj + ∆pj)− xi (t, pj)

∆pj

)
, i = 1, ...,m (7.19)

These sensitivities are computed using the variational system along the corresponding
trajectory and are routinely employed in differential equation theory and systems ana-
lysis for parameter optimisation and identification of dynamical systems. They have
been also used in the context of metabolic networks [IS03]. Our objective is to determ-
ine dynamic connections, given by the Jacobian elements Jij(t) from the experimental
time series that evaluate global response coefficients Rij(t). To this aim, we also need
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the second order sensitivities, ρij(t), which can be estimated from the measurements of
the global responses Rij (t), at two successive time points t and t+ ∆t.

ρij(t) =
∂2xi

(
t, x0, p

)

∂pj∂t
=
∂Rij(t)

∂t
≈ [Rij (t+ ∆t)−Rij(t)]

∆t
(7.20)

A new matrix used in this method is the global response matrix R (t, Pi), which is
composed of the measured time dependent responses, Rkj (t). Each jth column of the
response matrix R (t, Pi) corresponds to a single experiment. In this experiment, the
parameter pj is perturbed and the time course of the response of each network node xk
to a change in pj is evaluated. Therefore, the number of rows of matrix R equals to
the number of nodes, m, in the network. Matrix R has as many columns as selected
parameters pj that directly influence either a single node different from xi, or any com-
bination of such nodes. For each perturbation experiment related to pj , the second order
sensitivity ρij(t) is evaluated from time series for node xi. Using the matrix R and the
ρij(t) values, the problem can be solved as follows.

The dynamic behaviour of the node i is described by the solution xi
(
t, x0, p

)
(x0 is

the initial state of the system) to the following equation,

dx

dt
= f (x, p) , x = (x1, ..., xn) , p = (p1, ..., pn)

Therefore,

dxi
(
t, x0, p

)

dt
= fi (x1, ..., xi, ..., xj , ..., xn, p)

Taking the derivative with respect to pj from both sides and using equations (7.18),
(7.19), and (7.20), the unknown elements of the ith row of the Jacobian matrix J would
be found. These elements satisfy the following system of linear equations,

ρij(t) =
m∑

k=1

Rkj(t) · Jik(t), pj ∈ Pi (7.21)

The quantities we are looking for, the m Jacobian matrix entries, Jik, can be found
from equation (7.21) provided that the the rank of the matrix R (t, Pi) equals m. These
quantities quantify the influence of every node k on node i and can be determined from
the measured responses, Rkj(t) and ρij(t), to the perturbations which do not directly
affect node i.

There are noticeable points in the Sontag et al. method. To deduce dynamic connec-
tions leading to node i, the second order sensitivities ρij should be measured only for
component xi. Compare it to the fact that for all other components xk, the first order
sensitivities Rkj(t) should be determined. Another point is the fact that the rank of the
response matrix R (t, Pi) generically at any given time equals m. It is demonstrated in
the supplementary material of the paper published in [SKK04]. Moreover, it is showed
that this rank generically equals m even when only a single network node is directly
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affected by m experimental interventions, each of which changes an independent para-
meter influencing that particular node. Another point can be the interesting fact that
perturbations can be changes in the initial conditions.

We close this section with the conclusion that estimates of the time varying sensitivity
coefficients allow us to completely infer and quantify the network connections even if
experimental interventions can directly perturb only selected network components, the
number of which is less than the number of nodes in the network.

7.2.2 Enhancement

There are cases where it is difficult or impossible to measure or estimate the parameter
changes. In fact, such measurements would be difficult if not impossible to make in vivo.
In order to enhance the applicability of the proposed approach in these cases, we need a
method to express the network connections in terms of the measured changes in the levels
of the intermediates without requiring any knowledge about the values of the parameter
changes. To this aim, one can simply consider the global changes ∆xi in network vari-
ables caused by a perturbation ∆pj and induce the quantities ∆Rij(t) and ∆ρij(t) using
finite differences as an approximation of mathematically correct infinitesimal changes.

∆Rij(t) = xi (t, pj + ∆pj)− xi (t, pj) (7.22)

∆ρij(t) =
∆Rij (t+ ∆t)−∆Rij(t)

∆t
(7.23)

The same equation as (7.21) is obtained as follows.

∆ρij(t) ≈
m∑

k=1

∆Rkj(t) · Jik(t), pj ∈ Pi (7.24)

The difference between the equation (7.21) and (7.24) is that ∆Rij(t) and ∆ρij(t) are
appeared in the latter equation instead of using the absolute values of Rij(t) and ρij(t)
in the former one.

7.2.3 Practical Application

According to the method of Sontag et al. in [SKK04], the following steps should be
applied in practise in order to be able to reconstruct cellular networks from time series
of gene expression, signalling and metabolic data.

• Conceptually divide the network under consideration into interacting modules and
identify the state variables xi considering both regulatory interactions and mass
flow. Here we assume that there are m modules in the network.

• Apply an experimental setup where the states or activities of nodes can be meas-
ured during a transient process. For example, in such an experimental setup, the
states of nodes should be measurable throughout a transition from a resting state
to an active state of the network. There are two possibilities for the transient
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process to get started. Either is the system behaviour inherently transient or the
transient process is initiated by stimulation. Examples for the two cases can be
the cell cycle for the former and cell stimulation by a ligand for the latter case.

• For the state variable xi corresponding to the node i, select an experimental in-
tervention that does not directly influence xi. This perturbation however possibly
directly affects one or several nodes different from the node the state variable xi is
associated to. Use the biological information available about the system. Examples
of these prior information can be that a certain protein has no direct influence on an
unrelated gene, or a certain inhibitor of a membrane kinase has no direct influence
on a cytoplasmic phosphatase. It can be a change in external ligand concentration,
a change in the initial concentration, activity of a component (node) different from
node i, a pharmacological manipulation, or the use of nucleic acid based techno-
logies such as tetracycline inducible expression and small RNA interference. At
selected time points, monitor and measure the original (unperturbed) and per-
turbed values of all m network nodes and determine the differences according to
equation (7.22) and equation (7.23). From the equation (7.22), column j of the
matrix R (t, Pi) is filled. Equation (7.23) on the other hand, provides one of the
second order sensitivities ρij(t). It is important to note that it is often conveni-
ent to normalise the differences by the mean values and determine the fractional
changes.

• Repeat the last step to do as many perturbation experiments as there are nodes
(m). For each experiment, determine the global response matrix R (t, Pi), and the
sensitivity coefficient ρij(t). At the end, there would be m sensitivity coefficients
and one global response matrix for each selected time point and node.

• At each selected time point t, solve equation (7.21) or (7.24) in order to find the
elements Jij(t) of the Jacobian matrix J(t). In this step, it is important to check
if the network approaches a steady state. Steady state condition necessitates per-
turbations to each network node. The reason is that the rank of the matrix R (t, Pi)
decreases as time approaches infinity. In fact, the maximal possible rank of the
steady state response matrix R (t, Pi) equals n− 1 when time goes to infinity. At
least n− 1 perturbation experiments are required to achieve this rank. All nodes
except node i should get perturbed in these perturbation experiments. Each per-
turbation however, can be to each node or to a combination of the nodes excluding
node i. Actually, when quasi-steady state behaviour is displayed by the system un-
der consideration, the Jacobian matrix elements can not be determined. Instead,
it is possible to determine the scaled Jacobian matrix elements or in other words,
the connection coefficients rij , using the equation (7.25) represented in [K+02].

m∑

k=1,k 6=i
∆Rkj · rik ≈ ∆Rij (7.25)

This way, the connection coefficients rij are determined using the finite differences
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∆Rij . These finite differences in turn, are equal to changes in state variables
following a transition from an initial state to a new steady state.

• Repeat the third and forth steps for the remaining nodes. An important point to
consider in this step is that a specific measurement which forms a column of the
global response matrix, can be used for two or more different nodes provided that
these nodes are not directly affected by the specific perturbation related to that
measurement. The complete interaction network would be obtained at the end of
this step.

In [SKK04], two examples of applying the proposed methodology are represented. We
show some important aspects of these applications in the following.

Reverse engineering of a signalling network

In this section, the method represented by Sontag et al. is used to retrieve the interaction
map of the MAPK pathway from computer generated time dependent responses of a
kinetic model of the cascade to perturbations. The kinetic model used for this pathway
consisting of rate expressions, differential equations and parameter values is published
as the supplementary material of [SKK04]. This model is the same model generated in
[K+02] and shown in Figure 7.6. The time dependent responses of the network variables
in the model are used to retrieve the interaction map or in other words to reverse engineer
the signalling network. Let us go through the steps in section 7.2.3.

• The network has six nodes. The reason is the moiety conservation which makes us
consider two independent variables at each level of the network. In contrast to the
method of Kholodenko et al., we consider the mass flow between unphosphorylated,
monosphorylated and biphosphorylated protein forms at each MAPK cascade level
besides the information flow between the three layers. Therefore, the nodes of
the network correspond to MKKK-P, MKKK-PP, MKK-P, MKK-PP, MAPK-P,
MAPK-PP.

• Apply an experimental setup, where the six states, or activities of nodes can be
measured during a transition of the MAPK pathway from a resting state to a stable
activity state. In all simulations, the initial condition at t = 0 corresponded to
the steady state of the MAPK pathway with a low Ras activity. When t > 0, the
RasGTP level increases to a new high value and the transition from the steady
state with a low activity to a high activity state is observed. A point to consider is
that the responses Rij(0) = 0 at time zero, since both perturbed and unperturbed
solutions have the same initial condition.

• for each node, six different perturbations are applied to the network, each revealing
the connections leading to that node, correspondingly one row of the Jacobian
matrix. Each perturbation can affect one or several reactions or nodes in the
pathway.
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Figure 7.7: Schematic four-gene network.

• The finite differences between the control (unperturbed) and perturbed responses
(transitions) of all the nodes of the network are observed and evaluated using
equations (7.22), (7.23) and (7.24) for three different perturbation magnitudes.

• At each selected time point t, solve equation (7.24) numerically in order to find
the elements Jij(t) of the Jacobian matrix J(t).

A comparison between the correct (theoretical) Jacobian matrix elements with exper-
imentally retrieved interaction strengths shown in [SKK04] demonstrates that the ar-
chitecture of the entire MAPK pathway is correctly deduced from the time dependent
responses of the model to the perturbations.

Reverse engineering of a gene network

In this section, the method represented by Sontag et al. is used to reconstruct or in
other words, reverse engineer the four gene network shown in Figure 7.7. The gene
network is first modelled in computer using the rate expressions, differential equations
and parameter values of the gene network model published as the supplementary material
of [SKK04]. The computer generated time dependent responses of the network variables
in this model to perturbations are used to retrieve the network interaction map. Let us
go through the steps in section 7.2.3.

• The network has m = 4 nodes representing the mRNA concentrations. Therefore,
the system of equations describing the rate of change of network nodes (their
concentrations) consists of 4 differential equations each described by the difference
between the transcription and degradation rate of one node as bellow,

d[mRNAi]

dt
= v

synth
i − vdegr

i

The transcription and degradation rate equations of all the 4 genes besides the Mi-
chaelis constants appearing in them are represented in the supplementary material
of [SKK04].
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7 Untangling the Wires

• An experimental setup is applied, where the four states, or activities of nodes can
be measured during a transition of the gene network from a resting state to a
stable activity state. In all simulations, the initial condition at t = 0 corresponds
to the steady state of the gene network where all four genes are inactive (the
catalytic constants of the transcription rates and therefore the concentration of all
genes are zero). When t > 0, the constants were assigned the values given in the
supplementary material of [SKK04] and the transition to an active state begins.

• for each node, four different perturbations are applied to the network, each reveal-
ing the connections leading to that node, correspondingly one row of the Jacobian
matrix. Each perturbation can affect one or several reactions or nodes in the gene
network through a change in a transcription or degradation rate.

• The finite differences between the control (unperturbed) and perturbed kinetic
model generated responses (transitions) of all the nodes of the network is observed
and evaluated using equations (7.22), (7.23) for different perturbation magnitudes.

• At each selected time point t, solve equation (7.24) numerically in order to find the
elements Jij(t) of the Jacobian matrix J(t). This way, both the architecture and
the strength of functional interactions between genes in the network during the
transition of the network from steady state to an stable activity state is inferred.
In [SKK04] the inferred dynamics of activation or repression of each gene by an-
other (in terms of the Jacobian matrix element Jij) is schematically illustrated and
compared with the correct interaction strengths. A very important point to con-
clude is that the deviation between the retrieved and correct interaction strengths
begins to rise as steady state is approached. The reason is that when quasi-steady
state behaviour is displayed by the system under consideration, the Jacobian mat-
rix elements can not be determined. Instead, it is just possible to determine the
scaled Jacobian matrix elements or in other words, the connection coefficients rij ,
using the equation (7.25) represented in [K+02]. However, in absence of quasi-
steady state, the architecture of the entire gene network is deduced from the time
dependent responses of the model to the perturbations with a high accuracy.

7.3 Conclusion

One of the main objectives of system biology research is the unravelling of the functional
interaction structure of a biomolecular network from a given set of experimental data.
If we can estimate the direct influence (or local response) of the variation of one node (a
functional unit or module of the bimolecular network) on all other nodes in a biomolecu-
lar network, then we can identify the local network structure and from this we can also
infer the global network structure ??. However, carrying out practical experiments in
order to quantify the change in the transcription level of one gene, owing to a change in
another gene while keeping everything else constant is practically impossible. Instead,
what we can typically measure in a practical experience is for example in the case of a
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gene network, the global change in the transcription level of a gene owing to some per-
turbation to the system. The reason is that the variation of one node promptly spreads
over the other nodes of the network till the whole network reaches a new steady state.
Therefore, a method is required which can be used to indirectly infer the local responses
based on information from global changes measured in a practical experiment.

Considering the disadvantages of qualitative and mechanistic modelling methods,
known also as bottom-up approaches, such as the necessity of modelling a large number
of molecular processes (especially when the values of multiple kinetic parameters may
be unknown), and the fact that button-up approaches inevitably miss the interactions
and regulatory feedbacks still awaiting discovery, another group of approaches, namely
top-down approaches came to existence.

In [K+02] a general methodology was proposed by Kholodenko et al. that is applicable
to a network of modules (i.e., a combination of genes, proteins, and other species). The
assumption made in this method is that each module i contains at least one intrinsic
parameter pk that can be directly perturbed without the intervention of other nodes
or parameters and the following equation holds for it. Note that m is the number of
modules in the network.

∂fi
∂pk

= 0, 1 ≤ k ≤ m, k 6= i (7.26)

The key point of the method is actually using these intrinsic parameters and the station-
ary experimental data to find the coefficient rij which are referred to as local response or
local coefficient and quantify the sensitivity of module i to module j. If we use the sign
of ∞ for the stationary experimental data, the algorithm of the method of kholodenko
et al. can be summarised as follows. Find rij satisfying the following equation.

∆x∞i,k
x∞i (pk)

=
∑

1≤j≤m,j 6=i
rij

∆x∞j,k
x∞j (pk)

(7.27)

The Kholodenko approach represents a distinct and fresh approach to the problem of
identification of a gene network based on stationary experimental data. However, there
are still some problems with the method. For example, in order to identify the functional
interaction structure of a network of m nodes, we need to find the solutions of the
experimental algebraic equations (7.27), where each solution implies the strength of
the direct influence of one node on the other node. However, it is uncertain how the
experimental algebraic equations for determining the solutions are derived and why all
the solutions regarding the influence of one node on itself are set to −1. However, the
latter point may be for numerical reasons associated with the inversion of a certain
matrix required in the solution procedure. However, further explanations are required
regarding whether we must calculate the inverse matrix to obtain the solutions and why
special algebraic forms are used in the experimental equations. Most importantly, the
proposed approach is only applicable to the case when there exists a unique parameter for
each node of the network. Furthermore, this parameter should directly and exclusively
affect the corresponding node.

Sontag et al. have also proposed a technique in [SKK04] that is complementary to
Kholodenkos method. The assumption made for applying this method is the existence
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7 Untangling the Wires

of a parameter set {pik | 1 ≤ k ≤ m} independent of the node i. The key point of
the method is actually using this parameter set satisfying the assumption of ∂fi

∂pik
=

0, 1 ≤ k ≤ m and the temporal experimental data xi (t, pik) to find the Jacobian matrix
elements Jij(t). The algorithm of the method of Sontag et al. can be summarised as
follows. Find Jij(t) satisfying the following equation.

Ripik(t+ ∆t)−Ripik(t)

∆t
=

∑

1≤j≤m
Jij(t)Rjpik(t) (7.28)

The Sontag approach is based on time series measurements. This fact shows the advant-
age of this method to the Kholodenko method when steady state data are not available.
Another advantage of this method is hat the strength of self regulation at each node or
module is not known in advance and should also be estimated. The Sontag approach also
has the merit that the estimated structure can be repeatedly refined over each sampling
time point, thereby compensating in some sense for the effects of experimental errors.
Despite these nice features, the method still contains some restrictions. Specifically, it
is only applicable in the case when for each node there are as many parameters as the
number of overall network nodes, and these parameters do not directly affect the corres-
ponding node. Moreover, the number of parameter perturbations can be increased since
we should determine the parameters to be perturbed at each node. Furthermore, there is
no guidance for choosing sampling time intervals in the time series measurements. Like-
wise, the effect of approximating the time derivative used in the experimental algebraic
equations in (7.28) is not considered.

A common issue in both Kholodenko and Sontag methods is the fact that the estima-
tion error can become unacceptably large. This issue together with others expounded in
the previous paragraphs lead to a number of literature trying to find ways to extend and
unify the two approaches. An example can be found in [CCWW05] where an approach
based on stationary and/or temporal data obtained from parameter perturbations is rep-
resented. The approach unifies the two methods of kholodenko et al. and Sontag et al.
to represent a comprehensive unified framework. A novel experimental design procedure
is developed, whereby the estimation error of the network interaction structure can be
reduced and the correct estimation of the qualitative structure, such as activation and
inhibition between nodes, can be guaranteed.
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Glossary

Most biological textbooks have a glossary, for mathematical expressions we refer to Eric
Weisstein’s MathWorld web-site http://mathworld.wolfram.com/ or a mathematics
dictionary (e.g. [BB89]).

abscissa The horizontal axis or x-coordinate of a point in the two-dimensional plane.
See also ordinate.

absolute value The positive value of a number, disregarding its sign and written |x|.

activation loop A segment of the amino acid sequence that contains phosphorylation
sites usually at the surface of a protein and accessible by protein kinases.

active site Region of an enzyme surface to which a substrate molecule binds in order to
undergo a catalyzed reaction.

active transport Movement of a molecule across a membrane or other barrier driven by
energy other than that stored in the electrochemical gradient of the transported
molecule.

adaptors Adaptor proteins typically do not posses a catalytic function but bind to other
proteins. Adaptors serve to physically connect proteins with each other. See also
exchange factors.

algebra A branch of mathematics that generalises arithmetic operations with numbers
to operations with variables, matrices etc.

amino acid Class of biochemical compounds from which proteins are composed. Around
20 amino acids are present in proteins.

analysis A branch of mathematics concerned primarily with limits of functions, se-
quences, and series.

analytic function A function possessing derivatives of all orders and agreeing with its
Taylor series locally.

antibody A protein molecule produced in response to an antigen.

antigen Molecule that is able to provoke an immune response.

apoptosis Controlled cell death.
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argument The argument of a function is the element to which a function applies. Usually
the independent variable of the function.

associative A law or operation is called associative if the placement of brackets does
not matter: (a · b) · c ≡ a · (b · c).

ATP The principal carrier of chemical energy in cells.

attractor A region of the space describing the temporal solution of a dynamic system
towards which trajectories nearby converge, are attracted to. An attractor can
be a equilibrium point or a circle. An attractive region that has no individual
equilibrium point or cycle is referred to as a chaotic or strange attractor.

autocatalysis Reaction that is catalyzed by one of its produces, creating a positive
feedback (self-amplifying) effect on the reaction rate.

autoinhibition Mechanism for inhibiting own activity; e.g., Raf contains an autoregulat-
ory domain that inhibits its own activity by binding to its catalytic domain. The
autoregulatory domain is relieved from the catalytic domain by phosphorylation
of characteristic residues.

autonomous A system (of differential equations) is said to be autonomous if it does not
explicitly depend on time.

bifurcation point An instability point in which a single equilibrium condition is split
into two. At a bifurcation point the dynamics of a system changes structurally.

bioinformatics The management and analysis of genomic data, most commonly using
tools and techniques from computer science.

calculus A branch of mathematics concerned with the rate of change of a dependent
variable in a function.

category theory A branch of mathematics that considers mappings and their effect on
sets. A category is a structure consisting of a set of objects and a class of maps,
which satisfy specific properties.

chain rule A rule used in the context of differential equations and which states that
dy/dx = dy/dt× dt/dx.

class Another name for set, especially a finite set.

closed form An expression or solution in terms of well understood quantities.

coefficient A numerical or constant multiplier of a variable in an algebraic term.

continuous function A function for which the value changes gradually.

control Target or set-point tracking, making the system sensitive to changes in the
input. See also regulation and homoeostasis.
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control coefficient Relative measure of how much a perturbation of a systems parameter
affects a systems variable. The control coefficient is a global property and one of
three building blocks in Metabolic Control Analysis.

cytokine Extracellular signal protein or peptide that acts as a local short distance medi-
ator in cell-cell communication. Cytokines are called lymphokines if produced by
lymphocytes, interleukines if produced by leucocytes, and monokines if produced
by monocytes and macrophages.

cytoplasm Contents of a cell that are contained within its plasma membrane but, in the
case of eucaryotic cells, outside the nucleus.

damped oscillations An oscillation in which the amplitude decreases over time.

differentiable A system (usually a process described by differential equations) is called
differentiable if its phase space has the structure of a differentiable manifold, and
the change of state is described by differentiable functions.

differentiation process by which the cell acquires specialised functional properties.

dimer A protein molecule which consist of two subunits separated polypeptide chains);
homodimer: the subunits are identical; heterodimer: the subunits are different;
heterotrimer: three subunits, some different.

dimerisation The process by which two molecules of the same chemical composition
form a condensation product or polymer.

discretisation An approximation of a continuous object.

dynamic system A system that changes with time.

EGF Epidermal Growth Factor. EGF is expressed by many cells and stimulates the
proliferation of many cell types via Ras and the Raf/MEK/ERK pathway.

EGFR EGF Receptor, a prototypical receptor tyrosine kinase.

elasticity coefficient Relative measure of the dependence of the reaction rate of an isol-
ated step in a metabolic pathway on systems variables and internal parameters.
The elasticity coefficient is a local or system property and one of three building
block of Metabolic Control Analysis.

electrophoresis An experimental technique to separate DNA fragments or proteins from
a mixture. The molecules are separated by their mass, size or rate of travel through
a medium (typically agarose or gels) and their electrical charge.

enzyme Protein that catalyzes a specific chemical reaction.

epithelial A epithelial is a coherent cell sheet formed from one or more layers of (epi-
thelial) cells covering an external surface or lining a cavity. For example, the
epidermis is the epithelial layer covering the outer surface of the body.
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equilibrium State where there is no net change in a system. E.g. in a chemical reaction
the equilibrium is defined by the state at which the forward and reverse rates are
equal.

equilibrium point Point such that the derivatives of a system of differential equations
are zero. An equilibrium point may be stable (then called an attractor) or unstable
(repellor).

exchange factors Bind to the activated receptor, i.e., act as an adaptor; facilitate the
exchange of bound GDP for GTP on small G-proteins, which are several steps
away from the receptor, and thus activate them.

expression Production of a protein which has directly observable consequences.

extended phase space See phase space.

feedback inhibition Regulatory mechanism in metabolic pathways - an enzyme further
up in the pathway is inhibited by a product further down in that pathway.

finite-dimensional A process is called finite-dimensional if its phase space is finite di-
mensional, i.e., if the number of parameters needed to describe its states is finite.

fixed point See steady state.

formal system A mathematical framework in which to represent natural systems.

fun What we experience doing mathematics.

function A relation between two sets that describes unique associations among the ele-
ments of the two sets. A function is sometimes called a mapping or transformation.

G-proteins Small monomeric GTP-binding proteins (e.g. Ras), molecular switches that
modulate the connectivity of a signalling cascade: resting G-proteins are loaded
with GDP and inactive, replacement of GDP with GTP by exchange factors means
activation.

GAP GTPase Activating Protein. Ras proteins possess intrinsic GTPase activity which
hydrolyzes the bound GTP to GDP, i.e., cleaves off a phosphate from GTP. This
hydrolysis is a dephosphorylation and as such a phosphatase reaction. A dephos-
phorylation or phosphatase reaction is a special case of a hydrolysis reaction. Hy-
drolysis reactions are all reactions where water, H2O, is used to break a chemical
bond. The intrinsic GTPase activity of Ras is weak. However, GAPs can acceler-
ate this activity almost 1000fold. GAPs do not hydrolyze GTP, they bind to Ras
and make Ras a more efficient GTPase.

gene expression The process by which the information, coded in the genome, is tran-
scribed into RNA. Expressed genes include those for which the RNA is not trans-
lated into proteins.
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gene product The macromolecules, RNA or proteins, that are the result of gene expres-
sion.

genome The entirety of genetic material (DNA) of a cell or an organism.

gradient The slope of a line measured as the ratio of its vertical change to its horizontal
change.

Grb-2 Growth-factor Receptor Binding protein-2. Grb-2 is an adaptor protein.

group A mathematical group is a set, together with a binary operation on the group
elements.

growth factor Extracellular signalling molecule that can stimulate a cell to grow or
proliferate.

GTP/GDP Guanosine triphosphate (GTP) refers to three phosphate molecules attached
to the sugar, guanosine diphosphate for two (GDP). See also GAP.

homoeostasis Regulation to maintain the level of a variable. See also regulation.

homologues proteins/genes Have descended from a common ancestor; genes are either
homologous or non-homologous, not in between; though, due to multiple genomic
rearrangements, the evolutionary history of individual components (domains =
evolutionary units) of a gene/protein might be difficult to trace.

hydrolysis See GAP.

immunoglobin General expression for antibody molecules.

in vitro Experimental procedures taking place in an isolated cell-free extract. Cells
growing in culture, as opposed to an organism.

in vivo In an intact cell or organism.

in silico In a computer, simulation.

infinitesimal Infinitely small. Infinitesimal quantities are used to define integrals and
derivatives, and are studied in the branch of maths called analysis.

integral curve A trajectory in extended phase space.

isoforms Closely homologous proteins (from different genes) that perform similar or only
slightly different functions, e.g., under tissue-specific control. Two or more RNAs
that are produced from the same gene by different transcription and/or differential
RNA splicing are referred to as isoforms.

kinase Enzyme which catalyzes the phosphorylation of a protein.

ligand Molecule that bind to a specific site on a protein or other molecule.
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linear equation An equation y = ax + b is linear because the graph of y against x is
a straight line (with slope a and intercept b. A linear equation should not be
confused with a linear system. See also nonlinearity.

linear system A system is nonlinear if changes in the output are not proportional to
changes in the input.

linearisation Taylor expansion of a dynamical system in the dependent variable about
a specific solution, discarding all but the terms linear in the dependent variable.

linearity Linearity is defined in terms of functions that have the property f(x + y) =
f(x) + f(y) and f(ax) = af(x). This means that the result f may not be propor-
tional to the input x or y.

locus The position of a gene on a chromosome, the DNA of that position; usually
restricted to the main regions of DNA that are expressed.

lysis Rupture of a cell’s plasma membrane, leading to the release of cytoplasm and the
death of the cell.

manifold A mathematical space in which the local geometry around a point in that
space is equivalent to the Euclidean space.

MAP-kinase Mitogen-activated protein kinase that performs a crucial step in transmit-
ting signals from the plasma membrane to the nucleus.

Metabolic Control Analysis (MCA) Method for analyzing variation in fluxes and inter-
mediate concentrations in a metabolic pathway relating to the effects of the differ-
ent enzymes that constitute the pathway and external parameters. The building
blocks of MCA are: control coefficients, elasticity coefficients, and response coeffi-
cients.

metabolism The entirety of chemical processes in the cell.

mitogen Substance that stimulates the mitosis of certain cells.

mitosis Process in cell division by which the nucleus divides.

monomer A protein molecule which consist of one subunits separated polypeptide chains;
homodimer: the subunits are identical; heterodimer: the subunits are different;
heterotrimer: three subunits, some different.

morphism Generalisation of the concepts of relation and function. Often synonymously
used with mapping.

multimer A protein molecule which consist more than four subunits separated poly-
peptide chains); homodimer: the subunits are identical; heterodimer: the subunits
are different; heterotrimer: three subunits, some different.
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natural system An aspect of the phenomenal world, studied in the natural sciences.

noise A description of real or simulated data for which the behavior is or appears un-
predictable.

oncogene An altered gene whose product which takes a dominant role in creating a
cancerous cell.

orbit The set of points in phase space through which a trajectory passes.

ordinate The vertical or y-axis of the coordinate system in the plane.

organisation Pattern or configuration of processes.

peptide A small chain of amino acids linked by peptide bonds.

percepts The consequence of cognitive processes or observations.

phase space Phase space is the collection of possible states of a dynamical system, i.e.,
the mathematical space formed by the dependent variables of a system. An exten-
ded phase space is the cartesian product of the phase space with the independent
variable, which is often time.

phenomena A collection of percepts to which relationships are assigned.

phosphatase Enzyme that removes phosphate groups from a molecule.

phosphorylation Important regulatory process, one third of mammalian proteins are
regulated by reversible phosphorylation; phosphate groups P from ATP molecules
are transferred to the -OH groups of serine, threonine or tyrosine residues by
protein kinases; phosphate groups are two times negatively charged, their addition
will change the protein’s local conformational characteristics and can thus activate
a protein. See also GAP and protein phosphorylation.

polymer Large molecule made be linking monomers together.

protein A linear polymer of linked amino acids, referred to as a macromolecule and
major constituent component of the cell.

protein kinase Enzyme that transfers the terminal phosphate group of ATP to a specific
amino acid of a target protein.

protein phosphorylation The covalent addition of a phosphate group to a side chain of
a protein catalyzed by a protein kinase.

proteinase, protease Enzymes that are degrading proteins by splitting internal peptide
bonds to produce peptides.

proteinase inhibitor small proteins that inhibit various proteinase enzymes. An example
is antitrypsin.
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random process A description of real or simulated data for which the behavior is or
appears unpredictable.

RAS protein Member of a large family of GTP-binding proteins that helps transmit
signals from cell-surface receptors to the nucleus. Ras-GDP is the inactive form of
Ras, which is bound to Guanosine-Di-Phosphate. Ras-GTP is the active form of
Ras, which is bound to Guanosine-Tri-Phosphate. This form of Ras undergoes a
conformational change that enables it to bind with high affinity to other proteins
such as Raf.

receptor tyrosine kinase Receptor tyrosine kinases play an important role in the regu-
lation of cell proliferation, survival and differentiation. The binding of the ligand
(including growth factors, hormones etc.) to the extracellular portion of the re-
ceptor typically activates the kinase activity of the intracellular portion of the
receptor, resulting in autophosphorylation on several tyrosine residues. the phos-
phorylated tyrosines serve as docking sites for adaptor proteins such as Grb-2
resulting in the assembly of a multiprotein complex at the receptor. This complex
is a platform that typically mediates the specific biological responses by activating
several intracellular signalling pathways.

regulation The maintenance of a regular or desirable state, making a system robust
against perturbations. See also homoeostasis and control.

repressor Protein that binds to a specific region of DNA to prevent transcription of an
adjacent gene.

residue Proteins are built of amino acids by forming peptide bonds under removal of
water; what remains of the amino acids are the amino acid residues.

response coefficient Relative Measure of the dependence of a system variable of a path-
way on an external parameter. The response coefficient is one of three building
blocks in Metabolic Control Analysis.

sample space The set of possible outcomes in a statistical experiments.

scaffold protein Protein that organises groups of interacting intracellular signalling pro-
teins into signalling complexes.

sigma algebra A σ-algebra is a collection of subsets of a set that contains the set itself,
the empty set, the complements in the set of all members of the collection, and all
countable unions of members.

signalling, signal transduction A process by which signals are relayed through biochem-
ical reactions.

SOS Son of Sevenless. SOS is the prototypic GDP/GTP Exchange Factor, GEF. There
are many GEFs, but SOS is ubiquitously expressed. GEFs cause Ras to release
GDP. Since the cell contains much higher concentrations of GTP than GDP, per
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default a GTP molecule will bind to Ras in place of the released GDP. Oncogenic
Ras mutants cannot release GDP. Therefore, they are always in the active (GTP
bound) form.

steady state A system state in which the system remains. A steady state is associated
with a fixed point, i.e., the point in the state-space in which the system remains.

stochastic process A mathematical concepts defined as a sequence of random variables.

system A collection of objects and a relation among these objects.

tangent bundle The set of tangent vectors to a manifold.

terminal domain N-terminal domain, C-terminal domain chain of amino acid residues
leaves an amino group free at one end, and a carboxyl group at the other end; by
convention a protein chain starts at the N-terminus, i.e., the N-terminal domain
is the first domain near the amino terminus; the C-terminal domain the last near
the carboxyl terminus.

tetramer A protein molecule which consist of four subunits separated polypeptide chains;
homodimer: the subunits are identical; heterodimer: the subunits are different;
heterotrimer: three subunits, some different.

TNF Tumor necrosis factor, protein produced by macrophages in the presence of an
endotoxin.

trajectory The solution of a set of differential equations, synonymous with the phrase
phase curve.

tyrosine kinase See receptor tyrosine kinase.

vector A mathematical vector is an ordered set of elements, e.g., (a, c, b). An unordered
list is denoted {a, b, c}, where the position of the elements in the list does not
matter.
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Notation

The notation used in this text was one of the biggest challenges. Since we are dealing
with various aspects of mathematics and different application areas, there are conflicting
customary uses of symbols. For example, in stochastic modelling we use n to denote
the state vector, i.e., the number of molecules at any particular time. In modelling with
differential equations, n is a constant used to denote the number of equations, ẋi, i =
1, . . . , n. The letter x refers to a variable, random variable x(t), vector x = (x1, . . . , xn),
... . An effort is made to introduce notation and symbols where they appear first.
According to convention in biological textbooks, acronyms printed in lower case indicate
genes (e.g. ras), capitalised acronyms indicate their protein products (Ras or RAS).

Units

L liter.
Da Dalton.
mol moles, molar mass.
M molarity, molar concentration.
sec seconds.
min minutes.
g grams.

Mathematical Symbols

→ mapping, function, morphism, arrow.
7→ “maps to”.
: “for which”, “such that”.
| “conditional on”.
∀ “for all”.
∈ “element of”.
.
= “by definition”.
∃ “there exists”.
≡ “equivalent”, “identical”.
∝ “proportional to”.
≈ “approximately”.
⇒ “implies”, material implication.
⇔ “if and only if” (iff).
∴ “therefore”.
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NA Avogadro number.
{ } set, list.
( ) ordered set, sequence, vector.
Z set of integers {. . . ,−2,−1, 0, 1, 2, . . .}.
Z+ set of nonnegative integers {0, 1, 2, . . .}.
N set of natural numbers {1, 2, . . .}.
R set of real numbers.
Q set of rational numbers.
C set of complex numbers.
Rp×m set of real p×m matrices.
B σ-algebra.
∅ empty set.
⊆ subset.
⊂ proper subset.
∩ intersection.
∪ union.
� partial or semi-ordering.
∨ disjunction, “or”.
∧ conjunction, “and”.
◦ composition.
1(·) identity map.
d/dt differential operator in an ODE.
ẋ short form of the differential dx/dt.
∂/∂t partial differential operator.
N (x̄, σ2

x) normal or Gaussian probability distribution/density function.
x̄ mean value.
σ2 variance.
ρ Euclidean distance.
n! factorial, n! = 1× 2× 3× · · · × n.
∞ infinity.
o(x) ”litte-o” a negligible quantity that vanish faster than x as x approaches zero.
O(x) ”big-O” terms of the same order of x.

Abbreviations

ADP adenosine diphosphate.
ATP adenosine triphosphate.
CME chemical master equation.
EGF epidermal growth factor.
ERK extracellular signal-regulated kinase.
GDP guanosine diphosphate.
GTP guanosine triphosphate.
GMA generalised mass action.
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JAK janus kinase.
LMA law of mass action.
MAP mitogen-activated protein.
MAPK mitogen-activated protein kinase.
MAPKK mitogen-activated protein kinase kinase.
MEK MAPK/ERK kinase.
MEKK MEK kinase.
ODE ordinary differential equation.
pgf probability generating function.
mgf moment generating function.
cgf cumulant generating function.
CV coefficient of variation.
Var variance.
Std standard deviation.
lim limes, in the limit.
det determinant.
w.r.t. with respect to.
iff if and only if.
SOS son of sevenless.
STAT signal transducers and activators of transcription.
TNF tumor necrosis factor.
TPA 12-O-tetracecanoyl-phorbol-12-acetate.

Chapter 1

S system.
O object(s).
R relation.
A×B Cartesian product.
T time set.
I index set.
U, Y input, output objects/spaces.
φ state mapping.
g, h input, output mapping.
u, y, x input-, output-, and state-variable/vector.
Ω sample space of a random variable.
B σ-algebra.
P (·) probability measure/function.
Prob{A} probability of event A.
ω ∈ Ω elementary event.
w(ω) random variable.
wt(ω) stochastic process.
n number of state variables/ODEs.
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m number of dependent variables.
Keq equilibrium constant.
Kd dissociation constant.

Chapter 2

n number of molecules, state-vector.
∆ small but not infinitesimal change.
#S number of molecules.
nT total number of molecules.
k rate constant.
Rµ reaction channel (irreversible reaction).
M number of reaction channels.
x̃ steady state.
〈S(t)〉 mean or average of the process S(t).
Km Michaelis-Menten constant.
V volume, or velocity.
Vmax limiting rate in a kinetic reaction.
Sj chemical species.
N number of chemical species.
[S] concentration of S.
S state (vector) of the system.
Rµ reaction channel.
cµ stochastic reaction constant (stochastic simulation).
aµ propensity of reaction Rµ.
a∗ propensity for any of the Rµ to occur.
hµ number of distinct combinations of Rµ reactant molecules.
Kµ molecularity of reaction Rµ.
lµj stoichiometric coefficient.
Lµ number of reactant species.
νµj change in the population of molecular species Sj in reaction Rµ.
P (·) probability measure.
F (·) cumulative distribution function.
pm,n transition probability.
Π probability transition matrix.
vµ rate of reaction.
P probability generating function (pgf).
P′ derivative of the pgf.
M moment generating function (mgf).
C cumulant generating function (cgf).

Chapter 4
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θ parameter(s).
n,m number of dependent, independent variables.
x, X state variable, state space or fiber.
u, y input and output variable.
φ state mapping.
h output mapping.
J Jacobian matrix.
H(A,B) set of all mappings from A to B.
ϕ flow.
G group.
C category.
TxX tangent space to domain X.
TX tangent bundle.
M family of models.
(P, π) parametrisation, π : P→M.
P parameter space, base space.
(P, X) fiber bundle.
BA exponential of maps from A to B.
ef evaluation map.
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Quality of Control in Biological Cells: Zero-Order Ultrasensitivity Rein-
vestigated. Biophys. J., 79(3):1228–1236, 2000.

[BPM82] R.D. Bliss, P.R. Painter, and A.G. Marr. Role of Feedback Inhibition in
Stabilizing the Classical Operon. J. Theor. Biol., 97:177–193, 1982.

[Bra96] M. D. Brand. Top down metabolic control analysis. J. Theor. Biol.,
182(3):351–360, Oct 1996.

[Bro99] T.A. Brown. Genomes. βIOS Scientific Publishers, 1999.

[BS03] K.S. Brown and J.P. Sethna. Statistical mechanical approaches to models
with many poorly known parameters. Phys. Rev. E, 68:021904, 2003.

[BSDdPM00] M.A. Blanco, A. Sanchez-Daz, J.M. de Prada, and S. Moreno.
APCste9/srw1 promotes degradation of mitotic cyclins in G1 and is in-
hibited by cdc2 phosphorylation. EMBO J., 19(15):3945–3955, August
2000.

[CB95a] A. Cornish-Bowden. Fundamentals of Enzyme Kinetics. Portland Press,
1995.

[CB95b] A. Cornish-Bowden. Metabolic Control Analysis in Theory and Practice.
Adv. Mol. Cell Biol., 11:21–64, 1995.

[CB99] A. Cornish-Bowden. Basic Mathematics for Biochemists. Oxford Univer-
sity Press, second edition, 1999.

[CB04] A. Cornish-Bowden. Fundamentals of Enzyme Kinetics. Portland Press,
third edition, 2004.

[CBN95] J. Correa-Bordes and P. Nurse. p25rum1 orders S phase and mitosis by
acting as an inhibitor of the p34cdc2 mitotic kinase. Cell, 83(6):1001–1009,
December 1995.

[CCWW05] Kwang-Hyun Cho, Sang-Mok Choo, Peter Wellstead, and Olaf Wolken-
hauer. A unified framework for unraveling the functional interaction struc-
ture of a biomolecular network based on stimulus-response experimental
data. FEBS Lett., 579(20):4520–4528, Aug 2005.

413



Bibliography

[Dan08] B.C. Daniels. Sloppiness, Robustness and Evolvability in Systems Biology.
Curr. Opin. Biotechnol., 19(4):389–395, 2008.

[Dav01] E.H. Davidson. Genomic Regulatory Systems. Academic Press, 2001.

[DGKS04] A. Dhooge, W. Govaerts, Y.A. Kuznetsov, and B. Sautois. Limit cycles
and their bifurcations in MatCont, 2004.

[DGKS06] A. Dhooge, W. Govaerts, YA Kuznetsov, and B. Sautois. Matcont: A Mat-
lab Package for Dynamical Systems with Applications to Neural Activity,
2006.

[dlFBM02] Alberto de la Fuente, Paul Brazhnik, and Pedro Mendes. Linking the
genes: inferring quantitative gene networks from microarray data. Trends
Genet., 18(8):395–398, Aug 2002.

[Dow01] J. Downward. The ins and outs of signalling. Nature, 411(6839):759–762,
June 2001.

[DTB97] K. Dutton, S. Thompson, and B. Barraclough. The Art of Control En-
gineering. Addison-Wesley, 1997.

[ECG80] G. Eason, C.W. Coles, and G. Gettinby. Mathematics and Statistics for
the Bio-Sciences. Pearson Education, 1980.
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