
Time delay and protein modulation analysis in a model of RNA silencing  
 

Svetoslav Nikolov1,†1 *, Xin Lai2,†, Olaf Wolkenhauer2 and Julio Vera2,*  

 
1Institute of Mechanics and Biomechanics-BAS, Acad. G. Bonchev St., bl. 4, 1113 Sofia Bulgaria, 

2Systems Biology and Bioinformatics Group, Department of Computer Science, University of Rostock, 18051 
Rostock, Germany 

 

Appendix 
 

Abstract 
RNA silencing is a recently discovered mechanism for posttranscriptional regulation of gene expression. 
Precisely, in RNA interference, RNAi, endogenous expressed or exogenously promoted small RNAs 
promote and modulate the degradation of complementary messenger RNA involved in the synthesis of 
targeted proteins. In this paper we investigated the role of time delay and protein regulation in the 
posttranslational protein regulation through RNA interference. Towards this end, we used and modified a 
simple model accounting for RNAi and used qualitative bifurcation analysis, sensitivity analysis and 
predictive simulations to analyze it. Our results suggest that some processes in the system, like Dicer-
mediated FDSRNA mRNA degradation or non specific mRNA degradation, play an important role in the 
modulation of RNA silencing, whereas silencing seems virtually independent of modulation in other 
processes.  
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Model calibration 
Parameter Calculated value1 Original value2 

a 4 10 

b 0.002 0.001 

h 1000 1000 

g 0.4 1 

dM 1 1 

dR 0.1 0.1 

dC 2 1 

n 5 5 

1. Values estimated using model calibration in the way discussed in the text.  
2. Values used in Bergstrom et al. 2003.  

                                                 
1 † Equal contributors. 
*Corresponding author: E-mail address: julio.vera@informatik.uni-rostock.de.  URL:www.sbi.uni-rostock.de. 
 



 
Calculated parameters Original simulations (Bergstrom et al. 2003) 
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Complete derivation used in our qualitative bifurcation analysis  
In Nikolov and Petrov [6] we investigated the bifurcation behavior of a model of RNA silencing 
with one time delay, where the delay function ( )τ−tC  express the assumption that the net rate of 
dsRNA degradation by Dicer and background process as well as the net rate of dsRNA loss are 
proportional, thus triggering the process of mRNA binding to form the RISC-mRNA complex at the 
moment ( )τ−t . In [6], in order to make the analytical investigation of time delay system easier, we 
assume that the two times –of the regeneration and degradation of the RISC-mRNA are equal. Of 
course, the finite time 1τ  of regeneration can be different from that of degeneration 2τ  [12, 22, 23]. 
Hence, we obtain a system with two delays in the form: 
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where the state variables MCRD ,,,  represent the concentrations of the dsRNA, RISC, RISC-

mRNA complex, and mRNA, respectively, at time t. With hgdddba RMC ,,,,,,  and n  are noted 

the kinetic rate constants. Hence, system (4) has two steady states: the trivial 
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where ( )[ ]Cdng −−= 1ς . Here we note that the original ODE system has the same fixed points 

which are always stable. 
 Furthermore, we investigate the bifurcation structure- particularly the Andronov-Hopf 
bifurcation- for system (4), using time delays 1τ  or 2τ  as bifurcation parameters. First, we obtain 
the characteristic equation for the linearization of system (4) near the equilibrium 
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MRCDE , i.e. all are positive and the silencing reaction controls the level of 

mRNA below its normal level. Next, we consider a small perturbation about the equilibrium level, 

i.e. wMMzCCyRRxDD +=+=+=+=
____

,,, . Substituting these into the differential equations in 
system (4), we have 
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where .,,,,
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1 RbdadgaMbaRbaMbda MCR +=+===+=  The associated 

characteristic equation of (5) has the following form 
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Because of the presence of two different delays in (4) the analysis of the sign of the real parts of 
eigenvalues is very complicated and a direct approach cannot be considered [10]. Thus, in our 
analysis we will use a method consisting of determining the stability of steady state when one delay 
is equal to zero similar as [24, 25].  
 
2.1. The case 01 =τ  and 02 >τ . 

Hence, we assume that the finite time delay 2τ  of degeneration is longer than the time of 

regeneration of RISC-mRNA complex,1τ .  

 Setting 01 =τ  in (6), the characteristic equation becomes 
 

( )43
2

2
3

1631
2

2
3

1
4 2 TTTTTKKK +++=−+++ − χχχχχχχ χτ

l    (8) 
 

where 5331 TKK −= . For small delay 12 <τ , we use linear stability analysis. Thus, let 

212 χτχτ −≈−
l ; then, the eigenvalue equation becomes 
 

.0234 =++++ srqp χχχχ         (9) 
By the Hopf bifurcation theorem and Routh-Hurwitz criteria [30], an Andronov-Hopf bifurcation 
occurs at a value bττ =  where 
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where 211 τδ T+=  and the condition 121 −≠τT  is valid. Let  

 ( ) srqph ++++= χχχχτχ 234
2, .       (11) 

 

Evaluating h  at bττ =2  yields 
 

( )( ) ( )222234, kqkpkqph bb −++++= χχχχτχτ ,     (12) 
 

where 
p

r
k =2 . The eigenvalues of (9) at bτ  are 
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and the type of the other root pair depends on the sign of the equality 
41
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imaginary unit. If 01 >∆ , then  
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Evaluating the required derivatives of h  at bτ , we obtain 
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where ( )ikqkIpkL 22 22,2 −=−= , and ( )( ) ( )2
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and is always positive if 0>N , i.e. if the following conditions are valid: 
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It is well known that for a larger time delay 2τ , linear stability analysis is no longer effective and 
we need to use another approach [8, 10, 24-27]. The stability of equilibrium state depends on the 
sign of the real parts of the roots of (8). We let ( )Rnminm ∈+= ,χ , and rewrite (9) in terms of its 
real and imaginary parts as 
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To find the first bifurcation point we look for purely imaginary roots Rnin ∈±= ,χ , of (8), i.e. we 
set .0=m  Then, the above two equations reduce to 
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or another 
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Note that 0=n  can be a solution of (23) if 64 TT = . If the first bifurcation point is ( )00, bbn τ , then the 

other bifurcation points ( )bbn τ,  satisfy ∞=+= ...,,2,1,200 vvnn bbbb πττ . 

 One can notice that if n  is a solution of (22) (or (23)), then so n− . Hence, in the following 
we only investigate for positive solutions n of (22), or (23) respectively. By squaring the two 
equations into system (22) and then adding them, it follows that 
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Here, we note that this is a quartic equation on 2n  and that the left side is positive for large values 
of 2n  and negative for 0=n  if and only if  2

6
2

4 TT > , i.e Eq. (24) has at least one positive real root. 

Moreover, to apply the Hopf bifurcation theorem, according to [28], the following theorem in this 
situation applies: 
 Theorem 1. Suppose that bn  is the least positive simple root of (24). Then, ( ) bb inin =τ  is a 

simple root of (8) and ( ) ( )22 ττ inm +  is differentiable with respect to 2τ  in a neighborhood of 

bττ =2 . 
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Evaluating the real part of this equation at bττ =2  and setting bin=χ  yield 
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 Let 2
bn=θ ; then, (28) reduces to 
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Then, for ( )θ'g  we have 
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If bn  is the least positive simple root of (24), then 
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According to the Hopf bifurcation theorem [29], we define the following Theorem 2: 
 
Theorem 2. If bn  is the least positive root of (24), then an Andronov-Hopf bifurcation occurs as 2τ  

passes through bτ . 

Corollary 2.1. When bττ <2 , then the steady state 
_

E  of system (4) is locally asymptotically stable. 

 



2.2. The case 0, 21 >ττ . We return to the study of (6) with 0, 21 >ττ . In order to investigate the 

local stability of the equilibrium state 
_

E  of system (4), we first prove a result regarding the sign of 
the real parts of characteristic roots of (6) in the next Theorem. 
 

Theorem 3. If all roots of (8) are with negative real parts for 02 >τ , then there exists a ( ) 021 >ττ bif  

such that all roots of characteristic equation (6) have negative real parts at ( )211 τττ bif< , i.e. when 

( ))[ 211 ,0 τττ bif∈ . 
 

Proof. Similar to [7], let we assume that (8) has no roots with nonnegative real part when 02 >τ . 

Therefore, characteristic equation (6) has no root with nonnegative real part when 01 =τ  and 

02 >τ . Regard 1τ  as parameter, then (6) is analytic about χ  and 1τ . By Theorem 2.1 of [24], when 

1τ  varies, then the sum of the multiplicity of zeros of (6) in the open right half plane can only 

change if a zero appears on or crosses the imaginary axis. Because (6) (with 01 =τ ) has no root 

with nonnegative real part, there exists a ( ) 021 >ττ bif  such that all roots of (10) with ( )211 τττ bif<  
have negative real part.  

Corollary 3.1. If bif
2τ  is defined as in Theorem 2, then for any ),0[2 bττ ∈ , there exists a 

( ) 021 >ττ bif  such that the steady state 
_

E  of system (4) is locally asymptotically stable when 

( ))[ 211 ,0 τττ bif∈ . 
 

 
 

 


