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Appendix

Abstract

RNA silencing is a recently discovered mechanismposttranscriptional regulation of gene expression
Precisely, in RNA interference, RNAI, endogenougpressed or exogenously promoted small RNAs
promote and modulate the degradation of complemegnteessenger RNA involved in the synthesis of
targeted proteins. In this paper we investigatesl tble of time delay and protein regulation in the
posttranslational protein regulation through RNAerference. Towards this end, we used and moddied
simple model accounting for RNAi and used quali&tbifurcation analysis, sensitivity analysis and
predictive simulations to analyze it. Our resultggest that some processes in the system, likerDice
mediated Flgrna MRNA degradation or non specific mMRNA degradatiplay an important role in the

modulation of RNA silencing, whereas silencing seewirtually independent of modulation in other
processes.
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Model calibration

Par ameter Calculated value' | Original value’
a 4 10
b 0.002 0.001
h 1000 1000
g 0.4 1
('Y 1 1
dr 0.1 0.1
dc 2 1
n 5 5

1. Values estimated using model calibration invlag discussed in the text.

2. Values used in Bergstrom et al. 2003.
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Calculated parameters

High initial dsRNA (our model)

M (variable)
D (variable)
— R (variable)
C (variable)

10

20 30 40 50 60 70 80

Low initial dsRNA (our model)
T T T

— M (variable)

— D (variable)
R (variable)
— C (variable)

10

20 30 40 50 60 70

Continual dsRNA input (our model)
T T T

— M (variable)
— D (variable) {
R (variable)
— C(variable) ||

20 30 40 50 60 70 80

Original simulations (Bergstrom et al. 2003)

10°

107

101

10

10

High dsRNA (original model)
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Complete derivation used in our qualitative bifurcation analysis
In Nikolov and Petrov [6] we investigated the bdation behavior of a model of RNA silencing

with one time delay, where the delay functi@([—r) express the assumption that the net rate of
dsRNA degradation by Dicer and background proceswell as the net rate of dsRNA loss are
proportional, thus triggering the process of mMRNAdIng to form the RISC-mRNA complex at the
moment(t—r). In [6], in order to make the analytical investiga of time delay system easier, we
assume that the two times —of the regenerationdagdadation of the RISC-mRNA are equal. Of
course, the finite time, of regeneration can be different from that of degationr, [12, 22, 23].

Hence, we obtain a system with two delays in tlfo

dbD
o - ab+ gClt-r,),

R an.D -d;.R-b.RM,

& (4)
o PRM ~(g+d.)clt-1,),
M o h-d, M -bRM,

dt

where the state variabld3, R,C, M represent the concentrations of the dsRNA, RIBEC-
MRNA complex, and mRNA, respectively, at timeWith a,b,d.,d,,,d, g,h andn are noted
the kinetic rate constants. Hence, system (4) ha® tsteady states: the trivial
(D:C:ﬁz:o,l\h =% j and [D:%,fz:ic,c‘;= h_duls —(9+dc)de ,

M a dg g+d. b¢ b¢
wherec:[g(n—l)—dc]. Here we note that the original ODE system hasstmae fixed points

which are always stable.
Furthermore, we investigate the bifurcation suiest particularly the Andronov-Hopf
bifurcation- for system (4), using time delagsor 7, as bifurcation parameters. First, we obtain

the characteristic equation for the linearizatioi system (4) near the equilibrium

E[D >0,C>0,R>0,M >Oj, i.e. all are positive and the silencing reactiomtrols the level of

MRNA below its normal level. Next, we consider aafirperturbation about the equilibrium level,
i.,e. D=D+x, R=R+y,C=C+2z M =M+w. Substituting these into the differential equasion
system (4), we have

dx

— =—ax+gl ™z,

dt 0

dy _

= = anx-a,y —a,w-byw,

dt 5
iz )
E:asy_a4£_r2XZ+a2W+byVVa

dw

- == —_ —b i
it a;y — a;W—Dyw,



where a =d.,+bM, a,=bR, a,=bM, a,=g+d., a =d,+bR. The associated
characteristic equation of (5) has the followingno

XK HK Y +K y = [T“(TS)(+T6)+£‘TZX(T1)(3 +T,x° +T3)(+T4), (6)
where

K,=a+a +ag, K, =ala +a;)+aa 2,8, K, = a(a,a; ~a,a;),

T,=-a,T,=-Ka, T, = _a4[a(ai + as)+ aa; — aZaG]’ (7)

T, = aa4(a2a3 _a:l.a‘S)’ Ts =aa;ng, Tg = aaeng(a‘ﬁ B aZ)'
Because of the presence of two different delay@)jrthe analysis of the sign of the real parts of
eigenvalues is very complicated and a direct ambrazannot be considered [10]. Thus, in our

analysis we will use a method consisting of detanngj the stability of steady state when one delay
is equal to zero similar as [24, 25].

21.Thecase 7, =0 and 7, >0.

Hence, we assume that the finite time deatayf degeneration is longer than the time of
regeneration of RISC-mRNA complax,

Settingr, =0 in (6), the characteristic equation becomes

XK K2+ Ky =T, = T (TP + T 2 +Tox + T, ) (8)

where K;, =K, -T, . For small delayr, <1, we use linear stability analysis. Thus, let
(2 =1- x1,; then, the eigenvalue equation becomes

X' +pxP+axy’+ry+s=0. (9)
By the Hopf bifurcation theorem and Routh-Hurwitztaria [30], an Andronov-Hopf bifurcation
occurs at a value =7, where

D= K, +T,r,-T, >0, g= K,+T,7,-T, s T, +T >0,
K, +T,7,-T ° ° (10)
r =31 S-TZ 3’ I:pqr—spz—rZ:O,
where 0 =1+T,7, and the conditio,7, # -1 is valid. Let
h(x.7,)=x*+px* +ax’ +rx+s. (11)
Evaluatingh at 7, =7, yields
h(Tb’X(Tb)):X4+pX3+QX2+k2pX+k2(q_k2)’ (12)

wherek? =" The eigenvalues of (9) &t are
p

)(L2=iik=i\/z, (13)
Y



and the type of the other root pair depends onsifpe of the equality), :$_§' Herei is an
r

imaginary unit. IfA, >0, then

Xsza = _EpiAzi' (14)
2
where A% :%—%(Az >0); if A, <0, then
=-Pip 15
Xz 5=t (15)

where nowA, =,/-A, . Implicitly differentiating h(z,, x(z,)) yields

oh
— 3 2
- arah —_ p13)( +Q1i( +r1)(+521 ’ (16)
on 4x°+3pxy°+2q9x+k°p
ox

o |\
~||><

where

_Tzé_T1(K1_T1+T2T2) _Tsé_Tl(Kz _T2+T372)
1 52 ’ ql - 52

(17)
r = T45_T1(K31_T3 +T4T2) s = T1(T4 +T6).

1 52 ! 52

Evaluating the required derivatives bfat 7, , we obtain

d,(r,) _ 2k?N +2K|(s, — g,k? Jla - 2k?)+ pk>2(r, - p.k>2)]
e , (18)
dr L” + |

whereL =-2pk?, | = 2k(q—2k2)i , andN = (p1k2 —rl)(q—2k2)+ p(sl —qlkz). The real part of (18)
has the form

dx, (7, )) 2k*N
R LLbl = : 19
e( dr L2+1°2 (19)
and is always positive iN >0, i.e. if the following conditions are valid:
plk2 > r.l plk2 < r.1
q>2k* or |g<2k? (20)
s > gk’ s > gk’

It is well known that for a larger time delay, linear stability analysis is no longer effectiaed
we need to use another approach [8, 10, 24-27].stddality of equilibrium state depends on the
sign of the real parts of the roots of (8). We et m+in (m,nD R), and rewrite (9) in terms of its
real and imaginary parts as



m* +n* —6m°n® + Klm(m2 —3n2)+ Kz(m2 = n2)+ K,m-=T, =¢™" {Tl[m(m2 —3n2)cosn r,+
+ n(3m2 - nz)sinnrz] +T2[(m2 - nz)cosn r,+ 2mnsinnr2]+T3(mcosn r, +nsinnr, )+ T, cosnr,},
4mn(m2 - n2)+ Kl(3m2 - nz)n +2K,mn+Kyn=¢"" {Tl[n(Bm2 - nz)cosn T,+ m(3n2 -m? )sinnrz]+

+T2[2mncosnr2 (- mz)sinnr2]+T3(ncosnr2 —msinnr,)-T,sinnr,}.

(21)

To find the first bifurcation point we look for pely imaginary rootsy =+in, nOR, of (8), i.e. we
setm=0. Then, the above two equations reduce to

n*-K,n*-T, = (—T1n3 +T3n)sinnr2 + (—T2n2 +T4)cosnr2,

-K,n®+K, n= (—Tln3 +T3n)cosn r,+ (T2n2 —T4)Sinnr2, (22)
or another
COSNT, = (n“ -K,n? —TG)(TZn2 —T4)— (— K,n®+ K31n)(_T1n3 +T3n)
2 (T2n2 -T, )2 + (_T1n3 +T3n)2 ’ -
sinnz, = (_ Kyn® + Ksln)(Tzn2 —T4)+ (n“ -K,n? ‘Ts)(—T1n3 +T3n).

(r,n? -T,F + (-0 +Tn)f

Note thatn= Ocan be a solution of (23) T, =T;. If the first bifurcation point is(ng, rl‘)’) then the
other bifurcation point§n, , 7,) satisfyn,z, =n°rl +2vr, v=12,....0.

One can notice that i is a solution of (22) (or (23)), then s . Hence, in the following
we only investigate for positive solutiomsof (22), or (23) respectively. By squaring the two
equations into system (22) and then adding thefaolldws that

n®+(K, - 2K, T2 Jn® +|K2 -T2 + 2(T,T, - K,Ky, =T, )Jn* +

24
k2 -T2+ 2K, T, +T,T, )2 -T2 +T2 =0, (24)

Here, we note that this is a quartic equationmdrand that the left side is positive for large value
of n* and negative fon=0f and only if T/ >TZ, i.e Eq. (24) has at least one positive real root.
Moreover, to apply the Hopf bifurcation theorem¢acling to [28], the following theorem in this
situation applies:

Theorem 1. Suppose that n, isthe least positive simple root of (24). Then, in(rb) =in, isa
simple root of (8) and m(z,)+in(z,) is differentiable with respect to 7, in a neighborhood of
T,=T1,.

To establish Andronov-Hopf bifurcation af =7,, we need to show that the following

transversality condition(;jﬂ # 0 is satisfied.
T

2lr=r,

Hence, we if denote

H(X.7,) = x* + K + Kox? + Koy =0 (TP + T, 02 + Ty +T,), (25)
then



oH
dy __or,

dr, oH
ox

(26)

_ ~ x0T+ T X7+ Ty +T,)
Ax° +3K X2 + 2K, x + Koy + 1,0 (TP + T x 2 +Tox )+ T, - 0 (3T ¢ % + 2T, x +T,)

Evaluating the real part of this equatiornrat= 7, and settingy =in, yield

= R{d_)(j
_— dr,

dm

dr, i
_n2fang +3(K? - 2K, ~ T2 + 2K2 =172 + 2(TT, ~ K,Ky, =T, o2 + K2 = T2+ 2(T,T, +K,T, )}
LZ+17
(27)
where L, =-3K,n +K,, +7, (n;‘ -K,n? —T6)— (—3Tln§ +T3)cosnbr2 - 2T,n,sinn, 7, and

I, =4nd -2K,n, - rz(— K,n: + KSlnb)+ 2T,n, cosn,7, - (—3Tln§ +T3)sinnbr2.
Let #=n7; then, (28) reduces to

g(@) =6+ (Kl _2K2 _le)gg + |_K22 _T22 + 2(T1T3 - K1K31 —TG)IQZ +

28
k2 -T2+ 2K, T, +T,T,)Jo-T2 +T2. (28)

Then, forg'(8) we have
: dg
(2] == =
g ( )r2=Tb dé — (29)
=467 +3(K, — 2K, ~T2)0? + 2K 2 ~T2 + 2(T,T, — KKy, - T, )Jo + K2 = T2 + 2(K,T, +T,T,).

If n, is the least positive simple root of (24), then

a9 Lo (30)
dr, per

Hence,
d_m =R d_X = ngg'(ns)>0. (31)
dr,|, ., dr, | L+1}

According to the Hopf bifurcation theorem [29], define the following Theorem 2:

Theorem 2. If n, istheleast positive root of (24), then an Andronov-Hopf bifurcation occurs as 7,
passes through 7, .

Corollary 2.1. When 7, <7, , then the steady state E of system (4) islocally asymptotically stable.



2.2. The case 1,7, >0. We return to the study of (6) with,7, >0. In order to investigate the

local stability of the equilibrium statE of system (4), we first prove a result regarding sign of
the real parts of characteristic roots of (6) ia tlext Theorem.

Theorem 3. If all roots of (8) are with negative real partsfor 7, >0, thenthereexistsa 7' (r,) >0
such that all roots of characteristic equation (6) have negative real parts at 7, <77 (z,), i.e. when

r,0lo, (z,).

Proof. Similar to [7], let we assume that (8) has no sowith nonnegative real part when>0.
Therefore, characteristic equation (6) has no meith nonnegative real part when =0 and
r, >0. Regardr, as parameter, then (6) is analytic abguandr,. By Theorem 2.1 of [24], when
r, varies, then the sum of the multiplicity of zemfs(6) in the open right half plane can only
change if a zero appears on or crosses the imggaas. Because (6) (with, =0) has no root
with nonnegative real part, there exists"(r,)>0 such that all roots of (10) with < 7" (z,)
have negative real part.

Corollary 3.1. If 7} is defined as in Theorem 2, then for any 7,0[0,7,) , there exists a

bif

rP"(r,)>0 such that the steady state E of system (4) is locally asymptotically stable when
r,0jo, (z,)).



