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Preface

What is referred to as a genomic revolution can be summarised by the fol-
lowing tasks: Analysis of the DNA sequence of a genome, identification of
genes, study of gene products (usually proteins). While the identification of
components, cataloguing of products and their classification is very exciting,
the interrelationships and interactions of these components is what makes
organisms like ourselves ‘tick’. Once all parts of a clockwork are known,
the challenge is to find out how the clock ‘works’. New technology makes
it possible to study gene activity and allows us to investigate the organisa-
tion and control of genetic regulatory pathways. These pathways describe
dynamic processes. Their complexity as well as the difficulty in observing
them will challenge all analytical tools developed to date. This shift of focus
from molecular characterisation to an understanding of functional activity,
implies a change from generating hypotheses to testing hypotheses. Problems
in genomics will become conceptual as well as empirical.

I will argue that the biggest challenge of bioinformatics is not the volume of
data, as commonly stated, but the formal representation of knowledge. The
area of bioinformatics has provided an important service to biologists; helping
them to visualize molecular structures, analyze sequences, store and manip-
ulate data and information. These activities will continue to be an essential
part of bioinformatics, developing working methodologies and tools for biolo-
gists. However in order to directly contribute towards a deeper understanding
of the biology, bioinformatics has to establish a conceptual framework for the
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vi PREFACE

formal representation of interrelationships and interactions between genes or
proteins.

To this date biological knowledge is encoded in scientific texts and diagrams
with a noticeable lack of formal mathematical models. There are obvious rea-
sons for this as most physical or engineering systems, for which mathematical
modelling has been successful, appear trivial in comparison to molecular or
genetic systems and it is not altogether clear whether a mathematical analysis
of genomics systems is the long awaited solution. We may however be able
to learn in some respect from the engineering sciences. Like biologists, engi-
neers are not born with a love for mathematics and yet they have learned to
embrace it as a problem solving strategy or way of thinking. Engineers have
been in very much the same situation in which biologists find themselves now:
The systems or processes they study, the data they generate are too complex
to be dealt with using common sense or intuition. To solve very practical
problems, the engineering sciences have therefore learned to translate a given
practical problem into a set of (state-space or random-) variables and then to
a conceptual framework (such as probability or control theory) to establish
relationships among these variables, in order to make predictions, classifica-
tions or to influence the system under consideration. Although engineering
systems are in most cases rather trivial in comparison to genetic systems,
the practise of abstraction for problem solving may in fact prove useful to
biologists. It is in this sense that I try to promote systems theory as ‘a way
of thinking’, problem solving strategy supporting the biologists work which
remains in many ways of empirical nature.

My interest in genomics is an extension of my childhood career as a Lego-
engineer - I enjoyed taking things apart, studying its parts in order to un-
derstand how things work. This “ontological” quest, however, doesn’t really
answer the question of why things work as they do. For systems that are
slightly more complex than a Lego construction, we may find that this ques-
tion cannot be answered satisfactorily. However, by adding an epistemological
question, studying the way we approach the ‘how’ question, we may be able
to go some way towards answering it. I subsequently decided to approach the
problem from the bottom up, including philosophical questions into the devel-
opment of the mathematical model. The following pages are a transcript of an
ongoing discussion. The aim is to outline a formal mathematical framework
to study gene expression, regulation and function. Apart from a conceptual
framework, which we refer to as fuzzy relational biology, the objective is to
develop a working methodology for the analysis of genomes in terms of gene
expression data. With the presented approach, we are looking for ways which
characterise molecular systems in a general way, and quite independently of
their physical or chemical constitution; we are seeking a theory of ‘princi-
ples’. The representation of biological knowledge (concepts, facts, and rules)
is based on fuzzy mathematics and systems theory.



PREFACE vii

For many years I have had the wish to eventually merge my interests in
mathematical modelling, data analysis, the philosophy of science and biology.
The progress of molecular biology in recent years has meant that there is an
increasing need for interdisciplinary research and it has become possible to
make a passion part of my work at University. In his famous essay “What is
life?” in 1944, Erwin Schrödinger’s provides motivation for interdisciplinary
research which is again valid today [66] :

“We feel clearly that we are only now beginning to acquire reliable
material for welding together the sum total of all that is known into a
whole; but, on the other hand, it has become next to impossible for a
single mind fully to command more than a small specialised portion of
it.”

Like Schrödinger - a physicist writing about biology, the biologist Jaques
Monod, taking an interest in philosophy, was worried about risk one takes
when crossing boundaries and going public. I do not hesitate to admit my
limited knowledge in the biology and mathematics I am going to discuss.
Great minds like Schopenhauer, Popper, Einstein, Bohm and Rosen however
demonstrate that if we are not studying the wider context of our work or con-
sider its consequences, we miss out on the excitement and fulfilment such work
can give. Their books have been of constant inspiration and encouragement.

OLAF WOLKENHAUER

Manchester June 5, 2003
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Introduction

The work, out of which the present document evolved, began with a review of
current and past approaches to quantitative and formal modelling of processes
in organisms. This lead to a number of deliberately bold claims and critical
remarks, in the hope to emerge with a novel approach to the most exciting
problems available: “how do organisms function?” and “how do we know?”.

The world as we experience it is representation and as such accessible to
science through ordinary perceptual or sensual experience and is usually de-
scribed in terms of individual material objects (e.g. the DNA molecule) and
abstract objects or concepts (e.g. genes, gene function) which can be inves-
tigated scientifically. Our ‘experience’ is realised through observation and
measurement in a scientific experiment and to make a priori discoveries, i.e.,
predictions about the nature of this world of objects, we must renounce the
attempt to know what they are in themselves. Objects are representations for
the subject and we can only have knowledge of empirical objects using the
a priori forms of space, time, and causality. In the present text we carry
this philosophical position over into a conceptual framework and working
methodology for genomics. Studying genetic systems, we therefore try to
avoid ontological questions and instead provide a phenomenological model of
gene expression, gene function and interactions.

In physics, the assumption that an apparently complex natural systems
can be explained by a simple formal model which is general or universal has

xiii



xiv INTRODUCTION

been successful. For the physicist, at a close look, biological systems are struc-
turally and functionally determined by basic physical laws. Biologists describe
instances of complex systems that suggest simple mechanisms. Should we
therefore consider biological concepts as instances of the theories, principles,
and concepts of physics?

Measurement or observation provide the basis for any scientific approach.
An observed regularity (order, invariance) is seen as confirmation for the ex-
istence of some kind of law or principle by which the natural system under
consideration can be explained. Philosophy has shown that the formulation
of causal entailment in space and time is the principle mechanism of human
perception and conception. Can we ever find an accurate, true, unique and
unambiguous explanation?

The Newtonian paradigm, in which phenomena are described by states
and transitions between them, fails to describe aspects of organisms that
do not possess a single, universal principle. Consequently, an organism can
present itself to different observers in various ways. Therefore, rather than
to speculate about the principles of inner structures, organisation and the
resulting behaviour, it seems useful to devise an approach that starts with
the observation of molecular and genetic systems to develop phenomenological
models. Requirements or expectations for such a framework are:

� to fit experimental data, allowing predictions,

� to have explanatory value in testing hypotheses,

� to allow conclusions about which variables should be measured and why.

The text is organised as follows. In the first section, the study of biologi-
cal phenomena is introduced as a constructivist activity (“Zooming In”). A
minimalist introduction to molecular biology outlines the context of this text
(“The Big Picture”). The following main part proposes a novel formal ap-
proach to genomic analysis (“Taking a Snapshot”). In “Image Analysis” we
introduce the concept of approximate reasoning to analysis composite phe-
nomena. In order to validate and investigate the concept in greater detail,
a ‘project plan’ is provided (“Image Enhancements”). Finally, related and
previous work is discussed (“Moving Pictures”). A summary of mathematical
symbols and notation is provided in the appendix.

The text as a whole should be understood as a proposal rather than a fixed
result. As yet there are a number of holes which to fill will hopefully I can
enjoy for some years to come. Modesty is also required as for any of the holes,
we may find the whole venture in danger.
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I.1 A CASE FOR MATHEMATICAL MODELLING

There is no science without theory. Any investigation necessarily takes place
within a contextual framework. The design of experiments, relies on as-
sumptions and provides choices, as does the (statistical) analysis of data.
A mathematical model, whether derived from experience or identified from
experimental data, requires us to work within constraints and limits. These
pre-conceptions, assumptions, choices are in fact the essence of a ‘theory’, the
experiment, the statistical and mathematical model are only means to fur-
ther develop or validate the theory. As Henri Poincare pointed out in 1913:
“ Science is built up of facts, as a house is with stones. But a collection of
facts is no more a science than a heap of stones is a house.” Science, aided
by mathematics, is the most rational and objective approach to explain the
natural world and yet, throughout this book, we shall find that mathematical
modelling is an example of art within science.

Studying natural systems, any scientific approach relies on modelling (an-
alytical, numerical, or observational). In case a mathematical model is an
appropriate representation of the natural system under consideration, it al-
lows us to make predictions about specific values or provides explanations
by showing that certain things follow necessarily from others. A model is
accepted or validated by evaluating its accuracy, i.e., how well the formal
system describes the natural system. This can be done by matching experi-
mental observations and/or measurements with the theory. No doubt, if the
predictions are accurate, we can apply the model in many useful ways but
what does the structure of the model tell us about the principles by which
the natural system functions? Usually, there exist a number of alternative
models which quantitatively are equally valid but yet are very different in
their internal construction or are arrived at in a number of ways (depending
on which ‘school of thought’ is adopted). As a result, we may find that the
explanation to what principles are responsible for the observable pattern or
data can differ. Therefore even with formal mathematical models, suggest-
ing on the outset rigor and certainty, a semantical problem remains and any
ontological question of “How does nature works?”, is accompanied with an
epistemological problem of “How do we know?”. Only if we are approaching
both questions together we are able to answer questions regarding the nature
of reality.

Successful mathematical modelling requires an awareness of alternative ap-
proaches, with equal importance put to synthesis: finding similarities between
models that appear different, and analysis: identifying differences between
models which appear similar. I would summarise the process of mathematical
modelling as follows. Beginning with observations, we start with a question
or hypothesis which is investigated within a conceptual framework. This will
eventually form the basis for a theory. The latter is tested by validating its
model(s) with experimental data (and/or observations). The power of math-
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ematical modelling lies in the fact that it is a form of abstraction; it leads to
generality. In other words, a good model does not only explain one specific set
of data but a class of similar data or systems. Analytical models, leading to
quantitative predictions and numerical models, using simulations, provide us
with data and/or observations to test whether our methodology is working.
Using parametric models, our objective is to identify the system parameters
directly from data.

In order to make a mathematical model feasible, assumptions are neces-
sary. We may consider the process as dynamic but time-invariant or even as
static if a dynamic formulation is too complex. Relationships between vari-
ables of interest are often assumed to be linear and other variables may be
taken as independent or unrelated even when they are in fact linked. We
frequently ignore variables to obtain simpler models. To be able to iden-
tify system parameters from data, further assumption on the quantity and
quality of the data are necessary. Given these assumptions are acceptable, a
number of methodologies are available to obtain precise and yet general mod-
els. These techniques are the result of decades of research in system theory,
i.e., cybernetics, control theory, time-series analysis and so forth. The sys-
tems considered in modern life-sciences provide for these efforts their biggest
challenge. The complexity of most molecular and genetic systems, such as
regulatory processes of gene and protein interactions, forbid any conventional
approach without considerations of uncertainty in data, in measurement, in
modelling and in the representation of an analytical model in a computer. To
allow reasoning in the presence of uncertainty, our modelling approach has to
be precise about uncertainty in order to be of value to the scientist. Mod-
elling uncertainty, i.e., imprecision, randomness, ambiguity, vagueness, and
fuzziness is of vital importance for mathematical modelling to succeed in this
area.

Functional genomics has leapt from a futuristic concept in the 1980s to an
established field of biological research. Genome sequencing projects have lead
to an inventory of genes for which we can now measure activity levels (mRNA
abundance - gene expression) and protein interactions. With the availabil-
ity of data on the molecular level, we can not only assign a function (role)
to the identified genes but also investigate the organisation and control of
genetic pathways which make up the physiology of an organism. It is increas-
ingly appreciated that we can’t understand cells by taking them apart piece
by piece, since their biochemical pathways form tangled networks. Rather
than studying individual components and products as what they are in them-
selves, we ought to find models of the interactions; the focus is to change from
molecular characterisation to an understanding of functional activity through
mathematical representations of gene or/and protein interactions. Proteomics
research shows that most proteins interact with several other proteins. The
classical view of protein function, focused on a single protein molecule, de-
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scribed the action of a protein as a catalyst of reactions or its binding to
another molecule. With new experimental techniques and data available, it
appears appropriate to describe the function of a protein in the context of its
interactions with other proteins in the cell. Some of the functional linkages
reflect metabolic or signalling pathways; other linkages reflect the formation
of complexes of macromolecules.

With the emphasis on functional linkages, and relationships between net-
work variables, problems in proteomics and genomics are increasingly of con-
ceptual nature rather than of empirical nature1. With the need to capture
various types of uncertainty in modelling, the “fuzzy relational biology” we
develop is based on sets of objects, (equivalence and similarity) relations on
these sets, and the linkage between factors evaluating the objects in different
experimental contexts. Therefore, although the mathematics of the concep-
tual framework is abstract and initially suggests little relation to the empirical
problems of the biologists, the assertion is that if we succeed with its foun-
dations, the models will have more practical value than those provided by
classical system theory (successfully applied in many engineering problems).
The most important requirements for a modelling framework are that it is
precise (honest) about uncertainty, that we can quantify its accuracy and
hence allow comparisons between models, and that it can tell us something
about which variables to measure and why. Thus, to face the challenges in
proteomics and genomics, there is a need for more sophisticated knowledge
representations (system models) that interpret the data, organise facts, obser-
vations, relationships and even hypotheses that form the basis of our current
scientific understanding.

We see an ever-increasing move toward inter- and trans- disciplinary at-
tacks upon problems in the life-sciences and a new mathematical biology is
emerging. The system scientist has a central role to play in this new order,
and that role is to first of all understand ways and means of how to encode the
natural world into ‘good’ formal structures. System theory is not a collection
of facts but rather a way of thinking, and the modelling process itself may be
more important than the obtained model. It is concerned with the study of
organisation and behaviour per se and often it is when the models fail that
we learn the most. As the mathematician David Hilbert once said, there is
nothing more practical than a good theory. Building on experimental data
from cells, we use the power of analytical and numerical methods to explore
gene expression, gene function and gene interactions. We are well aware of
the fact that it is risky to construct mathematical models too remote from

1The term empirical means based or acting on observation or experiment, not on theory;
deriving knowledge from experience. An empirical approach implies heuristics. The term
heuristic means allowing or assisting to discover, proceeding to a solution by trial and error.
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the process they are supposed to emulate. Models should not only be used to
explain data but ought to be identified from data. We shall try to bridge this
apparently impossible gap between theory and practice, models and data.

Biology is not reducible to physics and I hope biology is not adopting a
mechanistic philosophy. The enormous diversity and complexity of things
found in the natural world, both in common experience and in scientific re-
search, cannot be reduced to nothing more than the effects of some limited
framework of principles such as those governing machines or automatons. The
history of science has continually contradicted the philosophy of mechanism2

and to talk of ‘computations in cells’ is misguided and an excessively simple
representation of reality.

2For a more substantial critique of the philosophy of automaton, see David Bohm’s Causality
and Chance in Modern Physics, Routledge 1957 (1997).



1
The Big Picture

In this chapter we briefly introduce the biological background to the remaining
part of the text.

1.1 ZOOMING IN

Energy or matter appears to have been the primary object of science. Its
study in the phenomenal world is based on changes and for anything to be
different from anything else, either space or time has to be presupposed, or
both. We shall adopt Schopenhauer’s philosophy in which changes in space
and time are the essence of causal entailment. The subjective correlative of
matter or causality, for the two are one and the same, is the understanding.
“To know causality is the sole function of the understanding and its only
power. Conversely, all causality, hence all matter, and consequently the whole
of reality, is only for the understanding, through the understanding, in the
understanding” [38].

Aspects of the phenomenal world can be examined at different scales. Anal-
ysis at any given level of magnification may be successful for solving some
problems and not for others. In Figure 1.1, levels of magnification and their
associated fields of investigation are illustrated. We shall contend that scien-
tific theories deal with concepts, not with reality. All theoretical results are
derived from certain formal assumptions (axioms) in a deductive manner. In
the biological sciences, as in the physical sciences, the theories are formulated

1



2 THE BIG PICTURE

as to correspond in some useful sense to the real world, whatever that may
mean.

Classical genetics was founded by Gregor Mendel in the 1860s as the sci-
ence of heredity. Since then, biologists have “zoomed in” to study cellular
processes and structural properties, creating the specialist area of cell biology.
In the 1950s James Watson and Francis Crick described the three-dimensional
structure of DNA as thus founded molecular biology which since then has ex-
plored the biochemistry and physiology of macromolecules such as the DNA
and its immediate products. With the knowledge of sequences and structure,
accumulated over the last few decades, a new era dawns with genomics and
proteomics. It is again time to “zoom out”, to consider technologies, taking us
from the DNA sequence of a gene to the structure of the product for which it
codes (usually a protein) to the activity of that protein and its function within
a cell, the tissue and, ultimatively, the organism. Genomics is the science that
studies the link between proteins and genes. Proteins are cellular effectors,
serving such roles as enzymes, hormones and structural components. Protein
are usually represented as a linear polymer composed of building blocks known
as amino acids. The template for a protein is stored in a molecule known as
DNA. Modelling the entire amount of genetic information in a human (known
as the genome) is a humbling exercise – it contains about 80 000 genes (organ-
ised into large structures known as chromosomes). In addition to the regions
of DNA which code directly for proteins, much of the genome sequence is
regulatory, or serves other purposes such as physical storage and others yet
to be discovered. It is however anticipated that the use of model organisms
will lead to functional assignment of most of the human genes. A structural
hierarchy of genome information is shown in Figure 1.2. Beginning with the
organism, consisting of cells, the genome is stored as the DNA molecule in
chromosomes. Up to this point, all elements are physical or material objects.

species, ...

organisms

genes, genomes

amino acids

nucleic acids

small molecules

..., particles, waves

Biology

Genomics

Proteomics

Molecular Biology

Chemistry

Particle Physics

Fig. 1.1 Levels of magnification in the study of biological phenomena.
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Hereafter we consider biological phenomena as specified by genomes con-
taining biological information to construct and maintain an organism and its
functions. At present, the dominant approach to describe cellular life forms
is based on DNA – a molecule made up of a sequence of nucleotides whose
four possible bases are denoted by the letters A, C, G, T. The information
captured by a gene is usually described as being read by proteins that attach
to the genome at the appropriate positions and initiate a series of biochemical
reactions referred to as gene expression. Although, genes have been seen as
subsections of the genome sequence which contain biological information, we
shall here describe genes (and indeed genomes) not as structural or physical
entities but as concepts. Although empirical methods have been the domi-
nating scientific method in life sciences, in the present text we are going to
promote a conceptual formal approach. Two particular aspects of a concept
are going to play a major role: the intension and extension of a concept. The
intension of a concept is defined by a set of properties and relations subsumed
or synthesised by the concept, while the extension of a concept is defined by
the set of all objects to which the concept applies.

organism

cell

genome

chromosome

gene

transcribed region

ORF

non-transcribed region

regulatory segment

promoter terminator

Fig. 1.2 Hierarchy of structural objects in genomic analysis.

Current analysis of genomes is driven by the prediction of functional fea-
tures at the molecular and cellular level; it is commonly based on the presence
and absence of certain genes in the context of phenotypic expectations. Infor-
mation about gene transfer, the loss, acquisition or displacement of pathways
and the correlations of gene occurrences enables biologists to identify func-
tional properties. Our aim is to formulate a mathematical, conceptual frame-
work to represent genes and gene expression. Using this formal language the
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objective is to build models for gene-interactions. The approach is purely
relational, i.e., it makes no reference to the material elements out of which an
object or process under consideration is composed. The present text therefore
looks at molecular biology as through the glasses of a system scientist1. De-
pending on the reader’s perspective or views, suspicions of short-sightedness
or colour-blindness would be expected and should be communicated to the
author.

Although many sciences continue to rely on concepts and methods that
commonly derive from the physical sciences, it is now generally appreciated
that basic physical concepts such as energy, linear models and reductionism,
fail for a wide range of natural systems. They fail to capture the dynamical
richness of large, nonlinear and strongly interacting processes and the present
work has been motivated by these problems, working towards a more integra-
tive biology. The mathematics of this proposal is rooted in fuzzy mathematics
and systems theory which I have described in [77] and [78] respectively2. We
understand system theory as the theory of formal mathematical models3 of
real life (or conceptual) systems. Rosen [61] described system theory4 as the
study of organisation per se. We also adopt the definition of a system by Klir
[33] who describes a system as a set of objects associated with relations defined
on the set of objects. As such, a system is represented by a subset of some
Cartesian product of given sets. We shall distinguish between two systems
in particular: a natural system – a particular biological process or concept
under consideration and a formal system or mathematical model. Establish-
ing a modelling relation between these two systems is the very definition of
a scientific investigation. Properties of formal models can be investigated ei-
ther by mathematical deduction or by computer simulation. From a biologists
point of view, biological phenomena are studied in terms of informal aspects,
dealing with the meaning, interpretations, significance, objectives, values, and
so forth. On the other hand, system theory deals with formal aspects of ob-
servations, i.e., the form (structure) in which the relationship between the
attributes appear.

1It should be noted that the various examples taken from biology, used to illustrate a formal
concept, are not supposed to compose and demonstrate a single particular case for which
the factor space approach is developed.
2The help readers, less familiar with mathematical notation, the appendix provides a sum-
mary notations and symbols used throughout the text.
3The meaning of the term model is that of some created thing or process which behaves
similar to another. The purpose of a model is to enable inference and hence to extend our
knowledge. The underlying assumption for the present text is that mathematical models
are valuable to organise data, to study interactions in complex systems, and to understand
essential features of biological systems which otherwise would be difficult to achieve.
4Probably the most comprehensive treatment of systems theory, its philosophical and formal
foundation and application to various areas is the book by Klir [33].
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Before we devise a model or conceptual framework, we should clarify their
purpose. Therefore, why do we make system models?

� .. to organise disparate information into a coherent whole.

� .. for a logical/rational analysis of interactions and dynamics.

� .. for decision making, i.e., prediction, classification and control.

Formal models are useful in verifying and correcting conventional wisdom and
intuition which are hampered by the limitations of our perceptual and con-
ceptual abilities. Cognitive science has provided us with many examples of
difficulties that common sense and intuition have with phenomena outside the
scope of common or everyday experience. Mathematical models, in particular
those which fail, can be useful in complementing the scientist’s endeavours to
describe/define knowledge in his field. In molecular biology, and the biotech-
nology it has created, mathematical models have been primarily used in the
areas of metabolic or biochemical engineering. Although the objectives of
metabolic engineering5 are related to those in functional genomics [3], biolo-
gists to this date rely largely on ‘mental models’ based usually on empirical,
often heuristic methods. The area of bioinformatics has been increasingly
important to biologists, helping them to extracting pattern from data, which
they subsequently turn into biological facts and knowledge. More recently,
discussions on the future of the life sciences suggest a need for mathematical
models to go beyond their current status and to provide a rigorous, system-
atic, and quantitative interface between molecular processes and macroscopic
phenomena. In other words, new mathematics and novel methodologies are
required to contribute to the conceptual or theoretical framework in which bi-
ologists study organisms. We return to a discussion of these matters in Section
3.4, when we suggest system theory as a way of thinking in this direction.

For what follows, the following texts are the main references. Most of the
formal methods and fuzzy mathematics is discussed in [78]. With regard to
biology, the book by Brown [8] serves as the main reference while for factor
spaces most ideas are adopted from Wang [73] and Li [37]. The latter also
provides an introduction to ‘factor space theory’, introduced by Peizhuang
Wang in 1981. We use factor space theory because it provides a general but
formal framework to represent knowledge. We shall describe biological knowl-
edge in terms of objects, concepts and rules. This is based on the view that

5To this date metabolic engineering is largely based on linear systems theory and conse-
quently relies on a number of assumptions that are often difficult to justify for biological
systems. The difficulties are in particular that in a Newtonian framework, from which
these approaches are derived, the system is often assumed to be closed – can be discon-
nected from its environment, non-linearities are assumed negligible. Multiple steady states
and time variant dynamics increase the complexity of these approaches. Perturbations
to cells induce a multi-gene, multi-transcript, multi-protein response which is difficult to
capture with conventional reductionistic techniques.
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Knowledge Concepts Rules Facts

Understanding Complexity Information

Modelling Generalisation Abstraction

Decision Making Prediction Classification Control

characterisation

formalisation

application

Fig. 1.3 Conceptual outline of mathematical and experimental genome analysis.

organisms are organised natural systems and organisation inherently involves
function. The aim of a system theoretic approach is to provide a relational
description of a molecular or genomic system which can be matched with
observations (data). Hence we favour Rosen’s relational approach [61] to de-
scribe the function and behaviour of natural systems. Such formalisation,
motivated by generalisation and abstraction leads to what is called a formal
system or model. In Section 2, we are going to describe a complete philo-
sophical framework which forms the basis for the system theory and fuzzy
relational biology developed thereafter.

1.2 MOLECULAR BIOLOGY

The purpose of this section is to provide a brief, simplified overview of the
molecular biology required for subsequent sections. The introduction of the
terminology follows the currently common practise in textbooks.

The basic unit of life is the cell, an organised set of chemical reactions
bounded by a membrane. Organisms are large collections of cells working
together, with each cell having its own identity and function. The large
molecules of a cell are of three types: DNA, RNA, and proteins. These
macromolecules are made by joining certain small molecules together in poly-
mers6. While the DNA polymer is made up of four nucleotides with bases
{A, C, G, T}7, RNA is a sequence of ribonucleotides, represented by four let-
ters {A, C, G, U}. Both DNA and RNA are nucleic acids. Proteins are also
polymers and here sequences are constructed from an alphabet of 20 amino

6A polymer is a compound made up of a long chain of identical or similar units.
7DNA stands for deoxyribo nucleic acid; RNA for ribonucleic acid. Bases Adenine, Guanine,
Thymine, Cytosine and Uracil are abbreviated by their first letter.
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acids. A gene is a DNA segment containing biological information for the
manufacture of proteins – coding for an RNA and/or polypeptide8 molecule.
Sequences for these proteins have directionality as well as a characteristic
3-dimensional structure.

Under gene expression, we understand the series of events by which the
biological information, carried by a gene, is released and made available to
the cell. This process is often referred to as the central dogma of molecular
biology, describing the information flow for organisms with DNA genomes as
follows :

DNA

replication

RNA

transcription

Protein
translation

The arrows in the diagram describe the synthesis of new macromolecules
guided by the sequence of an existing macromolecule. The information nec-
essary to control the chemistry of a cell is stored in the DNA macromolecule.
The transcription step involves the separation of the double-stranded DNA
polynucleotide chains, each serving as a template for the synthesis of a com-
plementary RNA strand. In transcription, the same base-pairing rules apply
as in DNA, except that uracil (U), which occurs in RNA instead of thymine
(T), pairs with adenine (A). Hence, the formed RNA strand carries the same
genetic information as the DNA strand. If the RNA, transcribed by the DNA,
codes for protein then it is called messenger RNA, mRNA for short. Messen-
ger RNA passes from the cell nucleus to the ribosomes9 in the cytoplasm10

which are the sites of protein synthesis. The mRNA attached to ribosomes
serves as a template for the information in the polypeptide chain. At this step
the rate of protein synthesis is related to the quantity of functional mRNA
available which in turn depends on the rate of transcription of DNA to RNA,
that is, on the rate of delivery of mRNA from the nucleus to the cytoplasm,
and on the rate of mRNA degradation. This short description and the illustra-
tion in Figure 1.4 can only hint at the complexity involved in the regulation of
gene-expression. An important point however for subsequent development of
a formal approach to the study of gene expression is that for a comprehensive
picture of gene expression and function we require information from various
levels and any formal model should have the capability to integrate obser-
vations/measurements from the transcriptome and proteome level. Not only
that experimental techniques for the proteome and transcriptome are quite
different, the data are of different type and are stored in various formats. An
information fusion problem occurs at this point.

8A polypeptide is a polymer of amino acids.
9Ribosomes are ball-like structures that act as ‘workbenches’ for making proteins.
10The cytoplasm is the interior portion of the cell exclusive of the nucleus.
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Fig. 1.4 Trivialisation of the regulation of gene expression.

Many genes in eukaryotes11 (organisms with a membrane bound cell nu-
cleus) are split into introns and exons. While an exon is a region that encodes
a portion of a protein, introns are regions of RNA that do not (appear to)
contribute information for the formation of protein. Consequently, in mRNA
the introns are spliced out such that exons join up. The rules that determine
which triplet of nucleotides codes for which amino acid during protein synthe-
sis is called genetic code. The part of a protein-coding gene that is translated
into protein is called the open reading frame, ORF. Each triplet of nucleotides
in the ORF is a codon that specifies an amino acid in accordance with the
genetic code. The regions immediately after the start of transcription are
known to influence gene expression. In other words, gene sequences allow the
identification of ORFs which, with increasing certainty, allow for functional
assignment. The majority of assigned ORFs relate to metabolic functions.

In the near future, sequencing projects will provide complete genome se-
quences for only a relatively small number of organisms. This is particu-
larly true of eukaryotes, where only few complete genome sequences exist in
the public domain (e.g., yeast: Sacchoromyces cerevisiae and the nematode
worm, Caenorhabditis elegans). Thus for the foreseeable future, it will be
necessary to exploit the information available from the relatively few com-
plete genome maps to study gene structure and function in those organisms
for which only fragmentary sequence data are available [48, 8]. Such data
are produced both from function directed sequencing and from sequence pro-
grammes such as shot-gun12 libraries (which do not intend to obtain closure
to assemble a complete genome sequence). Random clone sequencing pro-
vides specific gene/ORF sequence data as well as information on synteny
which we will here consider as ‘data objects’. The post-genome challenge

11An eukaryote is an organism in which the genetic material is localised in a membrane-
bound compartment called the nucleus. Eukaryotes include animals, plants, and fungi.
Prokaryotes on the other hand lack a proper nucleus. An example are bacteria.
12The shotgun approach is a genome sequencing technique in which molecules are randomly
fragmented and subsequently analysed.
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is to be able to interpret and use the genome data: focus is shifting from
molecular characterisation to understanding functional activity. The identi-
fication of patterns and prediction of properties in metabolic13, regulatory,
or developmental pathways has applications in biotechnology. In addition to
gene-sequence data, large-scale RNA assays and gene-expression microarray
studies become increasingly important in functional genomics. Microarrays
(gene chips) will be further discussed in Section 1.2.2. They can be used to
study gene-expression; to study which gene products are made, how much is
made and under what circumstances [85].

Once a DNA sequence is available, various methods can be employed to locate
genes by

• searching DNA sequences for special features associated with genes,

• experimental analysis of DNA, searching for expressed sequences.

The function of a gene can be assessed by

• homology analysis,

• determining the effect its inactivation has on the phenotype14 of the
organism.

Genes are non-random sequences15 of nucleotides that code for proteins and
can be identified by open reading frames (ORFs) consisting of a series of
codons that specify the amino acid sequence of the protein that the gene
codes for. The ORFs begin and end with characteristic codons. With three
nucleotides forming a codon we have, for double stranded DNA, six possible
reading frames and the success of ORF scanning depends on the frequency
with which termination triplets appear in the DNA sequence. Simple ORF
scanning is less effective for higher eukaryotic DNA with more space between
real genes. We can improve procedures for ORF scanning by taking account
of codon bias – the fact that not all codons are used equally frequently in
the genes of a particular organism. Other features to identify genes are for
CpG islands – upstream regions of vertebrate genes in which the GC content
is greater than average. Such measurable or quantifiable features or factors

13To this end metabolism is viewed as a collection of biochemical reactions, and a metabolic
pathway is a connected series of these.
14The phenotype of an organism are its forms and behaviour, i.e., observable characteristics.
The genotype on the other hand is a description of the genetic composition of an organism,
i.e., the causal basic for the phenotype. The study of the genotype-phenotype dualism is the
context in which biologists study the function of gene via measurements of gene expression.
15Although genes display pattern within a genome they are not simply a sub-sequence of
the genome but should be considered as a ‘functional unit’. The fact that it is not easy to
define a gene as a structural element motivates our formal definition (Section 3.1) of it as
a concept characterised in terms of factors.
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form one component of the mathematical model introduced further below.
The second important source of information we integrate in our formal model
is homology analysis. This information is often derived from experiments and
expressed qualitatively as an observation.

Gene Location

Sequence
Inspection

Experimental
Analysis

Gene Function

Homology
Analysis

Experimental
Analysis

Orthologous
Genes

Paralogous
Genes

Fig. 1.5 Conventional techniques used to determine gene location and function.

Once a gene has been located, the next question is what function16 it
has. In homology analysis we use the fact that homologous genes are ones
that share a common evolutionary ancestor, revealed by sequence similarities
between the genes. To identify functions in an unknown gene one focusses on
orthologous genes which are present in different organisms and whose common
ancestor predates the split between the species [26]. A test for homology can
be carried out with well established software tools such as BLAST [Altschul
et al 1997]. Although the decision is non-fuzzy, that is, genes are either
evolutionary related or not, the information obtained from a database search
is associated with a likelihood. As before with gene location, in addition to
a computerised analysis of sequence data, gene function can be assigned by
experimental analysis. One such method is to study the phenotypic effect of
gene inactivation.

An important part to the understanding of genomes will be a family of
technologies called genomics that study the process from the DNA sequence
of a gene to the structure of the product for which it codes (usually a protein)
to the activity of that protein and its function within the cell, tissue and,
ultimatively, the organism. It is evident that similarities between homologous

16The term gene function is ambiguous. Gene function associated with open reading frames
frequently refers to functions on a biochemical level. Gene function as an influence of
the gene product on the phenotype is not directly related to ORFs. Gene function can
be determined by studying gene expression. Gene Expression is the process by which a
gene’s coded information is converted into the structures present and operating in the cell.
Expressed genes include those that are transcribed into mRNA and then translated into
protein and those that are transcribed into RNA but not translated into protein (e.g.,
transfer and ribosomal RNAs). A gene product is the biochemical material, either RNA
or protein, resulting from expression of a gene. The amount of gene product is used to
measure how active a gene is.
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genes from different organisms can be used to predict gene function in un-
known, more complex genomes from simpler model genomes. This approach
is known as comparative genomics. In functional genomics, the function of
a gene is determined by inserting into bacterial cells which will make large
amounts of the protein for which the gene codes, and then to determine the
structure of the protein. The function can then be inferred in comparison to
known protein structures and functions. Functional genomics disregards the
gene sequence and the structure of the protein, and focuses instead on other
properties of the protein product. The sources of data in functional genomics
are summarised in table 1.1 on page 15.

In Section 3.1 we propose a formal concept that is suitable for a) the pre-
diction of similarities in genome structure and function in species from which
the sample sequence data is derived and b) modelling gene-interaction in gene
networks. Apart from experimental genome analysis, for which results are al-
ready available in databases [35], the fuzzy relational factor-space approach
will rely upon gene-expression data. These data are useful in complement-
ing gene-coding-sequence-based structural genomics. As structural genomics
– sequencing of entire genomes is progressing continuously, the focus is gradu-
ally shifting to functional genomics. Large-scale gene-expression assays are an
important tool and formal methods for their analysis are yet to be developed.

Erwin Schrödinger, in his famous essay “What is life?”, considered the ques-
tion of how the events in space and time which take place within the spatial
boundary of a living organism can be accounted for by physics and chemistry.
Here I shall instead take a different route, trying to describe natural systems
using mathematics. Considering that the models Schrödinger envisaged, were
mathematical, it may seem like a contradiction. The idea is to describe bio-
logical principles (“natural laws”) as they are known (measured, observed or
perceived) by the biologist rather than describing what the mechanisms are
in themselves (as described by biophysical and chemical models). Surely we
cannot claim to be more accurate or even to have an alternative, since ul-
timatively the approach rests upon knowledge obtained through biochemical
experiments (for which however the focus is on interactions rather than on
investigations into the material structure).

1.2.1 Metabolic Engineering

Although the approach developed in this text is to investigate gene expres-
sion, gene interaction and gene function, these issues are not entirely unrelated
to biochemical or metabolic engineering which is used to improve industrial
organisms using modern genetic tools. The aim is to study physiological con-
sequences of gene changes to allow inferences about the connections between
genes and cell function.
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Biochemical modelling of metabolic systems17 is usually employed to ex-
plain specific phenomena by restricting oneself to essential factors, that is,
trying to describe a pathway by a model in which groups of reactions are
combined into overall reactions using kinetic laws. Kinetic laws of biochemi-
cal reactions are based on the notions of concentration and reaction rate18. A
model of a metabolic pathway consists then of nodes, where each node repre-
sents a metabolite in reaction and each link shows a reaction in the pathway.
Links are labelled by the rate of reaction. In general, kinetic rate laws are non-
linear functions of metabolites and solutions to differential equations are found
using numerical algorithms. The book by Heinrich and Schuster [21] provides
a comprehensive discussion on deterministic kinetic modelling of biochemical
reaction systems. For a review of and commentary about mathematical mod-
elling in biochemical engineering and lessons from metabolic engineering for
functional genomics and drug discovery see [2] and [3], respectively.

Metabolic engineering is about the analysis and modification of metabolic
pathways [71] and can be based on metabolic flux analysis [72, 14]. Flux
Balance Analysis (FBA) allows the quantitative interpretation of metabolic
physiology based on experimental data. The mathematical formulation is
based on the conservation of mass, expressed in mass balance equations which
describe all relevant internal, in- and outgoing metabolite fluxes of the cell.
The concise description in [72, 14] is restated here. A metabolic network with
m metabolites xi, their unknown amounts and concentrations represented by
a m-dimensional vector x are changing according to the vector differential
equation

dx
dt

= S · v − b ,

where v is the vector of n metabolic (reaction) fluxes and S is the stoichio-
metric m× n matrix that contains information on the reaction stoichiometry
of cellular metabolism. The rows and columns of the matrix are associated
with the metabolic balances and the metabolic fluxes, respectively. Any par-
ticular element sij indicates the amount of the ith compound produced per
unit flux of the jth reaction. b is the vector of known metabolic demands,
it is the net transport of metabolites out of the system under consideration.
The time constants of metabolic transients are small in comparison to cellular
growth rates and the dynamic changes in the organism’s environment. One
can therefore simplify the model for steady-state behaviour :

S · v = b .

This system of equations is usually underdetermined (i.e., the number of fluxes
exceeds the number of metabolites) leading to more than one solution. The

17A metabolic system is considered as a network of enzyme-catalysed reactions in the cell.
18The concentration is defined by the number of moles of a given substance per unit volume.
The reaction rate is expressed as concentration change per unit time.
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null-space19 of the matrix S defines a solution space, which Palsson refers to as
the metabolic genotype. It describes all allowable flux distributions (reactions)
by a set of metabolic genes. Any particular solution defined by a specific
set of conditions is then called metabolic phenotype. The size of the null-
space represents the flexibility of a cell to determine its metabolic capabilities.
Metabolic flux distributions can be measured experimentally but only with
limited accuracy.

According to Palsson, it is expected that flux balance analysis, in combi-
nation with experimental genomics, will play a role in establishing genotype-
phenotype relationships. For this to happen, models that relate to gene ex-
pression or gene regulation are required. A major problem with metabolic
engineering is that, in order to restrict the complexity of the model, a com-
mon assumption is that a single gene’s product has a significant effect on the
biochemical networks that are considered. However, there are growing doubts
that such simplification can be sustained for long [3]. The developments in
metabolic engineering, based on systems of differential equations modelling
biochemical dynamics, are expected to find continued interest for industrial
biotechology but with regard to functional genomics will be limited to very
specific aspects of molecular systems. Instead of modelling metabolic path-
ways and regulatory networks as mechanisms20, in the realm of Newton’s
mechanics, subsequent sections will elaborate on the informational networks
that operate cells.

1.2.2 Gene-Expression Data

In DNA- or micro-arrays each probe cell in the chip contains a large number
of different single-stranded DNA pieces of the region of a gene that codes for
RNA (which in turn is translated into protein). To determine gene activity, a
flourescently labelled single-stranded sample RNA is added, and if correctly
matched, the flourescent RNA sticks to the complementary strand on the chip
and emits a light signal. Relatively new techniques such as serial analysis of
gene expression (SAGE), high resolution 2D gel electrophoresis and microar-
rays (gene or DNA chips) are a means to identify gene products and their
quantity [85].

With array technology, it is now possible to study expression patterns
within a variety of gene families or to search for new homologous genes. DNA
arrays can be used in a variety of ways, which may be classified as genotyping

19The null space of a matrix is also called the kernel of the matrix. Generally, the concept
is applied to any linear function (such as the distance) between vector spaces V → V ′ and
the kernel of S is defined to be the set of elements of V which map to the zero vector in V ′.
20We return to a discussion and critique of this approach to describe biological processes
in Section 3.4.
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and gene expression. Genotyping arrays are designed to examine DNA at the
sequence level. Known sequence variants of a gene or collections of genes are
represented in an array. A gene of unknown sequence can then be rapidly
screened for a large number of changes. For example, in comparative genomic
hybridisation one can correlate gene expression with disease states. DNA ar-
rays for examining gene expression, also called ‘gene chips’, can involve longer
fragments of synthetic or complementary DNA. The objective is to analyse
gene expression levels to describe gene interactions in metabolic/regulatory
pathways and hence to suggest unknown gene function. Expression data are
the basis for gene-networks introduced in the next section. Mathematical
models of gene interactions identified from expression data are required to
have exceptional generalisation properties and are required to cope with con-
siderable levels of uncertainty arising from fluctuations in the light source,
fluorescence scattered from adjacent samples in the array, and a host of other
experimental factors.

In addition to sequence information which allows us to relate genes via
sequence similarity, gene-expression information can be used in defining gene
relationships [17]. The data from gene microarrays can be sampled over time
and pattern recognition techniques (e.g. clustering, principal component anal-
ysis) are used to identify genes with related functions. A recent discussion
and overview for the use of gene-expression microarray data is given in [85].
It is expected that microarray data will play an increasingly important role
in functional genomics21. As microarray facilities becomes available in many
institutions, the area is progressing very fast. However, to this date, experi-
ments are complicated, expensive and time consuming which is the reason why
experiments are seldom repeated and in the case of time-series experiments
only few sampling points are considered. Subsequently data are often impre-
cise and unreliable. For the foreseeable future, if not in general, sets of numer-
ical data obtained from measurements, will not provide sufficient information
for decision making (classification, prediction) in the presence of uncertainty.
Even the most sophisticated mathematical techniques or data mining tools
still require substantial knowledge and understanding of the process under
consideration. The dilemma is reflected in Nobert Wiener’s complaint22

“I may remark parenthetically that the modern apparatus of the the-
ory of small samples, once it goes beyond the determination of its own
specially defined parameters and becomes a method for positive statis-
tical inference in new cases, does not inspire me with any confidence
unless it is applied by a statistician by whom the main elements of the
dynamics of the situation are either explicitly known or implicitly felt.”

21See for example the web-site of the European Bioinformatics Institute at
http://www.ebi.ac.uk/
22Nobert Wiener: Cybernetics: Control and Communication in the Animal and the Ma-
chines, 1961.

http://www.ebi.ac.uk/
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The IMDS project at the Technical University Delft [27] is another example
which shows that in future, efficient, direct measurements on the molecular
level will be possible. IMDS (Intelligent Molecular Diagnostic Systems) is
a multi-disciplinary research project at the Delft University of Technology.
The IMDS will consist of two basic components: a measurement device and
an information processing unit (IPU). The measurement device is a chemical
sensor on a chip, which will be capable of rapidly performing vast numbers
of measurements simultaneously. The IPU transforms the complex, raw mea-
surements (of concentrations or optical signals) obtained from the sensor into
output that can be employed as high-level decision support in various appli-
cation domains. The focus is on unravelling the metabolic processes and the
associated regulatory mechanisms of yeast.

The factor-space approach developed in Section 3.1, is aimed at a better
understanding of the mathematical description of the interaction of genes and
their function. It will therefore require information and data from more than
one source. Results of experimental genome analysis are stored in databases
accessible via the Internet. The progress of such world-wide projects is mon-
itored by for example the Genomes OnLine Database (GOLD) [35]. For the
approach presented here we however need access to a single source of genomic
information in a well defined and structured format. An example for such
a single data source providing an effective description and management of
genomic information is the GIMS project [53].

Table 1.1 The four ‘oms’ defining different levels of analysis, providing different types of
information and using different experimental techniques [49].

Level of Analysis Definition Method of Analysis

GENOME Complete set of genes of an or-
ganism

Systematic DNA sequencing

TRANSCRIPTOME Set of messenger RNA molecules
present in a cell, tissue or organ

Hybridisation arrays, SAGE, High-
throughput Northern Analysis

PROTEOME Set of protein molecules present in
a cell tissue or organ

2D-gel electrophoresis, peptide
mass fingerprinting, two hybrid
analysis

METABOLOME Set of metabolites (low-molecular
weight intermediates in a cell, tis-
sue or organ)

Infrared spectroscopy, mass spec-
troscopy, nuclear magnetic reso-
nance spectrometry

An effective study of gene expression, gene regulation and interaction of
genes in a network will be a multi-levelled approach incorporating information
from all four stages of gene expression starting with DNA via RNA, to proteins
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and metabolites. Corresponding to each of these components biologists have
defined four levels of analysis23 as listed in table 1.1.

1.2.3 Gene Networks

Though genes and their individual functions become known, the study of the
interactions of several genes in cellular functions is not yet developed to a
large extend. The coordinated function of multiple genes has been described
as genetic circuits or gene networks [50, 70]. Such genetic system represents a
cellular network of gene products that together make up a particular function.
More specifically, the genes in a network co-regulate one another’s expression
rates where each gene encodes a protein that serves as a regulator for at
least one other gene in the network, influencing the rate of transcription,
translation, or post-translational modification. Figure 1.6 outlines the general
idea of genetic circuits as described by Palsson [50]. In [85], an overview is
given on how gene-expression data from microarrays can be used for inferring
gene networks.

Genetic System

Energy

metabolism transport

Metabolic Engineering

Information

transcription translation

Gene Transfer Evolutionary DynamicsBiological Databases

Fig. 1.6 Genetic systems, once expressed are autonomous. The aim of the fuzzy relational
factor space approach is to eluminate the relationship between pathways and genetic systems.
(Adapted from [50]).

The complexity of gene interactions is due to subprocesses, interacting on
different levels and relationships which cannot be inferred simply by taking
the system to pieces. In case of gene regulatory systems, we often observe

23Whereas Genetics describes the study of gene function in relation to the phenotype, the
area of Genomics studies gene function related to sequence data. Functional Genomics
is then closely related to the four ‘oms’ defined in table 1.1. Proteomics is understood
as the study of protein structures and their prediction from sequence data as well as the
identification of proteins from mass spectroscopy experiments. The post-genome era is
expected to be primarily concerned with gene interactions, gene regulation.
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processes in ‘closed-loop’ configuration. That is, measurements supposedly
representing input-output relationships are in fact not from a model but a
system that could be described as consisting of an internal model and a con-
troller. The process under consideration is observed “under control”. If we are
to view biological regulatory processes as a control system, we are compelled
to formulate Rosen’s anticipatory systems in terms of model-based predictive
control. The principle of self-reference is apparent in internal modelling pro-
viding a means for the system to both adapt and evolve. Although on the
surface, internal modelling is akin to adaptive control, in anticipatory systems
the control action is a function not only of current and past states but also of
(model based) predictions of future states. Note that viewing gene regulatory
processes as control systems is only a metaphor24.

24In a metaphor we liken some process or phenomenon observed in one domain to a seem-
ingly parallel process or phenomenon in a quite different domain.





2
A System-Theoretic

Epistemology of Genomics

This chapter is of fundamental importance for all subsequent section. It is or-
ganised as follows. In the first part, there are six main propositions, preceded
by a definition. Referring mainly to the philosophy of Arthur Schopenhauer1,
the first proposition provides the foundation for a phenomenological perspec-
tive of science and describes the certainty of uncertainty in any scientific
enquiry; following the bad news, the second proposition recovers objective
knowledge within the realm of the world of experience. The third propo-
sition formalises the scientific method in form of Robert Rosen’s modelling
relation and introduces a system theory based on sets and relations. Propo-
sition four describes entailment structures that are a basic tool of science.
Proposition five describes Schopenhauer’s ‘differentiation’ as the basic mode
of operation for human minds and the last proposition draws some conclu-
sions from differentiation. I briefly mention some personal conclusions on the
consequences of the approach and provide examples for the conceptual frame-
work presented. The examples are used to introduce the fuzzy relational
model of gene-expression and function which we shall develop throughout the
remaining text.

1The summary provided here follows closely the excellent discussion of Schopenhauer’s phi-
losophy by Brian Magee [38]. The main difference between Schopenhauer’s and Kant’s work
is that Kant focussed on the nature of conceptual thinking while Schopenhauer focussed on
the nature of experience.

19
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2.1 PHENOMENAL CONSTRUCTIONS...

DEFINITION 1: The world of experience is Kants world of the phenom-
ena - the empirical world (Wirklichkeit). A phenomenon is a collection
of related percepts suggesting causal entailment.

PROPOSITION 1: If there is something that is grasped, then there is
something that grasps it and everything that is said, is said by someone.

Proposition 1.1: The world as we experience it, is dependent on
the nature of our apparatus for experience, with the consequence
that things as they appear to us, are not the same as they are in
themselves. Experience divides into two aspects: perception and
conception.
Definition 1.1: Perception is tied to the phenomenal world - the

world of cognisable objects (sensory impressions or percepts),
which we observe and measure, and with which science deals.
Perception is the process of discerning cognisable objects; to
distinguish, to differentiate them. To organise percepts is a
primary function of the mind ; it means to establish relations
between them (cf. Definition 4.3). An example of perception
is understanding (Verstand), the capacity for preconceptual,
intuitive knowledge.

Definition 1.2: Conception is part of the world of concepts (ideas)
in which we establish a modelling relation (cf. Proposition 3)
between the self2 (mind) and its ambience (the experienced,
context, observed. Cf. Definition 3). Conception is the com-
prehension of phenomena. An example of conception is reason
(Vernunft), the capacity to form and employ concepts based
on the prior intuitive grasp of things.

Proposition 1.2: The world as we know it is our interpretation of the
observable facts in the light of theories that we ourselves in-
vent/construct. Within a theory, every argument has to have an
absolute minimum of one premise and one rule of inference (e.g a
relation representing IF A, THEN B) before it begins, and there-
fore begins to be an argument at all.

Proposition 1.3: Every argument has to rest on at least two undemon-
strated assumptions, since no argument can establish either the
truth of its own premise or the validity of the rules by which itself
proceeds.

2Here we identify ‘the self’ with a human being’s mind and intellect (understanding, reason),
as opposed to his or her body. The self exists in a subject-object relation to its ambience
(Proposition 1), describing the world as representation. Another aspect of the self, not
discussed here, amounts to what Schopenhauer designates as will.
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Proposition 1.4: Popper: Theories are formulated as to correspond
in some useful way to the phenomenal world, whatever that may
mean. The quest for precision is analogues to the quest for certainty
and both – precision and certainty are impossible to attain.

Proposition 1.5: Uncertainty (the lack or absence of certainty) cre-
ates alternatives and hence choice. Wittgenstein: What we cannot
speak about, we must remain silent about. What we cannot think,
we cannot think, therefore we also cannot say what we cannot
think.

DEFINITION 2: The world of things3 (objects) as they are in themselves
is Kant’s noumena (Realität). Though we can have knowledge about
the noumena, we can never have knowledge of it.

PROPOSITION 2: Kant, Schopenhauer: Reality is hidden but transcen-
dentally real. The world of objects is representation, conditioned by the
experiencing self (his mind), but has transcendental reality. The tran-
cendental ideal (noumenon) and the empirical real (phenomenon) are
complementary. Whatever is noumenal must be undifferentiated.

Proposition 2.1: Science deals with concepts to interpret aspects of
the phenomenal world. Science does not describe an independent
reality; it does not deal with the things what they are in themselves,
but with phenomena through objects and relations defined among
them. In other words, the aim of science, mathematics and philos-
ophy is the study of natural - and formal systems (cf. Proposition
3).

Definition 2.1: An idea or concept is defined by
i) its extension - the aggregate of objects relevant to the

concept.
ii) its intension - the collection of factors and their attributes

describing it.
The two most important concepts by which our experience is
made intelligible to us are space and time, constructed to
describe causal entailment (Definition 4) in the world of
experience.

Definition 2.2: An object can be a physical (material) object
or mass but also an abstract mathematical object or a con-
cept. A multiple of objects defines a set . An object is never
the thing-in-itself, but something the cognising (perceiving and
conceiving) self (mind) has constructed by discerning it from
its context.

3We are using the word ‘thing’ in a very general sense, so that it represents anything (e.g.,
objects, entities, qualities, properties, etc.).
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Definition 2.3: We refer to a perceptible or cognisable quality of
a natural system as a factor (or observable). A factor4 is de-
scribed by the mapping f : U → X from a set of objects U
to factor-space X . While U denotes the hypothesis-space
in which we define or infer statements about a phenomena in
question, X is also referred to as the observation-space or state-
space in which measurements or observations are represented.
Only events in X are directly perceptible to us. A factor in-
duces relations on the set of objects and between the set of ob-
jects and the set of states. Factors serve as the vehicle through
which interactions between natural systems (e.g the sensory
apparatus of the self and its ambience) occur, and which are
subsequently responsible for perceptible changes arising from
interactions (cf. Proposition 6).

Definition 2.4: Attributes establish the relationship between the
phenomena considered and its context; they capture semantic
information . Attributes are represented by the mappings
i) Ã : U → L from the set of objects U to a space L. This

mapping is called the extension of a concept in U .
ii) f(Ã) : X → L from the set of states into L. This mapping

is called the representation extension of a concept in
X . For L being the unit interval [0, 1], these two mappings
are referred to as fuzzy sets5.

Proposition 2.2: Objective knowledge of causal entailment (cf. Defi-
nition 4), is attainable within the realm of the phenomenal world.
What is given to us in direct experience are the representations of
sense (through perception) and of thought (through conception).
The world of experience cannot exist independently of experience.
Experience is objective but what is denied, is the validity of in-
ferences from what we experience to what we do not experience.
Scientific knowledge is common sense knowledge made more criti-
cally self-aware and raised to a level of generality.

DEFINITION 3: A system is a set of objects and relations defined on
them. Formally, we define a system by the pair (U, R) where U is a set
of certain things, i.e., objects u, and R is a relation defined on U or
the Cartesian product U × U , in which case we have R ⊂ U × U . The

4The notation f : U → X is read as “a mapping f from space U to X”. An element of U ,
denoted u ∈ U , as an argument to f maps to the value f(u) in X; denoted u �→ f(u).
5For a ‘non-fuzzy’ or ‘crisp’ set A, the degree of membership A(u) can only take two values,
zero or one, denoted A : U → {0, 1}. Varying degrees of membership between zero and
one, u ∈ [0, 1], can be used to model different kinds of uncertainty (ambiguity, fuzziness,
vagueness,...) and should allow us to integrate qualitative, context-dependent knowledge
into the otherwise quantitative model.
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Phenomenal World Mathematical World

causal entailment inferential entailment

ambience the self

NATURAL
SYSTEM

FORMAL
SYSTEM

decoding

(prediction)

encoding

(observation, measurement)

Natural Law

Fig. 2.1 The modelling relation between a natural system N and a formal system F [60]. If
the modelling relation brings both systems into congruence by suitable modes of encoding and
decoding, it describes a natural law. In this case F is a model of N , that is, N is a realisation
of F .

relation(s) R role is usually to order, structure or partition elements in
U . Systems do not exist independent of the mind but they are a formal
representation of aspects of the phenomenal world. A formal system
represents the interior world of the self while a natural system is an
element of the outer or exterior world of the ambience (context), a set
of phenomena in the world of experience. As such it embodies a mental
construct (i.e., a relation established by the mind between percepts)
serving as a hypothesis or model pertaining to the organisation of the
phenomenal world.

PROPOSITION 3: Rosen: In order to understand (explain), one estab-
lishes a modelling relation between a natural system, N , and a formal
system F . If the modelling relation brings both systems into congru-
ence by suitable modes of encoding (measurement, observation) and
decoding (prediction), it describes a natural law . In this case, F is
a model of N , or N is a realisation of F . Modelling, the process of
establishing a modelling relation, bringing the two entailment structures
into congruence, is a creative mental act, it is an art .

Proposition 3.1: A model is the basis for reasoning . Reasoning is
the process of turning facts into knowledge. Knowledge is the re-
sult of understanding (explanation, experience) and is represented
by law-like relations. A law (or principle) can only describe what
a natural system is like, not what it is.

Definition 3.1: A fact is a context-independent measure extracted
from data (e.g. measures of variability or central tendency).
A descriptive or fact explanation (e.g pattern) is the use
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of a theory and data to induce a singular factual statement.
A law-like explanation (e.g rules) uses a theory, subsidiary
assumptions (statements, axioms) and data to infer a law.

Definition 3.2: Data are instances of states, i.e., evaluations of
objects using factors. Data are context-dependent as is knowl-
edge. The process of collecting data is referred to as measure-
ment . The estimation of parameters of a formal model from
data, is referred to as system identification .

DEFINITION 4: By separating the observed aspect of the phenomenal
world from the formal model and the self observing it, the following
two kinds of objects and entailment are fundamental:

i) Objects in natural systems are referred to as components. The
realisation of relations in a natural system is referred to as causal
entailment (causality).

ii) Objects in formal systems are referred to as propositions. The
evaluation of relations in formal systems is referred to as formal
entailment (inference).

PROPOSITION 4: To ask “why u?” is to ask “what entails u?”. To
understand entailment is the sole function of the understanding and its
only power. Conversely, all entailment and consequently the whole of
reality, is only for the understanding, through the understanding, in
the understanding. Understanding, through inference, is the subjective
correlate of causal entailment.

Proposition 4.1: Entailment exist only between objects in the phe-
nomenal world. The succession of events or phenomena is not ar-
bitrary; there are relations manifest in the world of phenomena
and these relations, at least in part, can be grasped by the human
mind.
Definition 4.1: The concept of linkage between factors repre-

sents causal entailment in natural systems. The linkage be-
tween any two factors is a relation determined by comparison
of the partitioning (equivalence relations) induced by the two
factors.

Definition 4.2: For a factor f : U → X , in a formal system, ob-
ject u ∈ U entails f(u). Asking “why f(u)?” is answered
“because u” and “because f”. The former corresponds to Aris-
totle’s material cause of ‘effect’ f(u), while the latter refers
to the efficient cause of f(u).

Proposition 4.2: For entailment to exist, an act of differentiation
is required. Each time we refer to anything (whether a percept or
concept), we are specifying criteria of distinction, discerning an
object from its context .
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Proposition 4.3: Discerning an object, we implicitly recognise organ-
isation.

Definition 4.3: Organisation is defined by relations that must
be in place in order for something to exist (to be there, to
be an object). If a system exhibits a particular behaviour,
it must possess certain properties producing the behaviour.
These properties will be called the organisation of the system.
If the organisation of a system does not change, the organisa-
tion is also referred to as the structure.

Definition 4.4: System theory is the study of organisation per
se. It defines formal systems by means of mathematical rela-
tions (equality, elementhood, subsethood, greater than, smaller
than, ...) and set comparisons (union, intersection, and com-
plement).

Proposition 4.4: For anything to be different from anything else, ob-
jects, sets and concepts have to be presupposed.

Proposition 4.5: Causality manifests itself only through changes in
states, called state-transitions, leading to sequences of states,
entailing an effect that is again a state. The change of a particular
state is called an event .

DEFINITION 5: Anything that is observed is subject to change as for
anything that was there, it has changed (is different) through differen-
tiation.

PROPOSITION 5: Discerning is an interaction that brings forth an ob-
ject. Knowing is doing (discerning); doing is understanding (experi-
encing). Knowledge arises from the plurality and separate existence
of beings (objects); knowledge arises from and through individuation
(differentiation).

Proposition 5.1: Discerning, implies change, reveals diversity and com-
plexity but also imposes order.

Definition 5.1: A particular time-invariant relation, specified for
a set of quantities and a resolution level, and based on samples
of a certain pattern, will be called the behaviour of the cor-
responding system. If the behaviour of the system can change,
the behaviour is also referred to as dynamics.

Proposition 5.2: Although differences may exist (through differenti-
ation), knowledge of it and of uncertainty leaves a choice to the
nature of entailment.

Proposition 5.3: Although knowledge originates with experience, it
does not all arise out of experience. Apart from understanding
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through observation or contemplation alone, the observation of
change through manipulation is a means to gaining knowledge.
Definition 5.3: Creating a new perturbated system which can

be compared with the original, the discrepancy between be-
haviours determines its function while discrepancies between
system structures determine its components.

Proposition 5.4: There is no such thing as knowledge of knowing since
this would require that the self separated itself from knowing and
yet knew that knowing.

DEFINITION 6: Learning is the process of gaining knowledge through ex-
perience (perception and conception). There are two modes of pursuing
knowledge: contemplation and manipulation .

PROPOSITION 6: Living is learning; learning is experiencing; experienc-
ing is discerning; discerning is an (inter)action; an interaction brings
forth a change (difference). The interaction between a natural system
and our sensory apparatus generates percepts from a change or modifi-
cation within it. The sensory apparatus itself is a natural system, and
we can say that the interaction of any two natural systems causes some
change which we can represent by means of factors. Changes make the
world comprehensible.

Proposition 6.1: Differentiation is the essence of life, as we perceive
and decide it.

Proposition 6.2: The pursuit of knowledge provides a choice between
contemplation and manipulation.

Proposition 6.3: Tolerance is the appreciation of diversity through
contemplation. Morality derives from the knowledge that, since
the noumena is undifferentiated, differences are only transcenden-
tally real.

2.2 DISCUSSION

The previous section outlined the basis for a system-theoretic epistemology
integrating aspects of Arthur Schopenhauer’s philosophy, Robert Rosen’s sys-
tem theory and Peizhuang Wang’s factor-space theory [73, 37]. With the work
of Immanuel Kant, metaphysics was discovered in the subject. Kant identified
the concepts of space, time and causality as a priori and therefore conditional
for experience6. He also showed that these apply only to experience and may

6In his famous essay “What is life?” [66], the physicist Erwin Schrödinger, comes to the
conclusions that “our sense perceptions constitute our sole knowledge about things. This
objective world remains a hypothesis, however natural”.
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not be used to found a metaphysical system. Our mind organises the elements
of experience to the principle of causality, but in contrast to Davide Hume,
who derived causality from experience, Kant showed that we approach the
world around us with the principle of causality already being there. With
Kant, the subject therefore becomes central to reasoning and understanding.
The subject guarantees the unity of the outer world, the knowledge of my
being is the basis for the re-presentation of the world we experience. In the
words of Werner Heisenberg, “What we can observe is not nature itself, but
nature exposed to our method of questioning.” With the creation of a do-
main in which pure reason allows for certainty and truth, we also create the
noumena as something which is forever unaccessible. Kants ‘things as they
are in themselves’, the noumena, we ourselves create by the knowledge of the
phenomena. While others, namely Fichte, Schelling, Hegel and Marx, tried to
fill the gap of uncertainty created by Kant, Schopenhauer accepted the pre-
sented limitations, refined the boundaries and clarified our knowledge about
the noumena. For everything that becomes part of our experience, we are
‘forced’ to ask for causes and entailment.

According the type of objects we deal with, Schopenhauer describes in his
dissertation ‘The Fourfold Root of Sufficient Reason’ the different ways by
which we establish such entailment relations. According the type of objects
we deal with, Schopenhauer describes in his dissertation ‘On the Fourfold
Root of Sufficient Reason’ [65] the different ways by which we establish such
entailment relations. Schopenhauer asserts that the everyday world is made
up of objects of four classes; the first class consisting of material objects, such
as the chromosomes in the genome; the second class consisting of concepts
and combinations of concepts, such as gene function or hypotheses regarding
gene expression; the third class consisting of time and space; and the fourth
class consisting of particular human wills. These objects are interconnected
in a number of ways, allowing questions to be asked and answered; there is
always a reason. Material objects are subject to change, and of any change
the question “Why does it occur?” can be asked. Concepts combined in ap-
propriate ways constitute judgements or statements which can be questioned
by asking “Why is it true?”. Third, time and space are represented by math-
ematical objects for which we can ask “Why does it possess its characteristic
properties?”. Again, there is always a reason - a ‘sufficient reason’. The four
forms of the principle of sufficient reason are that every change in a material
object has a cause; the truth of every true judgement rests upon something
other than itself (cf. Proposition 1.2 and 1.3); all mathematical properties
are grounded in other mathematical properties; every action has a motive.
Objects of the four classes comprise therefore those, being subject to change
(first class), those bearing truth (second class), those possessing mathemati-
cal properties (third class), and those of the fourth class giving rise to actions
under the influence of motives. In science, formal systems are used to model
natural systems; to establish concepts; to describe relations between percepts;
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and to make predictions. In science, formal systems are used to model nat-
ural systems; to establish concepts; to describe relations between percepts;
and to make predictions. Science is the description (comprehension) of the
phenomenal world. The ‘natural sciences’, physics, chemistry and biology are
based on comparisons (using sets – union, intersection, and complement) for
the purpose of reasoning (classification based on transitive laws). Mathemat-
ics is concerned with the construction of formal systems using abstract sets
and formal relations. Philosophy studies the consequences and foundations of
science and mathematics. Relating natural systems with formal ones, we aim
to make inferences in the latter to make predictions about the former.

Ultimate or philosophical explanations are not to be looked for in science7

(Proposition 1.2)8 because the applicability of science is confined to the phe-
nomenal world (Proposition 2.1). Our experience is made intelligible to us
in terms of space, time, and causality; for only then it is possible to talk
of there being more than one anything, or of anything being different from
anything else. Differentiation, discerning and individuation are at the root of
experience and therefore science. The possibility of plurality (Schopenhauers
principium individuationis) is necessarily conditioned by time and space. If
the mathematical structures we employ to encode natural systems, are not in
themselves the reality of the natural world, they are the only key we possess to
that reality. The essence of the modelling relation (Figure 2.1) is that we have
to explain the correspondence between natural systems and its mathematical
representation. There are many examples of the remarkable correspondence
between mathematical models and the behaviour of the natural world, but
is must be admitted that no one of these is final. The modelling relation,
here used as a conceptual device to clarify the relationship between natural
systems and mathematical structures created for understanding such systems,
is in fact a model of the scientific method; providing an intriguing subject for
further study and contemplation. (See for example [62]).

Knowledge is, of its nature, dualistic: there is something that is grasped
and something else that grasps it. The whole world of objects is represen-
tation, conditioned by the subject (the self or observer, an object himself);
it has transcendental reality (Proposition 1 and 2). All knowledge takes
the subject-object form, but only in the world of phenomena can subject and

7Or as Henri Poincaré suggested, the aim of science is not things in themselves but the re-
lations between things; outside these relations there is no reality knowable. Schopenhauer’s
‘principle of sufficient reason’ explains connections and combinations of phenomena, not
the phenomena themselves.
8In the words of Ludwig Wittgenstein (Tractatus Logico-Philosophicus): “The sense of the
world must lie outside the world... What we cannot speak about we must remain silent
about... What can be described can happen too, and what is excluded by the laws of
causality cannot be described.”
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object be differentiated (Definition 1.1). According to Schopenhauer, and in
contrast to Kant, the world we perceive is not just indirectly constructed by
conception (Definition 1.2) and concepts (Proposition 2.1) we use to describe
them but already directly by the sensory apparatus. Perception (Definition
1.1) is intellectual in the sense that objects are created by the intellect; it
is not a matter of bare sensations. According to Schopenhauer the world of
perceptible objects is the creation of the faculties of sensibility and under-
standing. Our intellect is presented with sensations or sensory data, upon
which it imposes the concepts of time, space and causality. We could say
that perception (Definition 1.1) provides the letters or words, by which the
mind forms the words and sentences, respectively. Although independent
reality is something which human knowledge can approach only asymptoti-
cally, never to grasp or make direct and immediate contact with, there exists
objective knowledge in the realm of the phenomenal world. We may not de-
scribe the things as they are in themselves, the objects however have empirical
reality. Kant’s transcendental idealism ensures empirical realism, while igno-
rance to the distinction between the things in themselves and the appearances
(transcendental realism) results in scepticism about the knowability of objects
(empirical idealism). A common error is to mistake the gap between the phe-
nomena and noumena with a lack of objective knowledge in the phenomenal
world or to fill the apparent gap between the phenomena and noumena with
some form of subjectivism, relativism, pessimism or religious belief instead of
asking further questions. Following Poppers ‘critical rationalism’, we ought to
combine an empiricists view of reality (empiricists ontology) with a rationalist
view of knowledge (rationalist epistemology).

The scientific method, relying on the concepts of space and time, investi-
gates objects (whether physical or abstract) and establishes relations between
them (Proposition 3). In order to understand or know a natural law (prin-
ciple), i.e., to establish the existence of the modelling relation (Figure 2.1)
between a natural and formal system, two further concepts regularity and re-
peatability play an essential role. Regularity is associated with the existence
of relations while repeatability is the basis of comparisons. In simple terms,
we may require the repetition of an experiment in order to establish regularity
through comparison. To decide upon regularity or chance, we need repeata-
bility; Chance and randomness are defined by irregularities – the absence of
relations. See also Figure 2.2.

The notion of existence causes further problems as one may ask whether
we mean “does not exist in principle” or whether we mean “is not accessible,
observable, not knowable” without refined means of observation or measure-
ment. A chance mechanism induces randomness, a form of uncertainty which
makes certain events or states unpredictable. Whether with refined measure-
ments and tools, by “zooming in”, we could identify such relations, say on
a “microscopic” level, introduces the notion of scale or scaleability. To al-
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Fig. 2.2 Repeatability, comparison, modelling and the uncertainty in fitting a model to data.

low reasoning in the presence of uncertainty, we may accept the notion of
randomness or chance as “undetermined through observation” and therefore
view as if the process is by chance. Regarding Proposition 1.1 the question
of whether an ideal organism, with perfect sensory apparatus, could know the
noumena is irrelevant because it does not exist as an object of the phenom-
ena. Complexity is commonly associated with the inability to discriminate
the fundamental constituents of the system or to describe their interrelations
in a concise way. Complexity is a characteristic feature of the (empirical)
real. Nature’s complexity is literally inexhaustible - as a result of the inherent
limitedness of our knowledge of nature. Complexity also induces uncertainty.
If the formal system is comparatively simple in comparison to the natural sys-
tem it is to model, predictions from the model will become unreliable, we are
forced to attach a measure of confidence (such as a probability) to predictions.
Similarly, observations and cognition of complex systems will necessarily be
vague, fuzzy or ambiguous if we try to identify interrelations and interactions.
Like randomness, we therefore take the concept of complexity as closely re-
lated to that of understanding, to express uncertainty in understanding and
reasoning rather than as a property of the system or data themselves. From
our definitions and propositions above, understanding implies the existence
of an object -subject relation, i.e., we assume the presence of a subject having
the task of studying a natural system (objects, relations), usually by means
of model predictions. Complexity is therefore related to both, the subject
and the objects. The success of modern science is the success of the exper-
imental method. The aim of modelling, whether using formal mathematical
models or for instance the biologists expert knowledge and intuition, is to in-
fer a natural law or fundamental principle which should yield non-ambiguous
predictions. Whenever substantial disagreement is found between theory and
experiment, this attributed either to side-effects of the measurement process
or to incomplete knowledge of the state of the system. In the latter case,
using a reductionist approach, we would seek to refine our measurements, i.e.,
improving accuracy or adding variables (factors) to measure.

The concepts of space, time and causal entailment in science are formalised
by mathematical objects such as sets, order and equivalence relations (cf. Def-
inition 2.1 and 2.2). If we denote an object by u, we write u ∈ U to state that
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Fig. 2.3 Scaling in modelling.

u is an element of the set U . Before objects can be thought, a set in which
these objects can be elements of must exist, not necessarily as an object itself
but as a concept. If a set is empty, what remains is an empty set, denoted
∅. In order to apply a mathematical set, say for example U = {5, 3, 1, 2, 4},
in a real-world context, the set is usually furnished with an ordering relation
because only then we are able to make comparisons in reference to U . Then
U = {1, 2, 3, 4, 5}, as an ordered sequence, may be used to count for example
events. On the other hands the comparison itself can structure the elements
in U into equivalence classes, e.g. {2, 4} and {1, 3, 5}, where elements share
properties, are equivalent in a defined sense and would therefore not be distin-
guishable in measurement or observation. The set, endowed with a relation,
or relations, defines a system. Representing a natural system by means of a
formal system (cf. Definition 3), we encode it using factors f which map an
object u into a point in the observation or factor space X . We here use the
term space to denote the fact that X should be endowed with some (mathe-
matical) structure allowing us to compare and order its elements, for example
to define distances between points in X ; leading to what is called a topological
space.

Since sets of objects and relations play a central role in modelling natural
systems, we should have a closer look at their definition. A set U is a collection
of objects, called the elements of U . If u is an element of U , we write u ∈ U
and denote the set by U = {u}. Suppose two elements, first u1 ∈ U1, followed
by u2 ∈ U2, are chosen; then this choice denoted by the pair (u1, u2), is called
an ordered pair. The set of all such ordered pairs is called the Cartesian
product of U1 and U2,

U1 × U2 =
{
(u1, u2) for which u1 ∈ U1, and u2 ∈ U2

}
.

If furnished with some mathematical structure, a set is also referred to as a
space. Any subset R of U1 ×U2 defines a relation between the elements of U1

and the elements of U2. A relation is therefore a set of ordered pairs, denoted

R = {(u1, u2) ∈ U1 × U2 for which R(u1, u2) holds true} .
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Since by R an element in U1 is associated with one or more elements in U2,
R establishes a multi-valued correspondence :

R : U1 × U2 → {0, 1}
(u1, u2) �→ R(u1, u2) .

An important family of relations are equivalence relations, denoted E(·, ·).
The equality relation, =, is an example. Equivalence relations are required
to be reflexive, E(u, u) holds for all u ∈ U and symmetric E(u, u′) implies
that E(u′, u) holds equally true for all u, u′ ∈ U . The most important prop-
erty of equivalence relations however is transitivity : if E(u1, u2) holds, and
E(u2, u3) holds, then E(u1, u3) holds true as well. If u1 equals or is similar
to u2 and u2 equals or is similar to u3, then u1 also equals or is similar to
u3. Transitivity therefore provides a basic mechanism for reasoning; given
two pieces of information (about u1 and u2, as well as u2 and u3) we can infer
a third relation (between u1 and u3). If E is an equivalence relation on a set
U , and if u′ ∈ U is any element of U , then we can form a subset of U defined

[u′]E =
{
u : E(u′, u) holds

}
.

Where the symbol ‘ : ’ is a short form of “for which” and if E(u′, u) holds
true, we write E(u′, u) = 1 and E(u′, u) = 0 if it doesn’t. The set [u′]E
is called equivalence class. In figures 2.4 and 2.5 the areas described by
factors are equivalence classes, representing sets of objects that have identical
properties or which are not discernable by factor f . The set of equivalence
classes of U under an equivalence relation E is called quotient set of U ,
denoted U/E. Considering any two ways of encoding a system, or alternatively
changing (exciting, pertubating) one system to make two observations, we use
the factors f and g to describe the modes of encoding/observation, the study
of the linkage between the two factors f and g provides a basis for reasoning,
i.e., will allows us to infer or validate entailment relations in the natural system
under consideration. These ideas will be further elaborated in sections 3.5.2
to 3.5.4 when we devise an interface between our more abstract formal model
and experimental data.

The present section described how we experience and learn (understand,
gather knowledge etc). The basic principle of experience and therefore any
scientific investigation is differentiation (cf. Proposition 4.2 and 5). All there
is, is that which the subject brings forth in his or her distinctions. We do not
distinguish what is, but what we distinguish is. We may say that the pro-
cess of discerning therefore also creates or identifies diversity and alternatives;
hence creating a choice, a choice to act upon the knowledge or experience. It
is this point at which human behaviour defines the meaning of tolerance and
morality (Proposition 6.3). Although recognition of diversity for some implies
an appreciation of it, this is unfortunately not the case for a large propor-
tion of the human species who take the principle of experience as the basis
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for separating and discriminating against other species. There are two ways
in which we can act upon diversity, to appreciate it or to use it in a way
which, in the worst case, may lead to racism, capitalism and speciesism9. We
may refer to these two ways to respond as ‘contemplation’ and ‘manipulation’
(Definition 6). Charles Darwin and Albert Einstein are probably the best
examples of how observation and contemplation alone can create knowledge.
In molecular biology, as in engineering, the design of experiments in which we
manipulate, i.e., pertubate or change a system to study its properties is a cen-
tral task (cf. Proposition 5.3 and Definition 5.3). As described in Proposition
6, change through interaction is a ‘natural’ aspect of experience and learn-
ing, which should not, cannot be restricted. The link to human behaviour
and ethics only arises if we consider the use of the knowledge we gained. A
similar perspective on man’s action guided by illusionary perception, which is
shaped by fragmentary thought was given by the physicist David Bohm [6].
His conclusions regarding theories as every-changing forms of insight and not
descriptions of reality as it is, not only resonate with Popper’s philosophy but
also with Schopenhauer. In Bohm’s view both, “relativity theory and quan-
tum theory agree, in that they both imply the need to look on the world as
an undivided whole, in which all parts of the universe, including the observer
and his instruments, merge and unite in one totality”. The physicist Erwin
Schrödinger, who read Schopenhauer, refers to the principle of differentia-
tion by discussing the apparent multiple of egos in (Western) thought ([66],
Mind and Matter). He describes the reason why our sentient, percipient and
thinking ego is met nowhere within our scientific world picture - “because
it is itself that world picture. It is identical with the whole and therefore
cannot be contained in it as a part of it. [The minds] multiplicity is only
apparent, in truth there is only one mind”. In his discussion of Kant’s philos-
ophy, Schrödinger acknowledges Schopenhauer’s work. In contrast to Ludwig
Boltzmann, who disliked Schopenhauer for his science, Schrödinger separates
Kant’s and Schopenhauer’s philosophy from their attempts to find evidence
for it in the sciences of their days. Schopenhauer is often misunderstood and
his influence frequently ignored. A long list of scientists and philosophers ac-
knowledges the philosophical tradition from Parmenides, Plato to Kant and
Schopenhauer. Nietzsche and Freud are the most prominent representative
who considered the ‘human aspects’, while Karl Popper specialised in the
consequences for the sciences. We mentioned Bohm and Schrödinger but also
Albert Einstein “has not - as you sometimes hear - given the lie to Kant’s

9The effect of the principle of experience on society is well demonstrated by the use and
meaning of the words ‘discrimination’ and ‘exploitation’. Discriminating is making a dis-
tinction, to differentiate – a fundamental principle of life as described above, but also
synonymous for a lack of appreciation of diversity. In fact, discrimination is a form of intol-
erance towards other beings. Likewise the word ‘exploitation’ comes from Latin explicare
or ‘explicate’ – to make clear. Common use of the word is however to describe intolerance,
say towards the environment.
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deep thoughts on the idealisation of space and time; he has, on the contrary,
made a large step towards its accomplishment.” ([66], Mind and Matter,
p.149 ). I was in fact Kant who made clear that there is no doubt that all
our knowledge begins with experience but although our knowledge originates
with experience, it dos not all arise out of experience.

This section outlined a system theoretic epistemology in the spirit of Arthur
Schopenhauer. According to Schopenhauer we do what we want but we do
it necessarily. This may lead to a rather pessimistic conclusion on the conse-
quences of the described principles by which we operate, observe and manip-
ulate the world around us. I hope to show that through the understanding,
of the understanding we may have a choice, for the denial of Schopenhauer’s
will. He himself hinted at the possibility of a disposal of wants by grasping
the illusory nature of the phenomenal world, and hence its nothingness, in
order to gain some appreciation of the nature of the noumenal.

With regard to philosophy, we developed a ‘constructivist’ system science
perspective based on Schopenhauer’s philosophy but allowing for an ‘existen-
tialist’ outlook on (human) behaviour. For the system theory, born out of the
philosophical framework, the objective is to find a representation of molecular
systems which is general and quite independent of their physical or chemical
constitution. Such fuzzy relational biology is further motivated by the follow-
ing examples. The first example is to illustrate the role of factors in perception
and conception, the second example introduces Newtonian mechanics as the
root of what has become the paradigm of mechanisms in general. The suc-
cess of these models in some areas of science and technology has also led to
their application in biotechnological processes (Example II). However, a fur-
ther extension of these ideas to molecular systems and gene interactions has
not been successful. Although bioinformaticians use descriptive statistics to
extract pattern from data, formal mathematical models have so far played no
role in the creation of biological knowledge in modern molecular biology. Ex-
ample IV therefore suggests a phenomenological model which follows directly
from the considerations in Section 2.1.

2.3 EXAMPLE I : “LEARNING IS DISCERNING”

In Figure 2.4, on the left, a space is depicted for which the objects are not
discerned. Dividing the space as shown in the diagram on the right hand side,
observing its objects, implies discerning those objects on the left from those
on the right.

Instead of a vertical line we may have observed the objects in a different
way, introducing a different factor (Figure 2.5, on the left). In mathemat-
ical terms, the mind imposes an equivalence relation that holds true for all



EXAMPLE II : DYNAMICAL SYSTEMS 35

Fig. 2.4 In the space depicted on the left, the objects are not discerned while on the right the
observation by means of some factor introduces a change, discerning objects on the left from
those on the right.

elements indistinguishable within an equivalence class. We can then discuss
the difference between the two modes of observation, i.e., the linkage between
factors. The linkage between or comparison of factors therefore provides us
with a means of reasoning and learning about the system (the set of objects
relations defined upon them). We should however note that the explanation
of the observation process itself required discerning. By drawing the box on
the left in Figure 2.4 we had to discern the objects within it from those outside
it.

f1

f2

Fig. 2.5 Left: A change to the system will change the observation through the factor or
equivalently, different means of observing by different factors provide distinct observations.
Both ways, we can reason about the system by means of factors and the equivalence relations
induced. Right: The explanation itself requires us to discern the objects within the box from
those outside, leading to an infinite regress if we are to discuss ‘the part’ and ‘the whole’.

2.4 EXAMPLE II : DYNAMICAL SYSTEMS

The arguments leading to and following Proposition 3 described modelling as a
central part of learning through experience. As humans, so do other organisms
use models (as an abstraction) for explanation or prediction. Organisms in
general are therefore able to change their present behaviour in accordance with
the model’s prediction; the behaviour of biological systems is anticipatory .
As pointed out by Rosen, a formal system using a model based on differential
equations only, is not able to describe such anticipatory or model-predictive
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behaviour. Using systems of differential equations, the rate of change of a
factor at any instant is expressed as a function of the values of other factors
but cannot depend upon future states. Such systems are reactive. Modelling
dynamic systems with differential equations can often be expressed by a set
of first-order equations :

dfj

dt
= φj

(
f1, . . . , fr

)
, j = 1, . . . , r (2.1)

where the rate of change of factor (observable, state-variable) fj depends only
on the present state defined by factors fj . A simple example for (2.1) is a
physical object u with mass m moving along a line under the action of a
constant force denoted by F . Using Newton’s law,

F = m · dv

dt
and v =

dx

dt
,

where x denotes the displacement and v the velocity of the mass. For a
particular system, a formal model can be defined by

dx

dt
= v

dv

dt
= − θ

m
· x

where θ denotes a parameter specific to the natural system under considera-
tion. Here the formal system uses two state-variables (factors) denoted by
x and v, f1

.= x and f2
.= v. The manifold of all possible states of the sys-

tem, referred to as the state-space is illustrated in Figure 2.6. The physical
principle described here is a conditional statement of the form

IF mass=m, force=F , THEN position=x and velocity=v.

Conceptual ‘closure’ of the system amounts to the assumption of constancy
of the externally imposed force F . The model is deterministic in that the
object’s state at time t is fully determined from the initial conditions (of it
position and velocity) and therefore permitting prediction of future states by
integrating the set of differential equations. Newton’s laws of motion, which
state that the acceleration of an object is directly proportional to the force
acting on it and inversely proportional to its mass, imply that the future
behaviour of a system of bodies is determined completely and precisely for
all time in terms of the initial positions and velocities of all the bodies at a
given instant of time, and of the forces acting on the bodies. These forces
may be external forces, which arise outside the system investigated, or they
may be internal forces of interactions between the various bodies that make
up the system in question. Although modelling in the Newtonian realm has
proved successful in a number of engineering applications, the representation
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X(f2)

X(f1)

f1(u, t)

f2(u, t)

Fig. 2.6 The state-space (factor-space) of a simple dynamical system modelled by two
state-variables (factors).

of objects and their behaviour in form of differential equations fails to extend
to a large number of objects.

A solution to equation (2.1) is an explicit expression of each factor fi as a
function of time, fi(·, t). A particular solution, defined by initial conditions,
corresponds to a curve in the state-space, called trajectory , and describes the
evolution of the system over time. The passage of time implies the concepts
“before” and “after”, stated formally by the transitive law t1 < t2 and
t2 < t3 implies t1 < t3 for the binary relation <.

Note that differential equations may be used to model a specific form of
causal entailment in natural systems, the equations by themselves however do
not state that changes are produced by anything, but only that they are either
accompanied or followed by certain other changes. Considering df/dt = φ(t)
or equivalently df = φ(t) · dt, it merely asserts that the change df undergone
during the time interval dt equals φ(t) · dt. The notion of causality is not a
syntactic problem but a semantic one; it has to do with the interpretation
rather than with the formulation of theories or formal systems.

2.5 EXAMPLE III : METABOLIC SYSTEMS

The reactive paradigm of dynamic systems models using differential equations,
described in the previous example, has also been applied to biotechnological
processes and systems of genes interacting. For (autocatalytic) biochemical
reactions of an (aerobic) biological process a substrate S is turned into a
biomass x by consuming oxygen O. The process is characterised by the specific
biomass growth rate, depending on the consumption rates of the substrate and
oxygen:

S + O −→ P .
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The biochemical principle described here takes the form of a conditional state-
ment

IF substrate=S, oxygen=O, THEN biomass=X.

With three state-variables f1-substrate concentration, f2-biomass concentra-
tion and f3-oxygen concentration we can define a set of differential equations
in the form of equation (2.1). These equations are usually non-linear, and
the inability to solve them forces us to make various assumptions and sim-
plifications. For specific biotechnological processes, investigated in metabolic
engineering, these assumptions are often valid but nevertheless limit our abil-
ity to understand more complex systems of gene interactions investigated in
the field of genomics.

Gene interactions can be represented by their effect on the synthesis rate of
gene products. Studying gene interactions or gene-networks, concentrations
of gene products are therefore chosen as the state-variables. The change of
concentrations of proteins over time (the left part of equation 2.1) is governed
by direct regulation of protein synthesis from a given gene by the gene prod-
ucts of other genes (including autoregulation as a special case); transport of
molecules between cell nuclei; and decay of protein concentrations.

The problem is that perturbations to cells have multi-gene, multi-transcript,
multi-protein response but for the theory to remain tractable, one usually has
to assume a single gene’s product having a significant effect on the biochemi-
cal network. The reductionist strategy to analyse more complex systems has
therefore been first to divide the system into simpler parts, analyse them with
the basic dynamical system representation of equation (2.1), then reconstruct
the parts into a whole in order to make predictions. It is however increasingly
appreciated that the divide and conquer approach fails short of making pre-
cise and yet significant or relevant statements about the system’s behaviour
as its complexity increases. A detailed characterisation of the underlying
biochemical or biophysical mechanisms alone does not guarantee a deeper
understanding of the reconstructed system. The dilemma is that although
we recognise the limits of a reductionist approach we concede that there is
no simple or intuitive alternative available. We recognise the fragmentary
approach to reality in our mathematical model of a genomic analysis, using
equivalence and fuzzy relations as the basis for comparisons and reasoning,
but then aim to transcend the object-level by considering mappings between
sets rather than the objects themselves. This transition is, in mathematics,
at the heart of category theory.
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2.6 EXAMPLE IV : GENETIC SYSTEMS

Genomics is the field of biological research taking us from the DNA sequence
of a gene to the structure of the product for which it codes (usually a protein)
to the activity of that protein and its function within a cell, the tissue and,
ultimatively, the organism. The two central questions are:

� “What do genes do?”

� “How do genes interact?”

As defined previously, system theory is a family of methodologies for the
analysis of organisation and behaviour through mathematical modelling. A
typical system theoretic approach to the two questions is to

� Cluster genes with known biological function according to similarity in
pattern of gene expression10.

� Classify genes with unknown function according to their similarity to
the prototypes obtained from the clustering.

� Identify the parameters of a gene-network (dynamic) model using the
cluster prototypes obtained previously.

The challenges for a system theoretic approach are:

� Very large number of variables (thousands of genes).
� Very small number of measurements (say between 8 and 18)

− repeated experiments usually not available.
− data often unreliable, missing, noisy or imprecise.

� Data are collected from a dynamic process under “closed-loop control”.
� The processes usually are non-linear and time-variant.
� Information fusion of transcriptome and proteome data is non-trivial.

The first two items lead to the so called dimensionality problem. To this date,
the majority of bioinformatics techniques have been concerned with the as-
sembly, storage, and retrieval of biological information, with data analyses
concentrated on sequence comparison and structure prediction. The move
to functional genomics demands that both sequence and experimental data
are analysed in ways that permit the generation of novel perspectives on
gene and/or protein action and interaction. An approach to this problem is
the construction of proper formal mathematical, parametric models that are

10Gene expression is the process by which a gene’s coded information is converted into
the structures present and operating in the cell. Expressed genes include those that are
transcribed into mRNA and then translated into protein and those that are transcribed into
RNA but not translated into protein (e.g., transfer and ribosomal RNAs).
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identified from the data. As the focus in genomics is shifting from molecular
characterisation to understanding functional activity, system theory is going
to play an increasingly important role in providing biologists with better tools
to extract information from data, as well as supporting new ways of thinking
to characterise molecular systems in a general way, and quite independently of
their physical and chemical constitution. The previous example on molecular
modelling suggested that for more complex systems with a large number of
objects (say thousands of genes), we require an approach that can integrate
knowledge about the objects without physical or chemical interactions be-
tween individual genes being described in detail. What follows is an example
for the approach we are going to develop in detail throughout the remaining
part of this text.

Microarray technology provides us with gene expression measurements on
the transciptome level. A typical experiment can provide measurements of
the expression level of thousands of genes over a number of experimental con-
ditions or over time. Considering a time-series of n samples, we can represent
the observation of an individual signal (gene u ∈ U) as a point in the n-
dimensional observation-space X(f). Points that form a cluster have similar
expression profiles and are subsequently postulated to have related biological
function.

time

expression level

�

�

�

�

�

�

�

�

observation-space

f(u)

Fig. 2.7 From time-series to observation or factor-space representation.

Here the factor f denotes measurements on the transcriptome level. For
a more complete picture of gene expression additional factors, for instance
describing measurements on the proteome level, are introduced. As shown in
Section 3.1, the factor-space approach extends naturally to several factors. A
phenomena investigated refers to a specific biological concept C which we aim
to characterise with the factors defined in Definition 2.3 (cf. Proposition 2.1).
The extension of concept C in U is then the fuzzy mapping Ã :

Ã : U → [0, 1]

u �→ Ã(u) ,
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where Ã(u) is the degree of relevance of u with respect to C or Ã. When
Ã(u) = 1, u definitely accords with C, and for Ã(u) = 0, u does not belong to
Ã (a fuzzy attribute of C, i.e.,the function/expression of a gene in a specific
context).

Clustering the points in the observation space X(f), using partitional tech-
niques such as the fuzzy-c-means algorithm [78], we are grouping genes (repre-
sented by measurements, i.e., points f(u) in X) in order to infer the mapping
Ã in U . Note that what we observe is a fuzzy set B̃ on X(f) (partition of
X) and it is necessary to establish a relation between the ‘model’ Ã on U and
the experimental evidence B̃ in X(f). The situation is similar to stochas-
tic modelling and using descriptive statistics to approximate or estimate the
model (parameters) from data. The fuzzy relational framework is intended to
be a theoretical construct to complement experimental biology. The biological
principle described is a conditional statement of the form

IF f(u) is B̃, THEN C is Ã .

Let us have a closer look at the formal system described here. In Definition
2.3, a factor is defined as a mapping from a set of abstract objects U ∈ U to
space X . Here u denotes a gene, defined as a conceptual entity which exists
apart from any specific encoding; it is that part of the natural system we wish
to encode. Generalising the notion of a state in Example II, u is an abstract
state of the natural system under consideration. Factor f evaluates the genes
u in an experiment, leading to a numerical representation x ∈ X(f). We note
that any specific act of observation, experiment, is therefore at the same time
an act of abstraction; theory and experiment are complementary and should
not, cannot be separated.

In our scenario, illustrated in Figure 2.7, factor f : U → X(f) is a mapping
from the set U of abstract states into an element of X(f) which here is a
point in the plane R × R of real numbers. Given any mapping between sets,
the mapping f induces an equivalence relation Ef on its domain, by saying
that Ef (u1, u2) holds if and only if f(u2) = f(u2). Therefore to say that the
two genes u1 and u2 are related means that both produce the same ‘effect’
(observation) in our experiment.

If we form the quotient set U/Ef , we find that it is in one-one corre-
spondence with the set of all possible values f can assume. This set, called
spectrum, is denoted f(U). If x is a point in f(U) ⊂ X(f) we associate with x
the entire equivalence class f−1(x). This means in effect that we can discuss
the properties of our model (determined by an appropriate choice of factors
f), in terms of the equivalence classes on U . As an important consequence, we
have thus a means of comparing models or validating them with data. This
important advance to the current practise of bioinformatics as we currently
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lack conceptual frameworks that allow a formal analysis to which variables
should be measured and why.

Applying clustering algorithms to the points in the observation space, we
identify an (fuzzy) equivalence class Ã in U as a cluster of points in X(f).
Genes in U are grouped according to their similarity in expression profiles
and hence allow us to predict their biological function. If we are to decide
upon the similarity of two gene expression profiles by using the inequality
‖f(u1)−f(u2)‖ ≤ ε in the observation space, the inequality describes a subset
(relation) Rε ⊂ U × U ,

Rε = {(u1, u2) ∈ U × U : ‖f(u1) − f(u2)‖ ≤ ε} .

This relation is not an equivalence relation, i.e., it is not a transitive relation.
We can define a mapping Ẽε such that Ẽε(u1, u2) is greater than 1− ε if and
only if u1 and u2 are indistinguishable with respect to the tolerance ε :

(u1, u2) ∈ Rε if and only if Ẽε(u1, u2) ≥ 1 − ε ,

where

Ẽε : U × U → [0, 1]
(u1, u2) �→ 1 − inf{ε ∈ [0, 1] : (u1, u2) ∈ Rε}

with ε ∈ [0, 1] and if there is no ε for which the relation holds, we define
inf ∅ .= 1. Ẽε is then a fuzzy equivalence relation , also referred to as
a similarity relation. The value Ẽε(u1, u2) = 1 − min{|f(u1) − f(u2)|, 1}
describes the degree to which two objects u1 and u2 have similar observable
consequences and transitivity of this relation implies that if u1 and u2 are
similar and u2 and u3 are similar in their values in X , then u1 is similar to
u3. Fuzzy equivalence relations will be further discussed in Section 3.5.

Fuzzy clustering algorithms return a matrix that specifies the degrees of
membership of any u in the clusters (equivalence classes). We have seen,
that the comparison of two real numbers with respect to an error bound
ε induces fuzzy equivalence relations (a fuzzy set) and therefore suggests a
fuzzy relational framework. There are however other reasons in support of
a fuzzy mathematical approach. In many cases the evidence we have that a
gene belongs to a cluster will be a matter of degree and w.r.t functional classes
genes may belong to more than one class during an experiment.

By writing f(u), the impression is that f is fixed and u is variable. However,
the role of the argument and the mapping are formally interchangeable; we can
keep u fixed and change the experimental setup. In which case, u becomes
a mapping, whose arguments are themselves mappings: ū(f) = f(u). The
question “why f(u)?” can now be answered by “because u” or “because ū”
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(cf. Proposition 4, Definition 4.2). Using fuzzy relations, the obtained formal
system allows us to model causal entailment in natural systems (here gene
regulatory networks).

DATA, the particular
[descriptive statistics]

MODEL, the general
[probability theory]

PREDICTION, decision
[working methdology]

LAW, principle
[conceptual framework]

induction

deduction

Fig. 2.8 The modelling process of a scientific investigation illustrating the difference of a
conceptual framework and a working methodology. The square brackets refer to the example
in the text.

To this point, we have discussed ‘practical problems’ but only ‘in theory’.
The aim for the rest of the text is to outline a conceptual framework for the
study of gene-expression, gene-interactions and gene function. The relation-
ship between such a conceptual framework and a working methodology can be
explained by looking at the two complementary fields of statistics and prob-
ability theory. Using descriptive statistics, sample means, sample variances,
histograms and relative frequencies, we extract information from data. On the
other hand, a quantitative model based on random variables and probabilities,
represents general relationships, going beyond the specific data set we may
have, and is used to represent relationships which eventually describe natural
laws or principles within a theory that captures the context of our scientific
enquiry. In this respect statistics and probability theory, a sample mean and
a mean, a unrelated. However, to justify a theory, model or principle, it
should be possible to identify the model (its parameters) from experimental
data. Only if both modelling pathways, the inductive step (system parameter
identification) and the deductive step (model based predictions) are working
to our satisfaction, the conceptual framework has explanatory value. A large
part of statistics and probability theory is therefore devoted to the estima-
tion and approximation of probabilistic concepts using statistics. Knowledge
about the bias, variability and convergence of estimates makes us feel more
confident in our conclusions. See Figure 2.8 for an illustration.

So why did we initially consider fundamental philosophical questions, when
we are interested in genomics, a particular field of the biological sciences?
It seems that many questions arising in philosophy have an analog in the
sciences. The discussion of ‘things as they are in themselves’ (Kants world of
phenomena) and the world of experience, of observable phenomena, is reflected
in the modelling relation, i.e., in the process by which we model a natural
system using formal mathematical objects. In the philosophy of science, the
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between things that are similar

analysis

search for regularities
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in space and time

pattern

describing differences

describing generic
or ‘natural’ laws
e.g causation

structure
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- perception

COMPARING

the ontological problem
- conception

noumena
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UNCERTAINTY transitivity REASONING
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are differentorder
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metric
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complement
intersection
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entailment / composition
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LOGIC inference

SCIENCE
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Fig. 2.9 “The fuzzy logic of scientific discovery”. (From [77]).

problem of induction has been of particular importance. There seems now
general consensus that the problem has no positive solution and that there is
no single theory by whose means particular explanations could be conclusively
shown to be true. In particular Karl Popper, tried to ensure that science,
regardless of this apparent uncertainty, is put on a rational footing. Theories
and hence models are worthwhile in that their comparison in applications,
the verification with experimental data can generate new knowledge with an
objective epistemic status. The philosophical problem of induction is in fact
demonstrated by the problem of system identification, i.e., the estimation of
model parameters from a finite set of data (the inductive aspect) and the use
of the obtained model in forecasting (the deductive step). The philosophical
position that scientific theories, extended beyond experimental data, cannot
be verified in the sense of being logically entailed by them, suggests that we
have have to pay particular attention to the representation of uncertainty in
data, in models and in modelling. A philosophical investigation therefore gives
us a bottom-up conceptual framework, providing reassurance, confidence and
guidance in conduction scientific experiments and developing formal theories,
models. Poppers view that unrefuted but corroborated hypotheses enjoy some
special epistemic advantage, independent of anybody’s attitude towards them,
is confirmed by the common experience that we learn most from those models
that failed.
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Using the concepts discussed in the second example, in molecular biology,
we may be able to model the interactions and relationships between say five
genes with accuracy but we find it impossible to infer from this submodel
the behaviour and function of the larger system in which it is embedded. In
linguistics, we may be able to identify individual words of a poem, their ori-
gin, use and interpretation, but we find it rather difficult to understand the
meaning of a the whole poem from knowledge of its parts. In mathematics,
we can follow and check individual steps of a proof, establishing validity and
truth of its parts, but do not necessarily understand the proof as a whole.
These examples illustrate the curse of reductionism . To proclaim holism
as an alternative seems natural but unfortunately there seem hardly any for-
mal holistic approaches that would overcome the problems of reductionism.
Meanwhile integrative approaches, combining techniques and integrating the
context in which the reasoning takes place seems a reasonable pragmatic step
forward. Based on the framework outlined in this section, in subsequent sec-
tions we shall not attempt to model a biological phenomena ‘as it is’ but rather
‘as we observe it’. Instead of modelling the physical structure or flow of en-
ergy using for example differential equations or thermodynamics, we strive to
capture the organisation and information of observable biological phenomena.
Using the words of Klir [33], it is increasingly recognised that studying the
ways in which things can be, or can become, organised is equally meaningful
and may, under some circumstances, be even more significant than studying
the things themselves. This is of course the aim of system science, which I
expect to play an increasingly important role in the interdisciplinary research
problems in the life sciences.





3
A Factor Space Approach

to Genomics

3.1 TAKING A SNAPSHOT

The relevance, applicability and importance of fuzzy set theory and fuzzy logic
is generally linked to successful applications in the domain of engineering,
especially where subjective notions have to be modelled and matched with
abstract data structures. Examples of this include applications in the area
of nonlinear control, expert systems and pattern recognition. The purpose of
this section is to outline the conceptual foundations of a framework, based
on the mathematics of fuzzy sets, that can be successfully employed to model
some of the most complex phenomena in molecular biology.

Microarray Analysis Sequence Analysis Biochemical Modell

Pattern Recognition Statistics Control Theory

Fuzzy Relational Modelling

Fig. 3.1 The relationship of the fuzzy relational factor-space approach to biochemistry,
bioinformatics and mathematical biology.

Our formal model describes a genome as a collection of genes. This set is
equipped with a mathematical structure for logical inference. To allow rea-

47
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soning in the presence of uncertainty, we need to formalise biological concepts
and facts associated with these. Relationships between concepts and factors
are expressed in terms of rules. Though the proposed mathematical language
is ‘in principle’ complete – as accurate as biological knowledge is, a working
methodology realistically is confined to specific aspects of a natural system.
This uncertainty principle between the generality and predictive power of a
model was summarised by Lotfi Zadeh1 :

“As the complexity of a system increases, our ability to make pre-

cise and yet significant statements about its behaviour diminishes until

a threshold is reached beyond which precision and significance (or rel-

evance) become almost exclusive characteristics.”

3.1.1 Conceptual Framework vs Working Methodology

The dualism of probability theory and statistics is an useful analogy to illus-
trate the difference between a conceptual framework and a working method-
ology. The motivation for fuzzy relational biology is to create a conceptual
framework in which problems of genome analysis can be formulated in the
way many problems in science and engineering are translated into probability
theory, i.e. formulated by means of random variables. Once this ‘translation’
has taken place, and is accepted as a reasonable model for the experimental
context, we can reason about data and make predictions about events that
have not yet been validated experimentally.

A key idea in probability theory is that of a random variable; which is
neither random nor variable but simply a mapping from the sample space
of elementary outcomes (providing evidence) to the event space in which we
form our hypotheses. A random variable describes an observable factor of
the experiment and is as such the ‘real-world interface’, relating experimental
outcomes with theoretical events. However, probability theory itself does not
consider experimental data. If we are to analyse measured or sampled data,
we require statistics as a means to validate probabilistic concepts. Take for
example the concept of ‘central tendency’ or ‘mean value’ which is defined
abstractly using the expectation operator. In an experiment we use sample
statistics to estimate or approximate these concepts in order to validate the
formal model using random variables.

Although engineers and scientists frequently ignore or overlook the mod-
elling relation between probability theory as a conceptual framework and the
process which generates their measurements, consistent reasoning with exper-

1Lotfi Zadeh is widely regarded as the ‘father’ of fuzzy set theory. Although philosophers
and mathematicians have long debated the inadequacy of ‘crisp’ mathematics in solving
many real-world problems, it was Zadeh who initiated an avalanche of research into fuzzy
mathematics, fuzzy logic, and possibility theory.
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imental data using statistics as a working methodology, requires a conceptual
framework that complements it. One advantage to have a conceptual frame-
work in conjunction with a working methodology is the possibility to analyse
properties of our model. It puts us in a position to quantify model accuracy
and the uncertainty of predictions. In other words, a conceptual framework
allows us be precise about uncertainty in our investigation.

3.1.2 Knowledge Representation: Conceptualisation

Let the description frame of a genome be denoted by (U, C, F ), where C ∈ C
denotes a concept and f ∈ F describes a characterisation in terms of ob-
servable objects u ∈ U . We hereafter have two alternative cases 1) for the
study of a single gene, it is represented as a concept C ∈ C while factors
f ∈ F describe different aspects of the expression or function of the gene;
2) studying large numbers of gene, for instance using microarray data, the
context is denoted by C while the genes are the objects u ∈ U . For instance
in yeast, respiration or fermentation could be the context in which all genes
are studied. The result could then be a grouping (clustering) of the genes
into these functional classes. We may therefore consider a gene as both an
object or concept. Whichever situation is chosen it does not matter for the
formal model. Since we wish to stress the fact that a gene is not a physical
structure but a concept, we may call it a concept even if it is represented
as an object in our formal model. We should also keep in mind that factors
themselves are general in the sense that a factor should cover for a wide range
of cases. For example, a factor may represent distances, positions, lengths, a
gene’s annotation (e.g its membership in a functional class), expression levels
(e.g light intensity) or peptide masses. The form of the factors however has
an effect on the formal model as we shall discuss further below.

The three ingredients (U, C, F ) compose our formal model which is then
built from data in the following way. An object u is either measured or
verbally characterised with respect to a certain factor f . For example, u may
be an ORF and f(u), the state (e.g expression level) is a value in X(f). X(f)
is referred to as the state space of factor f . The relevance of a symptom for a
particular phenomenon is captured by a fuzzy set B̃ in X(f). The relevance
of object u ∈ U to the context or concept C ∈ C is expressed by the fuzzy
set Ã in U . In general, we do not know Ã : U → [0, 1] a priori. The purpose
of a model is to establish knowledge about Ã, which describes a particular
phenomenon, by means of observations f(u) establishing symptom B̃. The
two-way relationship between the formalisation of a genome and the modelling
of a particular aspect of it is summarised in Figure 3.2.

Genes are functional entities which cannot easily be defined physically.
That is, genes are not simply a structural entity or DNA subsequence of
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Description Frame (U, C, F )

‘Phenomenon’

Ext. of C in U : Ã ∈ F(U):

Ã : U → [0, 1].

Concept C ∈ C

‘Observation’

Repr. Ext. of C in X(f): B̃ ∈ F(X(f)
)
:

B̃ : X(f) → [0, 1].

Factor f ∈ F

‘Measurement’
f(u) ∈ X(f).

Object u ∈ U

Fig. 3.2 The formal representation of a genome in terms of genes, factors and objects.
The path following the framed boxes describes the key elements of the proposed concep-
tual framework, whereas the associated ‘backward’ path describes the working methodology
representing gene expression and gene function from data.

the genome. We therefore view a gene as a concept characterised by various
factors. Such a representation should be more integrated than the direct
membership approach (which associates with elements in the genome a degree
of relevance to the gene). For example, modelling gene expression, an example
for two factors are measurements on the transcriptome level (mRNA synthesis)
using for example microarrays and secondly measurements on the proteome
level (cf. table 1.1). As for now, mass spectroscopy is much more accurate than
gel analysis but is also far more laborious. It will nevertheless be important
to study gene-expression on both levels as not all RNA is translated into
protein. The factor-space model can provide a formal mathematical model of
the interactions or relationships between those measurements in the presence
of uncertainty.

Current biological genome analysis, by producing maps2, establishes ex-
perimentally an “element–membership” description of the genome. This in-
formation is then in turn used to derive knowledge which establishes facts and
their relationships. Instead of producing a sequence model and fitting exper-
imental data to locations in the genome, we here propose a formalisation of
the genome by its genes and their biological function or role. Although in

2In genome analysis, a map is a chart showing positions of genetic and/or physical markers
in a genome.
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this framework sequence information is not central, it is nevertheless vital. In
the mathematical model developed in subsequent sections, sequence informa-
tion can be used in studying the structure of genomes, for example, in the
prediction of gene locations based on synteny3.

In our model, knowledge is represented in terms of concepts, objects, and
rules. In their mathematical representation the main tools are factor spaces
and fuzzy maps. Factors are used to capture the characteristics of a concept,
and fuzzy sets are used to describe the relationship (relevance, association,
membership,...) of objects to a concept. The description of the essence and
attributes of a concept by factors is known as intension while the aggregate
of objects characterising a concept is known as extension. The extension of
concept C is then an ordinary or fuzzy subset Ã of the objects universe U .
What follows is an outline of the mathematical equipment we will use to take
a picture...

The formalisation of a concept (conceptualisation of a gene) is based two
aspects: intension and extension [73]. An extension of a concept C is an
ordinary or fuzzy subset Ã of the objects universe U . These atomic data
objects may for example be (sub)sequences, ORFs, and so forth4. Intension
is defined by the collection of factors and their attributes characterising the
concept. The classical definition of a set requires any genome subsequence
to be either associated with the gene or not. In other words, given any open
reading frame (ORF), for classical set theory we assign truth values 0 or 1 to
define a crisp set. This application of the law of the excluded middle defines
crisp sets on which we then build a bivalent logic. In many real world problems
it is rather difficult to exactly decide whether an element has the property in
question or not. In these cases where either the problem under consideration
is a matter of degree or in which these decisions are subject to uncertainty,
we use fuzzy sets and possibility distributions5.

3.1.3 The Modelling Relation: Formalisation

As we study processes in a wide range of conditions, we find that there are
relationships that remain effectively constant. These necessary relationships
between objects, events, and conditions at a given time and those at later

3Synteny refers to a pair of genomes in which at least some of the genes are located at
similar map positions.
4We use here the term object instead of component. An object can be a member of a set of
independent abstract objects. Abstract objects may for example be answers to a question
or concepts. Components are understood as interconnected objects or concepts. The factor
f : U → X(f) as a mapping from U to X(f) can also be understood as a component.
5A possibility distribution is in its formal definition identical to a fuzzy set. The semantics
however differ. See [77] for more details.
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time are what we call causal entailment or causal laws. We however note that
the assumption of causality is usually accompanied by some form of abstrac-
tion, i.e., it may imply a simplification by conceptually taking the process
considered out of its context, to ignore details and thereby achieving general-
ity. As we almost never are able to include all influential factors in our model,
principles must always be complemented by specifying the conditions and con-
text in which we have found that they are applicable. The incompleteness of
our model, the context induces uncertainty which we have to consider when
drawing conclusions. Our concepts concerning causal relationships will then
be true only relative to a certain approximation and to certain conditions.
In this section we introduce the tools employed to describe the modelling re-
lation between natural systems and a formal model. In table 3.1 biological
concepts, their formalisation and considerations of the modelling relation are
summarised.

Table 3.1 Summary of the formalisation of the ‘modelling relation’ for genome analysis.

Problem Formalisation

1. Phenomenon: Gene function, gene expression concepts
2. Characterisation of 1) by means of observable facts factors
3. Structural components, or concepts objects
4. The general relationship between 1) and 2) representation exten-

sion
5. For a known, particular expression, relationship be-

tween 1) and 2)
feedback extension

6. Representation of 1) by means of independent factors G-envelope
7. Precision of feedback extension and 6) measure of coincidence

Definition 1 (Fuzzy Sets). Let all objects of a concept under discussion
form a universe U . A fuzzy set Ã on the given universe U is defined by a
mapping which associates with any object u ∈ U a real number µÃ(u) ∈ [0, 1]
in the unit interval, where µÃ(u) is called the degree of membership of u in
Ã :

Ã : U → [0, 1]
u �→ µÃ(u) .

The set of all fuzzy sets defined on U is denoted by F(U). For the sake of
simplicity, we make no distinction between fuzzy set Ã and its membership
function µÃ and write Ã(u) .= µÃ(u). The definitions of this subsection are
identical to those in [37] and [73].
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Definition 2 (Factors). A factor f , is a common description of its states
and its characteristics. An object u is relevant to a factor f if there exists a
state f(u) of f corresponding to U . Let U be a set of objects and V be a set
of factors. The pair (U, V ) is assumed to satisfy the condition that for any
u ∈ U , V contains all factors relevant to u. Hence (U, V ) defines a (crisp)
relation R between U and V , where R(u, f) = 1 if u is relevant to f . We
define

D(f) = {u ∈ U : R(u, f) = 1} (3.1)
V (u) = {f ∈ V : R(u, f) = 1} . (3.2)

A factor f ∈ V is defined as the mapping

f : D(f) → X(f)
u �→ f(u)

where X(f) = {f(u)}, is called the state space of f and u ∈ U .

Remark. Definition 2 may be generalised to allow for uncertainty in the knowl-
edge about the relevance of an object u to a factor f . R is then defined as a
fuzzy relation such that R̃(u, f) ∈ [0, 1].

Remark. We make a distinction between various types of factors. A factor
may be measurable (the genes position in basepairs, width, ...) or ordinal (e.g
degrees expressed in the unit interval [0, 1]). For nominal (categorical, quali-
tative) factors we can evaluate the equality for any two values f(u) = f(u′) as
being either true or false. For example, a gene may be considered “functional”
or “nonfunctional”6. Another example is the functional class (annotation) of
a gene represented by a factor. On the other hand, for cardinal (non-nominal,
quantitative) factors such as ratios or real-valued measurements, the compar-
ison of two values may not be straightforward. The type of factor considered
has implications on the mathematics as will be discussed further in Sections
3.5.1 and 3.5.4.

Without loss of generality, we extend the domain of f to the whole set U
with the understanding that U is chosen to coincide with D(f). We consider
factors of a gene to be observable properties, either direct measurements of
properties of sequence data or derived knowledge. A state is a sign or symbol
that represents a special instance of a factor. When a state or a characteristic
of a factor is used as the condition of producing certain results or effects, we

6A nonfunctional copy of a gene is also called a pseudogene.
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say that the results of effects are attributable to the factor, not the state or
the characteristic.

In general, an object is either a concept such as a gene or a structural ele-
ment such as a segment of the genome, measures or characterises a sequence
or is the measurement of some event in an organism. The latter corresponds
then to the definition of an observable [61] in Robert Rosen’s modelling re-
lation7 between a natural system and a formal system (illustrated in Figure
2.1). The affinity to Rosen’s description of the modelling relation suggests that
a factor-space approach to genome analysis may not only provide a “hands
on” approach to data analysis but also a “heads on” conceptual framework to
explain biological phenomena.

By accepting the existence of the modelling relation, factors become the
means by which we encode and observe properties of the natural system under
consideration. Using factors and representing them as mappings between the
two spaces U and X(f), we take the measurement and modelling process itself
into account. As we shall see further below, this will allow us to be precise
about model uncertainty, something other models avoid by hiding undesirable
properties in assumptions about the natural system.

A factor f is equal to a factor g, if they are equal mappings, that is,
D(f) = D(g), X(f) = X(g), and f(u) = g(u) for any u ∈ D(f). It is
possible for states of a factor g to be a subset of the states of another factor
f . A factor g is called a proper subfactor of f , denoted f > g, if there exists
a (non-empty) set Y such that X(f) = X(g) × Y . A factor g is called a
subfactor of f , denoted by f ≥ g, if f > g or f = g.

Definition 3 (Factor Spaces). The family of state spaces {X(f)}f∈F is
called a factor space on U if F , the set of factors, is a Boolean algebra.
Therefore, for any f, g ∈ F ,

X(f ∨ g) = X(f − g) × X(f ∧ g) × X(g − f) .

The concept of a state space, given here, is akin to the same concept in con-
trol theory, the ‘parameter space’ in pattern recognition or the ‘phase space’
in physics (where factors are called observables [61]). The main difference is

7Robert Rosen’s modeling relation, originally conceived as a conceptual device for clarify-
ing the relationship between natural systems and structures created for understanding such
systems, is presented as an epistemological method that not only subsumes the scientific
method but extends to all of human intellectual activity where the acquisition and explo-
ration of knowledge is of concern. As Rosen himself emphasised, the scientific method is a
particular instance of a modeling relation.
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that a factor space is more general than the usual assumption of an Euclidean
or topological space. With the definition of a Boolean algebra, imposing a
structure with intersection ∧, disjunction ∨ and complement c, on F , we have
a basis for logical reasoning with factors (and hopefully a tool for predicting
biological properties and function).

Definition 4 (Conjunction, Disjunction of Factors). A factor h is called
the conjunction of factors f and g, denoted by

h = f ∧ g

if h is the greatest common subfactor of f and g. In other words, h = f ∧ g,
if and only if (iff) X(h) is a common subspace of X(f) and X(g). Similar, a
factor h is called the disjunction of factors f and g, denoted by

h = f ∨ g

iff X(h) contains subspaces of X(f) and X(g), and it is the smallest of such
spaces. Both definitions apply to families of factors g =

∧
i∈I fi and g =∨

i∈I fi respectively.

Definition 5 (Independent-, Difference-, and Atomic Factors). Any
two factors are called independent if their conjunction results in a zero factor,
denoted 0, whose only state is the empty state. A factor h is called the
difference factor between factors f and g, denoted by

h = f − g , if (f ∧ g) ∨ h = f and h ∧ g = 0 .

A factor f is called an atomic factor if f does not have proper subfactors
except the zero factor. The factors in the set of all atomic factor are indepen-
dent.

A zero factor is equivalent to the empty set in set theory. If a family of
factors {fj}j=1,..,r is independent, then

X

 ∨
j=1,..,r

fj

 =
r∏

j=1

X(fj) . (3.3)

Let V be a family of factors and let F be a set of factors of V such that F
is sufficient, i.e., satisfying

∀u, u′ ∈ U, ∃f ∈ F : f(u) = f(u′) . (3.4)

To this point, we therefore assume that we have a sufficient number of factors
describing a gene such that for a given object, there exists at least one factor
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f in F , such that their state values differ in f . In Section 3.5 we will discuss
the (possibly more realistic) situation in which a factor f : U → X(f) is a
surjection8. That is, in an experimental context we may find that there are
objects for which f(u) = f(u′), i.e., some objects are indistinguishable for f .

The triple (U, C, F ) or equivalently
(
U, C, {X(f)}f∈F

)
is called a description

frame of C and is our formal representation of an experiment or investigation.
Let (U, C, F ) be a description frame and C ∈ C. The extension of C in U is a
fuzzy set Ã ∈ F(U) on U , where Ã is a mapping :

Ã : U → [0, 1] (3.5)

u �→ Ã(u)

where Ã(u) is the degree of relevance of u with respect to C or Ã. When
Ã(u) = 1, u definitely accords with C, and for Ã(u) = 0, u does not belong
to Ã (a fuzzy attribute of C, i.e., the function/expression of a gene or a
metabolic pathway). The fuzzy restriction Ã is therefore used to describe
the phenomenon under consideration. Obviously, the crisp case, in which
knowledge of the association of an object u with concept C is certain, Ã(u) =
{0, 1}, is a degenerate case of the given definition. The fuzzy mapping Ã
defined on U is the ultimate aim of model as it describes the relationship of
subsequences (ORFs’) to a gene expression pathway. In general, we do not
know Ã a priori but must establish knowledge about Ã via observable factors
f where f(u) ∈ X(f). For a given description frame (U, C, F ), every state
space X(f) is called a representation universe and hence a factor space is just
a family of representation universes of C.

Consider a gene involved in a specific gene expression pathway from initia-
tion of transcription to synthesis of functioning protein. This expression path-
way is the means by which the genome specifies the content of the proteome9.
In no organism is this biochemical signature entirely constant. Changes in
genome activity (either transient or permanent) lead to cellular differentia-
tion, the adoption by the cell of a specialised physiological role. In this re-
spect, genes may either be active or inactive in transient regulation. Genome
activity in a cell is activated by signal transmission – for example hormons
stimulating the cell. There are a number of cases in which the signalling
molecule does not interact directly with the transcription factor, but instead
influences genome activity in an indirect manner. An example is provided by
the catabolic repression system of bacteria (see [8], pg. 269). In short, intra-

8A surjection is a mapping that is onto: more than one object map into the same f(u).
9The proteome is the complete protein content of a cell.
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cellular and extracellular glucose levels control whether or not operons10 are
switched on. The glucose levels may then be “high” or “low” depending on
the involvement of specific genes or polypeptides. Here f is a factor involved
in the signal transduction pathway and u are polypeptides. The aggregate
of factors describes the concept C, “catabolite repression”, and the “glucose
level”, described by the extension of C in U , is a fuzzy set Ã (e.g. “low”).

In other cases, gene segments (such as V28 and V29-1 coding for a part
of the β T-cell receptor protein) must be linked to other gene segments from
elsewhere in the locus before being expressed. If we consider the objects u to
be gene segments and factors f to be specific processes in a pathway, the fuzzy
set Ã on U models a physiological effect while the conjunction of segments
is modelled using Definition 4 for the conjunction of factors. In analogy to
approaches using the covariation of the nucleotide content of positions in RNA
to predict which positions interact with each other, one can use the covariation
in the occurrence of proteins to create a model of which proteins depend for
their function on each other. Such information could be used to reconstruct
metabolic pathways or signalling pathways [26].

Remark. The majority of cellular functions are a result of a combination
of genes. It becomes therefore important to study the interrelationship of
genes. At present our attention is directed at the expression of pathways
for individual genes in terms of factors. The reason is that groups of genes,
with the expression of one gene linked to that of another, should be more
easily studied once the factor space model for individual genes is established.
This is due to the fact that individual genes and their expression/function are
described by fuzzy sets. Groups of genes can then be dealt with conventional
fuzzy mathematics. For example, reasoning about a compound of genes (such
as an operon in bacteria), employs triangular norms for the conjunction of
fuzzy sets. Rule-based reasoning with extensions Ã of C in U is done by
means approximate reasoning, employing fuzzy logic or fuzzy relations. We
shall address approximate reasoning in Section 3.2.2. If on the other hand a
large number of genes are assayed in a microarray experiment, the context
(e.g diauxic shift in yeast) describes the concept while the set of all genes
(respectively the ORFs) define the objects u ∈ U .

Knowledge about Ã is gathered via measurements or observations; f(u),
taking values in the representation universe X(f). Ã is the phenomenon
induced by data objects and f(Ã) are its observable symptoms. Formally,
f(Ã) is referred to as the extension of C in X(f). The mapping Ã : U → [0, 1]

10An operon is a group of genes involved in a single biochemical pathway and expressed in
conjunction with one another.
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is to capture the essence of a gene’s function (or its expression pattern). The
extension of C in X(f), f(Ã) ∈ F(X(f)

)
, describing the expression of gene

C, is defined (using Zadeh’s extension principle11) as follows :

Definition 6 (Representation Extension of C in X(f)). For a given
description frame (U, C, F ), let C ∈ C whose extension is Ã ∈ F(U). For any
f ∈ F , the extension of f to deal with fuzzy arguments is defined by

f(Ã) : X(f) → [0, 1] (3.6)

x �→ f(Ã)(x) =
∨

f(u)=x

Ã(u) .

Then f(Ã) is a fuzzy subset of the representation universe X(f), f(Ã) ∈
F(X(f)

)
, where f(Ã) is called the representation extension of C in the rep-

resentation universe X(f).

X(f)

U

D(f)

0

1
extension of C in U : Ã ∈ F(U)

re
p.

of
C

in
X
(f

):
f(

Ã
)
∈ F
( X

(f
)
)

Ã(u)

f(
Ã
)(
x)

u

f(u) ∈ X(f)
x

Fig. 3.3 Example of (U, C, F ) for a specific f ∈ F and C ∈ C. The picture illustrates the
relationship between the extension of C in U , Ã ∈ F(U) and the representation extension of
C in X(f), f(Ã) ∈ F(X(f)

)
.

11The extension principle is a general principle by which a mathematical object, such as a
function, can be extended to work for fuzzy sets.
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The relationship between gene function (the phenomenon) and its char-
acterisation by means of observable processes (gene expression) is therefore
specified by f−1

(
f(Ã)

)
, where f(Ã) ∈ F(X(f)

)
and f−1

(
f(Ã)

) ∈ F(U). As
a consequence of Zadeh’s extension principle, used in the definition of the
representation extension of C in X(f) we have for any u ∈ U ,

f−1
(
f(Ã)

)
(u) = f(Ã)

(
f(u)

)
=

∨
f(u′)=f(u)

Ã(u′) ≥ Ã(u)

that is,
f−1
(
f(Ã)

) ⊇ Ã (3.7)

where equality is obtained for f being an injection (one-to-one mapping).
Relation (3.7) therefore describes the quality of the model depending on the
model structure – the choice of factors to model Ã on U . In [37] the following
measure is introduced to quantify the coincidence of f(Ã)(f(u)) with Ã(u).

Definition 7 (Measure of Coincidence). Given a description frame (U, C, F ),
the mapping

Λ: F ×F(U) → [0, 1]

(f, Ã) �→ Λ(f, Ã) = sup
{
1 − f(Ã)(f(u)) + Ã(u) : u ∈ U

}
,

is called the measure of coincidence. If we are to view a collection of factors
as the intension of a concept C, the measure 1−Λ(f, Ã) serves as a measures
for the precision.

The relationship between the extension of C in U , Ã ∈ F(U) and the
representation extension of C in X(f), f(Ã) ∈ F(X(f)

)
is illustrated in

Figure 3.3.

The essence of the modelling relation in Figure 2.1 is therefore captured
by the mapping f : U → X(f). The natural system here is the concept of a
gene, C, and is formalised by a fuzzy restriction Ã : U → [0, 1] on U . The
basic assumption in modelling is that C can also be represented by means of
observables in the factor space {X(f)}f∈F :

U X(f)

[0, 1]

f

Ã

f(
Ã
)
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We notice that for any factor f ∈ F , the inverse f−1
(
f(Ã)

)
, which we

shall discuss further below, is a composition of two mappings f and f(Ã),
that is,

f−1
(
f(Ã)

)
= f(Ã) ◦ f .

and therefore
Ã = f(Ã) ◦ f . (3.8)

If f−1(x) is a single point set for every x in X(f), then f(Ã) = Ã◦f−1 and for
any state x ∈ X(f), Definition 6 describes how we can define the fuzzy set Ã

by the family of fuzzy sets {f(Ã)}f∈F . With a family of independent factors,
(3.3), our model may therefore also be seen as a (compound) rule (f =

∨
fi)

C : IF f is f(Ã), THEN u is Ã . (3.9)

We shall pause for a moment in order to reflect how we have proceeded so
far. We started of with a natural system described using observable factors
which we represented by the mapping f : U → X(f). Any object u ∈ U is
consequently assigned a number, say in R. As the objects are considered in
a context, that is, with respect to a concept C, they induce a characteristic
distribution (fuzzy restriction) Ã in U such that the relevance or association
of u with C is quantified by Ã(u), a value in the unit interval. Since Ã is not
known a priori, we gather information of concept C by means of observations
or measurements in the image set (range) X(f) of the factor f . Formally,
we derive our knowledge in U via the representation extension of C in X(f)
leading to fuzzy restriction f(Ã). In other words, our discussion of a concept
C in terms of objects u ∈ U has shifted to a discussion about the extension
of a concept in U , Ã and its representation extension f(Ã) in X(f) or vice
versa. Let us therefore look at the fuzzy mapping f̃ , now from the set of fuzzy
sets in X(f) to the set of fuzzy sets in U :

f̃ : F(X(f)
) → F(U) (3.10)

f(Ã) �→ f̃
(
f(Ã)

)
= f̃ ◦ f(Ã)

where we can obtain µf̃(f(Ã))(u) using the extension principle. For a family of
independent factors {fj}, let X(f) be the Cartesian product of representation
spaces X(f) .= X(f1)×· · ·×X(fr), and f1(Ã1), . . . , fr(Ãr) be r fuzzy restric-
tions in X(f1) × · · · × X(fr), respectively. With f−1, a mapping from X(f)
to U , u = f−1(x1, . . . , xr), the extension principle defines a fuzzy restriction
in U by

Ã =
{(

u, Ã(u)
)

: u = f−1(x)
}

where

Ã(u) = sup
(x1,...,xr)∈f(u)

min
{
f1(Ã1)(x1), . . . , fr(Ãr)(xr)

}
. (3.11)
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For r = 1, the extension principle reduces to

Ã(u) = sup
x∈f(u)

f(Ã)(x) .

As with any mapping an equivalent representation for f̃ is the fuzzy graph
defined by

G̃ = f(Ã1) × Ã1 ∨ f(Ã2) × Ã2 ∨ · · · (3.12)

or more compactly
G̃ =

∨
k=1

f(Ãk) × Ãk ,

where the f(Ãk) and Ãk, k = 1, 2, . . ., are fuzzy subsets of X(f) and U ,
respectively; each Cartesian product f(Ãk) × Ãk is in fact a fuzzy relation in
X(f)×U ; and ∨ is the operation of disjunction, which is usually taken to be
the union. In terms of membership functions we may then write

G̃(x, u) =
∨
j

(
fj(Ãj)(x) ∧ Ãj(u)

)
where x ∈ X(fj), u ∈ U , ∨ and ∧ are any triangular T - and T -conorm,
respectively. The concept of a fuzzy graph is illustrated in Figure 3.4.

X(f)

U
f−1G̃

Ãk

f(Ãk)

f(Ãk) × Ãk

(fuzzy relation)

Fig. 3.4 Fuzzy graph G̃ as a composition of fuzzy relations.

3.1.4 The Modelling Relation: Reasoning About Data

Let (U, C, F ) be a description frame an Ã be the extension of C ∈ C. In bi-
ological terms (U, C, F ) represents the experiment, Ã the function of a gene,
the phenomenon investigated with respect to C ∈ C while f(Ã) ∈ F(X(f)

)
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models the expression of C as observed. According to the definition of factor
spaces, for any factor f ∈ F , the representation extension f(Ã) of C in the
representation universe X(f) is determined by Ã. As argued before, Ã will
usually be unknown but instead we may know the representation extension
B̃(f) of C in X(f). For example, the success of ORF scanning depends on
the frequency with which termination triplets appear in the DNA sequence.
Knowledge about the frequency of occurrence and codon bias combined with
the typical length of ORFs will be expressed in B̃(f). What follows is a dis-
cussion of how the extension of Ã in U can be determined from B̃. In other
words, in analogy to (3.7), we need to establish the relationship between the
general – the phenomenon under consideration and a given or known partic-
ular symptom (observation). The concept of feedback extension developed by
Li et al. [37] is the appropriate tool to study this relationship.

Definition 8 (Feedback Extension of C w.r.t f). Let (U, C, F ) be a
description frame with C ∈ C and f ∈ F . Assume B̃(f) to be a known
representation extension of the concept C in the representation universe X(f).
The feedback extension of C with respect to f is defined by

f−1
(
B̃(f)

)
: U → [0, 1] (3.13)

u �→ f−1
(
B̃(f)

)
(u) .

Then f−1
(
B̃(f)

)
is a fuzzy subset of the universe U .

For any f ∈ F , if the representation extension of a concept C in X(f) is
known, then

f
(
f−1
(
B̃(f)

))
(x) =

∨
f(u)=x

f−1
(
B̃(f)

)
(u)

=
∨

f(u)=x

B̃(f)(f(u)) ,

and hence

f
(feedback extension︷ ︸︸ ︷

f−1
(
B̃(f)

) )
︸ ︷︷ ︸
representation extension

⊆ B̃(f) (3.14)

which becomes an equality when f is a surjection (the mapping is onto: more
than one u can map into the same x ∈ X(f)).

Expressions (3.7) and (3.14) mean that our models of Ã in U will generally
be an approximation “from above”. Note also that the injection condition
under which equality is obtained in (3.7) may be too restrictive to describe
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gene expression. However, for a model based on synteny, f describing the
location of an ORF, the mapping will indeed be injective and our description
of Ã by means of a family of fuzzy sets f(Ã), f ∈ F is, in principle, accurate.

Definition 8 provides the basis for modelling gene function by means of
observable gene expression. The following issues require further discussion in
the biological context. This discussion can be based on the theoretical results
mostly found in [37]:

1. For all f, g ∈ F , if f ≥ g, we have

f−1
(
f(Ã)

)
⊂ g−1

(
g(Ã)

)
.

meaning that a more complicated factor describes the expression of a
gene more accurately than with a simpler (dependent) subfactor.

2. Decomposition of a factor into a set of simpler (independent) factors.

3. The representation extension of family of simpler factors and the accu-
racy in describing the extension of a concept in U .

Definition 9 (Cylindrical Extension). Let {X(f)}f∈F be a factor space
on U . Assume that f, g ∈ F with f ≥ g, and any B̃ ∈ F(X(g)

)
. The

cylindrical extension of B̃ from g to f is a fuzzy subset of X(f) :

↑f
g B̃ : X(f) → [0, 1] (3.15)

(x, y) �→
(
↑f

g B̃
)

(x, y) = B̃(x) ,

where X(f) = X(g)×X(f−g), x ∈ X(g), y ∈ X(f−g) and ↑f
g B̃ ∈ F(X(f)

)
.

Using cylindrical extension we can get an approximate representation ex-
tension ↑f

g g(Ã) of C, w.r.t a more complicated factor f , from the representa-
tion extension g(Ã) of C w.r.t to a simpler subfactor g :

f−1
(
↑f

g g(Ã)
)
⊃ f−1

(
f(Ã)

)
. (3.16)

Since the approximation of the feedback extension (3.16) of a more complex
factor by means of the feedback extension of a simpler factor leads to inaccu-
racies, we shall now discuss the modelling of an extension Ã on U by means
of independent factors.
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Theorem 1 (Li [37] pg. 64). Let (U, C, F ) be a description frame and Ã
be the extension of C ∈ C. For any f, g ∈ F , for f ∧ g = 0,

f−1
(
f(Ã)

)
∩ g−1

(
g(Ã)

)
= (f ∨ g)−1

((
↑f∨g

f f(Ã
)
∩
(
↑f∨g

g g(Ã)
))

.

From theorem 1, let G ⊂ F where elements of G are mutually independent
then

Ã[G] .=
⋂

f∈G

f−1
(
f(Ã)

)
(3.17)

is called the G-envelope or G-feedback extension of Ã. The G-envelope (3.17)
approximates the extension of Ã by independent factors such that for example
with two factors f, g ∈ G, we have Ã ⊂ f−1

(
f(Ã)

)
∩ g−1

(
g(Ã)

)
, i.e., the

phenomenon is approximated from above. For f =
∨

i∈I fi, we have X(f) =∏
j X(fj). Since Ã ⊂ Ã[G] and u ∈ U , we can write

Ã[G](u) =
∧
j

fj

(
Ã
) (

fj(u)
)

. (3.18)

Using the coincidence measure Λ(f, Ã) from Definition 7 on page 59, with
Λ′ = 1 − Λ(f, Ã) we can define a measure of how precise our approximation
is. Li et al. [37] provided an inequality for Λ′ determined from individual
factors :

Λ′ = 1 − Λ(f, Ã) ≤
r∧

j=1

Λ′
j

where

Λ(f, Ã) = Λ

 r∨
j=1

fj , Ã

 ≥
r∨

j=1

Λ
(
fj , Ã

)
.

The smaller Λ′, the higher the degree of coincidence of the intension with its
concept C.

In practical applications, the extension Ã will usually be unknown. If we
put B̃(fj) = fj(Ã), the precision with which the gene function is described
by means of observed gene expression is

Ã(u) ≤ Ã[G](u) =
r∧

j=1

B̃(fj)(xj) (3.19)

=

 r∏
j=1

B̃(fj)

 (x1, . . . , xr)
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where xj
.= fj(u). Expression (3.19) describes how we form the representation

extension B̃(fj) of the concept C on the representation universe X(fj). The
observed symptoms B̃(fj) are identified from measured sample data and/or
context dependent expert knowledge. Let f =

∨
j fj , given the representation

extension B̃(fj), we construct cylindrical extensions ↑f
fj

B̃(fj). The intersec-
tion of cylindrical extension is then our approximate representation extension
of C on the representation universe X(f) :⋂

j

(
↑f

fj
B̃(fj)

)
⊃ ↑f

fj
B̃(f) . (3.20)

Figure 3.5 is to illustrate the approximation, which is in fact a subset (not
shown) of the “pyramid” in the product space X(f1) × X(f2).

Fig. 3.5 Approximation of the representation extension of concept C in X(f) by two
independent factors (describing the two axis). The approximation is obtained from the repre-
sentation extensions B̃(fj) of C in fj via their cylindrical extension into the product space
and intersection.

Definition 10 (Direct Product of Fuzzy Sets). Let U and U ′ be two
universes and Ã ∈ F(U) and Ã′ ∈ F(U ′), respectively. We can form a new
fuzzy set, called direct product (Cartesian product) of Ã and Ã′, denoted
Ã × Ã′, whose membership function is defined by(

Ã × Ã′
)

(u, u′) = Ã(u) ∧ Ã(u′) ∀(u, u′) ∈ U × U ′ .

From (3.19), (3.20) and with Definition 10 for the direct product of fuzzy
sets, we find that Ã[G] can be described by the intersection of representation
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extensions B̃(fj) :

Ã[G] =

(
r⋂

i=1

B̃(fj)

)
◦ f (3.21)

=

 r⋂
j=1

fi(Ã)

 ◦ f .

By choosing an appropriate intersection operator we can achieve different
approximations. A well known class of operators, called T -norms, is discussed
further below. With the representation extension B̃ = f(Ã) defined in terms
of the representation extension B̃(fj),

B̃ ≈
r∏

j=1

B̃(fj) , (3.22)

we have for any u ∈ U the approximation

Ã(u) ≈ f(Ã)(f(u))

≈
r∧

j=1

B̃(fj)(fj(u)) . (3.23)

The approximation (3.23) of the modelling relation may also be represented
as a if-then rule :

IF f1(u) is B̃(f1) AND f2 is B̃2 AND · · · AND fr is B̃r, THEN C is Ã .
(3.24)

Remark. Note that the assumption of independent factors implies a loss of
information. Given a set of genes u ∈ U , we want to answer questions of the
form “Is u expressed?”. In general, we ask whether u manifests, realises or
instantiates a property Ã? That is, we want to treat Ã as a predicate or ad-
jective, of a give referent u. We want to determine the truth, validity of some
(synthetic) proposition Ã(u) about u. Equation (3.23), is an example of re-
ductionism in our model. It represents a kind of fractionation of an arbitrary
predicate or property representing Ã(u) as a conjunction of essentially inde-
pendent subproperties f(Ãj) (B̃(fj) respectively). The claim made is that
we can recapture the property Ã from the expressions observed on subspaces
by purely syntactic means. The purpose of the assumption is of course that
is allows a reasonably simple implementation of the approach in a soft- or
hardware.

As described by equation (3.8), given the description frame (U, C, F ), C ∈
C, gene function Ã ∈ F(U) is modelled by a set of characteristic variables
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(factors) for which {f(Ã)}f∈F describes the expression of gene C such that

Ã = f(Ã) ◦ f . (3.8)

Then, given the observed expression B̃(f) ∈ F(X(f)
)
, from the feedback

extension of C with respect to f , we evaluate the statement “C is Ã”, as

Ã′ = B̃(f) ◦ f . (3.25)

The composition is read as “first apply f and then B̃(f)”,

B̃(f)
(
f(u)

)
=
(
B̃(f) ◦ f

)
(u) .

Equation (3.25) is akin to the compositional rule of inference, forming the basis
for approximate reasoning which we shall look at in the following section.

Remark. In this section, the role of fuzzy restrictions (fuzzy sets) has been the
representation of semantic information (or equivalently uncertainty), either
observed or induced from measured data. It is important to realise that with
factor-space theory, we represent a biological process or an organism in terms
of its components, their function and their interaction by relations via the
information they provide. In this respect our model differs considerably to
conventional physical models of organisms. In the factor-space model, a factor
represents a component or part of the system fulfilling its function as defined
by the mapping that associates objects with some observable consequence. An
important extension to this still reductionist perspective is the information
captured by fuzzy restriction Ã(u) – with respect to some context (concept)
of the ‘whole’ (the genome or description frame). The ‘whole’ is thus present
in the part by ‘constraining’ not the part itself but the information it carries.
In other words the extension from mappings (factors) to associated fuzzy
sets allows us to capture external influence on constituent parts of the whole
(system).

3.2 IMAGE ANALYSIS

In the field of fuzzy mathematics (fuzzy logic or fuzzy systems), equation
(3.25) is also known as the compositional rule of inference for approximate
reasoning [77, 78]. This equivalence is important as it should provide us
with ways to identify the fuzzy graph (3.12) from data. This section should
therefore be considered together with the results from page 60.

3.2.1 Black and White Negatives: Classical Two-Valued Logic

The basis of propositional calculus is a set of formal entities, that is, simple
statements - primitive propositions, often called variables of the logic. Such
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variables are combined using basic logical connectives, ∨ (or), ∧ (and), ¬
(not), to build expressions or production rules . The mapping from the set
of all expressions into the set of truth-values is called truth-evaluation. In
two-valued logic the ‘truth’ of a proposition can take the values 0 (“false”)
and 1 (“true”) only. The formula B ⇒ A, modelling “IF B THEN A” or “B
implies A” is called material implication and is defined by

B ⇒ A
.= ¬B ∨ A (3.26)
= (B ∨ A) ∨ ¬B , (3.27)

that is, it is defined in terms of the three basic connectives. From the table
above it becomes apparent that two-valued logic is insufficient to deal with all
those cases for which we might employ rule-based knowledge. In particular,
the truth values of B and B ⇒ A cannot be chosen independently and it is
not possible to quantify gradual changes in the antecedent and consequent
of a rule. In fact, if the antecedent B were interpreted as the cause and
the consequent A as the effect, the material implication would mean that an
absent cause entails any effect. Further, every proposition implies itself as
B ⇒ B, meaning everything is self-caused.

A propositional calculus is a logic of atomic propositions which cannot be
broken down. The validity of arguments does not depend on the meaning
of these atomic propositions, but rather on the form of the argument. If we
consider propositions of the form “all a’s are b” which involves the quantifier
“all” and the predicate b, then the validity of an argument should depend on
the relationship between parts of the statement as well as the form of the
statement. In order to reason with this type of proposition, propositional
calculus is extended to predicate calculus. A predicate on a set is a relation.
Generalising the Boolean modens ponens, we can either redefine the implica-
tion or allow fuzzy concepts (fuzzy sets) in the premise and conclusion parts
of the rule. This leads to what is known as approximate reasoning.

3.2.2 Approximate Reasoning: Compositional Rule of Inference

In approximate reasoning, classical propositions B, A, which can either be
true or false are replaced by fuzzy propositions such as “f is B̃” where f is a
fuzzy variable and the fuzzy concept B̃ is represented by a fuzzy set. A given
fact “f is B̃′”, conjunctively combined with the prior knowledge of the impli-
cation rule, leads to gradual truth values taking values on the unit interval.
In standard logic the emphasis is on formal validity and truth is to be pre-
served under any and every interpretation. On the other hand, in approximate
reasoning one tries to preserve information within the situation (context) in
which the reasoning takes place. In general we identify the triple (¬,∧,∨)
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with (c,∩,∪) and here in particular with (1 − µ, T, S). Here, a T -norm12 is a
binary function that extends the domain of logical conjunction from the set
{0, 1} to the interval [0, 1]. Similarly, S models disjunctive operations.

A proposition takes the form “f is B̃” with fuzzy variable f taking values
in X and B̃ modelled by a fuzzy set defined on the universe of discourse X by
membership function µ : X → [0, 1]. A compound statement , “f is B̃1 AND g

is B̃2”, is taken as a fuzzy set B̃1 ∩ B̃2 in X1 × X2 with

µB̃1∩B̃2
(x1, x2) = T

(
µB̃1

(x), µB̃2
(x)
)

For the sake of simplicity we consider a single rule of type

IF f is f(Ã), THEN C is Ã

which can be regarded as a fuzzy relation

R̃ : X × U → [0, 1]

(x, u) �→ R̃(x, u)

where R̃(x, u) is interpreted as the strength of relation between x and u.
Viewed as a fuzzy set, with µR̃(x, u) .= R̃(x, u) denoting the degree of mem-
bership in the (fuzzy) subset R̃, µR̃(x, u) is computed by means of a fuzzy
implication.

Replacing the negation ¬ in (3.26) with the basic fuzzy complement 1−µ,
and the disjunction ∨ with the fuzzy union max-operator, we obtain the so-
called Dienes-Rescher implication

R̃(x, u) = max
(
1 − f(Ã)(x), Ã(u)

)
. (3.28)

From (3.27), replacing negation by the fuzzy complement, disjunction by the
max-operator and conjunction by the min-operator, we obtain the Zadeh im-
plication

R̃(x, u) = max
(
min
(
f(Ã)(x), Ã(u)

)
, 1 − f(Ã)(x)

)
. (3.29)

Other possibilities are :

R̃(x, u) = min
(
1, 1 − Ã(x) + f(Ã)(u)

)
: Lukasiewicz implication,

(3.30)

R̃(x, u) =

{
1 if f(Ã)(x) ≤ Ã(u),
Ã(u) otherwise.

: Gödel implication. (3.31)

12Triangular or T -norms are further discussed in Section 3.5.1.
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Or defined using T -norms

R̃(x, u) = min
(
Ã(x), f(Ã)(u)

)
: Minimum implication, (3.32)

R̃(x, u) = f(Ã)(x) · Ã(u) : Product implication. (3.33)

Finally, given some ‘input data’, the generalised modus ponens provides a
mechanism for inference on the basis of B̃ :

Implication: IF f is f(Ã), THEN C is Ã.
Premise: f is B̃.

Conclusion: C is Ã′.

In terms of fuzzy relations the output fuzzy set Ã′ is obtained as the relational
sup-t composition, Ã′ = B̃ ◦ R̃. The computation of the conclusion Ã′(u) is
realised on the basis of what is called the compositional rule of inference. The
inference can be described in three steps as illustrated in Figure 3.6 :

1. Extension of B̃ to X × U , i.e., B̃ext(x, u) .= B̃(x).

2. Intersection of B̃′
ext with R̃, i.e., B̃ext ∩ R̃(x, u) = T

(
Ãext(x, u), R̃(x, u)

)∀(x, u).

3. Projection of B̃ext ∩ R̃ on U , i.e., the compositional rule of inference is
defined by

Ã′(u) = sup
x∈X

B̃ext ∩ R̃(x, u)

= sup
x∈X

T
(
B̃ext(x, u), R̃(x, u)

)
(3.34)

where in (3.34) the suprenum (or maximum for a finite representation uni-
verse) can be seen as a ‘selection’ from the information provided by B̃ext ∩ R̃.
Taking the maximum over all values in X , one may view Ã′ described by
Ã′(u) as the shadow of fuzzy set Ã′

ext ∩ R̃.

Remark. As the name suggests, the compositional rule of inference is related
to the composition of (fuzzy) relations. The symbol ◦ denotes the composition
of two functions defined as follows. Given any two functions, g and h, when
the codomains of g is the domain of h, as in

X Ω U
g h

The composite function h ◦ g is defined as the set of ordered pairs{
(x, u) : x ∈ X, u ∈ U, and ∃ ω ∈ Ω with (x, u) ∈ g and (ω, u) ∈ h

}
(3.35)
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0

1

Fig. 3.6 Compositional rule of inference in approximate reasoning.

Illustrating the composition with the commutative diagram

X Ω

U

g

h◦g
h

we can interpret the composition as the rule “first apply g, then apply h”,
(h ◦ g)(x) = h(g(x)), formalising the idea of two operations carried out in
succession. Now let g and h define two ordinary relations on X × Ω and
Ω × U respectively. The composition of g and h, denoted h ◦ g, is defined as
a relation in X × U such that (x, u) ∈ h ◦ g if and only if there exists at least
one ω ∈ Ω such that (x, ω) ∈ g and (ω, u) ∈ h. Using characteristic function
ζg : X × Ω → {0, 1} and ζh : Ω × U → {0, 1}, we have

ζh◦g(x, u) = max
ω∈Ω

T
(
ζg(x, ω), ζh(ω, u)

)
(3.36)

for any (x, u) ∈ X × U where T is any T -norm. Equation (3.36) is then
generalised to fuzzy relations by simply replacing the characteristic function
for crisp sets ζ by the fuzzy set membership function µ :

µh◦g(x, u) = max
ω∈Ω

T
(
µg(x, ω), µh(ω, u)

)
(3.37)

Because the T -norm in (3.37) can take a variety of formulas, we obtain for
each T -norm a particular composition.



72 A FACTOR SPACE APPROACH TO GENOMICS

After this excursion into approximate reasoning, we now return to our
factor-space model by reminding ourselves that on page 60, we considered the
fuzzy mapping (3.10) between representation space X(f) and U as a fuzzy
graph (3.12), where each fuzzy point in X(f) × U is in fact a fuzzy relation.
The discussion on approximate reasoning is therefore directly applicable to
the description of fuzzy graph (3.12) with only minor changes to notation13.

The fact that factor-space models are firmly based in fuzzy mathematics
and its application to rule-based systems, should provide us with a rich source
of results and applications in building a working methodology. For example,
the identification of fuzzy relations from numerical data is discussed in [57].
Another important aspect of the factor-space model may be the description of
gene expression in terms of (fuzzy logic) if-then rules. The interpretability of
the factor-space model may provide an ‘interface’ to context-dependent expert
knowledge provided by biologists in addition to numerical data.

3.3 IMAGE ENHANCEMENTS

Amidst the avalanche of data describing genes and proteins it is evident that
the dynamics of biological regulatory mechanisms cannot be understood by
merely identifying components, cataloguing products and by drawing dia-
grams depicting how regulatory components are connected. A frequently
discussed feature of natural systems is that of emergent properties. A sys-
tem, composed of a multitude of simpler components may produce as a whole
a higher degree of functional complexity. This seems to apply equally to a
swarm of fish or birds as well as to the atoms that make up molecules, and
molecules building an organism. Instead of studying the material structure
of the components, it seemed to me therefore more interesting to investigate
their interrelations and interactions. Mathematical relations are an obvious
language to capture those concepts. While describing or recognising patterns
(cluster, subsets,...) requires transitive equality relations and set operations
such as union and intersections, to describe interactions (causal entailment)
we require a more complex system model (cf. Fig. 2.9). Depending on whether
we ask “What are the genes/proteins function?” or “How do genes/proteins
interact?”, we end up employing methods from pattern recognition or system
modelling respectively. For example, using clustering algorithms to group
data, in pattern recognition a classifier is build for classification. Describing
interactions, possibly changing through time, a parametric model is build us-
ing methods from system identification. The purpose of the system model is
then to a) explain unknown relationships or to make predictions.

13In the present section, we have simplified the notation B̃ for B̃(f); R̃ for R̃f ; X for X(f)

and note that µ
R̃

(x, u) ≡ R̃(x, u) .
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What are the genes’/proteins role?

Pattern Recognition

Clustering

Classification

classifier

How do genes/proteins interact?

System Modelling

Parameter Identification

Explanation Prediction

model

Fig. 3.7 Depending on whether we ask for a genes/proteins function (interrelationships
between groups of objects) or whether we wish to describe interactions, mathematical (equiv-
alence) relations form the basis for a formal model.

The aim of the present text has been to develop a formal mathematical
framework to study gene expression, regulation and function. Apart from
a conceptual framework, the objective is to outline a working methodology,
which could be applied to gene expression data. There are principally two
reasons why the fuzzy relational factor-space approach is promising. To this
point, we should have fulfilled two principal requirements for a conceptual
framework:

• It is ‘rich’ in structure such that it can deal with various situations
arising from complexity.

• It is sufficiently ‘complete’ in that it is possible to deal with uncertainty.

A more detailed analysis of the capabilities of our approach is to follow in Sec-
tion 3.6 after we have reviewed system theory used in biology and, in Section
3.5, have introduced more ‘machinery’ required for a qualified judgement.

To implement the proposed model in software we require access to data
in form of information about experimental results (observations) stored in
databases, and measurements14 obtained directly from experiments, for in-
stance, using gene microarrays. A particular genome information system
that may be suitable is the GIMS project [53] developed at the University

14The distinction between ‘measurements’ and ‘observations’ will be discussed further be-
low. See also Figure 3.12.
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Organism DNA, RNA sequence

GeneBank Genes

Swiss-Prot, Prosite Proteins, Enzymes

Genetic System Cell Physiology

Fig. 3.8 The wider context in which the proposed project is considered.

of Manchester. GIMS (Genome Information Management System), focuses
on genome and related data. Information is presented interactively by brows-
ing and graphical displays and graph structures. The data are currently stored
in a database accessed through Java. By combining information about coding
sequences and gene-expression data we should be able to achieve much more
accurate quantitative predictions but in general we will also obtain a more
comprehensive understanding of gene function. As an example for the appli-
cation in helping biologist in answering their question we refer to [39] where
a combined algorithm is used for genome-wide prediction of protein function.

model accepted Model Validation

Membership
Identification

Factor Selection

Data Collection

model rejected

possibility theory

structural parameters

experimental design

Fig. 3.9 Outline of model building and validation.

We can identify the following packages of further work required to expand
and validate the concept. They are grouped according to the two main com-
ponents of the proposal :

1. Working Methodology:

(a) Analyse genomic data resources.

(b) Validate the approach using sample data from public data libraries.
For example, the GIMS database can be used to generate such data.

(c) Construct representative test sets of sample data, in various de-
grees of completeness to determine the levels of genomic and func-
tional information which can reliably be inferred using the model.
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In addition to coding sequences, other non-coding segments such
as regulatory elements and transposons should be examined and
matched with models for a known genome.

(d) Validate the use of the compositional rule of inference in fuzzy
relational systems for a realisation of the fuzzy mapping f̃ .

(e) Provide a software implementation of the model.

2. Conceptual Framework:

(a) For the representation extension B̃(f) in X(f), investigate tech-
niques that estimate the membership function B̃(f) from sample
(sequence) data (i.e., set-valued statistics, fuzzy clustering, pattern
recognition,...)

i. Investigate mathematical properties of the feedback extension
(Definition 8) and its accuracy if the representation extension
B̃ is identified from sample sequence data.

ii. Study the mapping represented by the rule IF f is B̃, THEN C is Ã.
Discuss f in the context of Rosen’s modelling relationship.

(b) On the basis of theorem 1 develop a measure of representation of
C by a set of factors. Then for any two genes devise an algorithm
that for a given extension Ã can determine the presence or absence
of a particular gene in a pathway or genomic function.

(c) Describe a rule-based reasoning scheme based on the factor space
representation of a genome.

(d) Study the decomposition of factors into simpler factors and conse-
quences for the approximation of the extension Ã of C in U .

(e) Reformulate the description frame (U, C, F ) in terms of category
theory, such that it coincides with the framework outlined by Rosen
[59, 60, 61].

(f) Could a factor f also be used to model Mendel’s genotypic factor of
heredity? In this case, the extension of C in X(f) is the phenotype,
and Ã on U the genotype.

(g) Investigate factor space models for the processing of molecular mea-
surements and its possible link to genetic networks.

(h) Discuss the encoding or representation of time.

3.4 MOVING PICTURES

At present, the biological function of the unknown gene is inferred from good
matches to genes of known function, based on the assumption that they share
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a common biological ancestor from which they have evolved. Current prac-
tice is based on heuristics, mainly exploiting homology relationships, and there
does not exist a formal mathematical framework to the identification of gene
function from sequenced genome data. A formal model would aid gene func-
tion prediction by exploiting known higher-order genomic features such as
synteny (gene order) and co-membership of known metabolic, regulatory or
developmental pathways.

Fuzzy Relational
Modelling

Explanation

Decision Making Abstraction

Fig. 3.10 Three purposes of modelling in genomic analysis.

Modelling organisms, their components, function and behaviour, can take
different forms15. We may distinguish three main forms of modelling a) the
attempt to understand the workings of a cell or organism, in order to gain
some insight into “what actually happens”, requiring explanatory models;
b) for classification and prediction based on data, the model is motivated
by decision making; c) given the knowledge of particular cases we wish to
generalise; trying to find an abstraction from individual objects to classes of
models or systems. Associated with these modes of modelling we have the
areas of simulation16, e.g. the mass-action rate models or energy models of
molecules for which concentrations are our observables; pattern recognition as
in sequence analysis where we identify patterns to for example predict protein
structure. The tools employed are for instance neural networks, principal
component analysis, clustering and so forth. None of these techniques seems
to provide direct inside into the actual principles at work (causal entailment).

The area of ‘bioinformatics’, to this date, is largely engaged in the develop-
ment of tools and technologies that support scientists in their explanation of
biological phenomena. The internal structure of models is usually less relevant
as long as the predictions or patterns produced by the model are suggestive.

15“What you see depends on how you look at it.”
16What I referred to as modelling with the purpose of simulation, is equivalent to Rosen’s
concept of a metaphor : the decoding, prediction from a formal model without specific en-
codings (cf. Fig. 2.1). Examples for metaphors are Catastrophe Theory, Automata Theory,
Chaos Theory and various other paradigms. The problem with these concepts is that by
given up encoding, we also give up verifiability – ignoring in some way experimental data.
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Simulation

Pattern Recognition System Theory

Molecular Modelling

Sequence Analysis Relational Biology

Fig. 3.11 Methodologies (left) and their applications (right) corresponding to the three
‘modes’ of modelling (explanation, decision making, abstraction).

A “this is why” answer is produced by the biologist and the abstract model
he has in his mind not the formal mathematical model he may have used as
a tool towards his aims. As more is learned about genomes, it will become
increasingly important to have formal concepts which more directly generate
insights, that currently are dependent on the reasoning skills of the scientist.
At best, simulations provide us with an “how” but we have yet to produce
formal models that explicitly demonstrate a “why” to the questions biologists
ask.

How useful a model or theory is, how well it can explain unknown rela-
tionships, depends on the context in which it is used and what it is used
for. Take for example evolutionary theory, probability theory or game theory.
As the term ‘theory’ suggests, they do not apply to ‘the particular’ but are
generalisations17. Probability theory does give you an impression what, on
average, you could expect to occur when throwing an ideal dice. Considering
the particular dice you hold in you hand, the theory will not be very be useful
in predicting the outcome. Similar, evolutionary theory explains processes
over a very long period of time, involving large groups and should not be used
to explain individual human behaviour. The value of these theories lies in
simulation and from it, the explanation of general patterns. If a simulation
confirms expectations, appears ‘realistic’, one may be tempted to think that
the components and structure that generated the simulation is a model of ‘the
thing itself’.

Idealisation, for instance viewing genes as switches, is useful and appro-
priate if later one can show that the pattern identified on the basis of these
assumptions would hold if the idealisations are removed. Since “on/off”,
“present/abscent” idealisations are literally false, we should make sure not to
succumb the temptation to extrapolate from the findings, e.g talking of “com-
putations in cells”. In other words, the implicit uncertainty of a model is im-

17In contrast to a generalisation (going from the particular or special to the general),
abstraction does not imply a loss in the capability to describe particular aspects of a system
under consideration. An abstraction makes a problem context independent by transferring
it into an alternative domain.
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portant and should be stated explicitly. Therefore if we cannot build models
that represent gene expression levels and enzyme catalytic activities as graded
changes, we may produce simulations using some idealisations but should keep
in mind the consequences. Idealisations are useful to build tractable models
of large or complex systems; for instance using automata theory to model
autocatalytic networks as done by Stuart Kauffman [29]. These models, like
game theory applied to economics, simulate processes and help us to extract
patterns (general principles) that govern the process as a whole. Here the
idealisation works as long as we do not make predictions for a particular com-
ponent, at a particular instant of time or in a particular condition. The fore-
going discussion akin to the philosophical discussion of Section 2. Although
we cannot know the noumena itself, we can know about it in the phenomena.
Instead of striving for a detailed model of the process itself, we should try to
capture the process by which biologists, using informal models, successfully
generate new knowledge from measurements and observations.

3.4.1 Systems Theory in Molecular Biology

Although there have been various applications of systems theory to biology
[40] and many of the concepts evolved into what is now known as metabolic
engineering, attempts describe genetic systems fail at Zadeh’s uncertainty
principle:

“As the complexity of a system increases, our ability to make pre-

cise and yet significant statements about its behaviour diminishes until

a threshold is reached beyond which precision and significance (or rel-

evance) become almost exclusive characteristics.”

It has been suggested that the failure of these original applications to molec-
ular biology is likely to be due to a naive transfer of Newtonian physics to
biological processes. The view that organism or cells can be described in terms
of energy or masses with forces acting on them, leads to accurate models only
for small submodels loosing its predictive power for more complex systems.
The key element of a Newtonian approach is that it views the cell as a ma-
terial system to be analysed as a family of constituent parts. These objects
define a state space for which dynamical relationships are specified. Such an
abstraction yields a set of coupled differential equations (cf. Section 2.4).

Phenotypes are what we can observe directly about organisms. They are
tangible, material properties that we can measure, can compare and experi-
ment with. The phenotype is seen as being ‘caused’ or ‘forced’ by the geno-
type. As Rosen [62] points out, the phenotype–genotype dualism is allied to
the Newtonian dualism between states and the forces that change the states.
In Aristotelian language, the states represent material causation of behaviour,
while the forces are an amalgam of formal and efficient causation. In recent
years it has become possible to measure or observe and describe this relation-
ship on the molecular level.
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Remark. The word ‘causality’ is ambiguous. In Section 2 we introduced the
“causal problem” in Schopenhauer’s philosophical setting. With regard to
the modelling relation (Section 3.1.3) causal entailment referred to causation
in the phenomenal world on one hand and inferential entailment in formal
systems on the other. The first comprehensive theory of causation was Aris-
totle’s. It distinguishes four types of cause: the material cause (or stuff), the
formal (formative) cause (or shape), the efficient cause (or force) and the final
cause (or goal). For a formal logical system, given an ‘effect’, say proposi-
tion P , axioms correspond to the material cause of P , production rules are
understood as the efficient cause of P and the specification of particular se-
quences of production rules or an algorithm is identified as the formal cause.
For a dynamic system a state can itself be entailed only by a preceding state.
If for a chronicle {(n, f(n))} we ask why the nth entry gives the particular
value f(n), the answer is because of the initial condition f(0), i.e., f(0) is
the material cause; and because of a state transition mapping T for which
f(n + 1) = T (f(n)), i.e., T corresponds to the efficient cause; and because
of exponent n from which f(n) is obtained by iterating the transition map n
times beginning with f(0); i.e., n refers to the formal cause. In Rosen’s rela-
tional biology, for a component f : A → B, such that a �→ f(a), the question
“why f(a)?” is answered by “because f” and “because a”. In other words,
“a entails f(a)” or formally f ⇒ (a ⇒ f(a)). Here f corresponds to the
efficient cause of (“effect f(a)”), and a refers to the material cause of f(a).
One of Rosen’s achievements is that he introduced a formalism rich enough
in entailment, to allow final causation without implying teleology.

Biological phenotypes, considered as material systems, are open. They are
open to ‘forcing’ by genes as well as open to interactions with their envi-
ronment. To study an open system it is therefore necessary to consider the
“outside”, the environment in order to understand what is going on “inside”.
A critic of such a Newtonian approach to biology and the failure of reduction-
ism to supply the whole from its parts was Robert Rosen [59, 60, 61, 62]. In
the Newtonian realm a system is ‘closed’ by internalising external influences
through added state variables and more parameters to the system. Since New-
tonian mechanics is a paradigm for mechanisms in general, it is worthwhile
looking at the simplest dynamical system of a single particle moving under the
action of a force [47] (see also page 35). The motion is governed by Newton’s
Second Law, which defines the force F acting on a mass point m to be the
rate of change of momentum (m · v) :

F = m · dv

dt
= m · d2x

dt2

where v denotes velocity which, in turn, is defined as rate of change of position
or displacement from some origin of coordinates. Here conceptual closure
amounts to the assumption of constancy for the external factors and the fact
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that external forces are described as a function of something inside the system:

F (x, v) = −θ · x
where θ is a parameter. We may refer to the response of the system to forces,
as described by these equations, as the ‘inertial’ aspect while the exertion of
forces by the system is corresponds to the system’s ‘gravitational’ aspect.

Rosen’s suggestion [62] is to shift attention from exclusively ‘inertial’, i.e.,
structural aspects such as the DNA molecule and its sequence, to ‘gravita-
tional’ concepts. In other words, instead of concerns with material causation
of behaviour, manifested in state sets, he suggested formal and efficient cau-
sations as the focus of attention. Such a shift of perspective is exemplified
in category theory, Rosen’s preferred language to discuss these problems in
the abstract, by studying mappings between sets (of objects) rather than
analysing the objects themselves. His compelling arguments for such a move
and the formalism he provides open up a new dimension for the study of
biological phenomena. Rosen considers the Newtonian conception responsi-
ble for a lack of progress in mathematical biology and argues the case for a
new approach, called relational biology. He emphasises that we must look for
principles that govern the way in which physical phenomena are organised,
principles that govern the organisation of phenomena, rather than the phe-
nomena themselves. Relational biology is therefore about organisation and
describes entailment without states. The association of energy or matter, de-
scribed by states and dynamical laws, is to be replaced by the description of
a system in terms of its components, their function and contribution to the
organisation of the system.

Such a transition of levels in formal analysis is exemplified by statistical me-
chanics. Considering a gas molecule, using Newtonian mechanics, the position
of a molecule is specified by three spatial coordinates while the representation
of the momentum or velocity require three further coordinates. Therefore,
each molecule’s position and momentum at any instant can be described by
six coordinates. For N molecules a 6N -dimensional phase-space captures the
state of the system of N molecules as a point. Changes over time are described
by a trajectory in this phase space. To perform exact calculations for a system
of N molecules is virtually impossible and statistical mechanics provided an
useful abstraction when it replaced the exact trajectory of the system state
with probability density functions over regions of the phase-space. The dis-
cussion of any specific point in this space is ‘replaced’ by a mapping from the
underlying reference set to the unit interval. Like in the factor-space model
we have suggested here, we have surrendered absolute certainty and preci-
sion and given an approximate description where regions of the mathematical
space which represents the natural system is characterised by mappings into
the unit interval, expressing (un)certainty in modelling and data. The change
of ‘description mode’ we suggest, away from a biochemical or structural repre-



MOVING PICTURES 81

sentation to representation of entailment, is akin to the change from classical
physics to quantum mechanics. In microscopic physics, we are prevented by
the nature of things from being able to ascertain the location and velocity
of a particle at one and the same instance and therefore cannot predict with
certainty the systems future state. Quantum mechanics subsequently aban-
dons the application of causal connections. The question of whether or not
the causal connection is true ‘in reality’, becomes somewhat irrelevant and
to abandon the causal structure one also abandons the mechanistic view of
systems in favour of a statistical concept which is mathematical.

Translating the description of any particular system, say the one we see
in front of us in the laboratory, into a formal conceptual framework, we then
consider a general class of systems to which our specific one is equivalent.
Probability theory is not only the basis of statistical mechanics it is a concep-
tual framework in its own right (cf. Sec. 3.1.1, pg. 48) to which descriptive
statistics provides a ‘real-world interface’. In fuzzy relational biology we aim
at an integration of synergy of a number of frameworks to provide a powerful
approach to the challenges provided by genomics and proteomics. Once we
have translated our problem at hand into the conceptual framework of our
choice, we use its rules of inference to make predictions, simulations and ide-
ally find explanations for the principles by which data and pattern are gener-
ated. Matching experimental reality with a theory, validating a mathematical
model with data, will usually require us to average or aggregate data so as to
reduce uncertainty. In the process our conclusions may suffer confidence and
a molecular biologist may rightly be sceptical about the value of the efforts
in creating a formal model. The only consolidation may be that we often
learn most from those models which fail because the process building a for-
mal model, as a way of thinking, is valuable in itself, providing a ‘systematic’
procedure supporting the hypothesis testing biologists do ‘naturally’.

At the heart of relational biology is the modelling relation between a nat-
ural and formal system (Figure 2.1). The formal system describes a set of
components, interrelated in a particular way. Any two natural systems that
realise this formalism are considered as analogous, realise or manifest a com-
mon organisation. Consequently, the concept of a realisation and the building
of realisations take a central role as they provide the mechanism that relates
the formal model with the natural system in its physical appearance. The
philosophical discussion in Section 2 (see also the summary in Section 3.6)
provided the basis for objective knowledge in the realm of the phenomenal
world. For the relational biology presented here are therefore two proposi-
tions of importance :

� Observable events can be represented by the evaluation of factors on
abstract states (objects).
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� A factor can be regarded as a mapping from a set of objects to a set of
labels.

Note that in the fuzzy relational factor-space approach we generalise the con-
cept of an observable in the Newtonian spirit to allow for qualitative character-
isations of data objects (non-numerical observations). Rather than modelling
the organisation of physical processes on a molecular level, our fuzzy rela-
tional model provides a phenomenological theory of gene function. We use
the term measurement in a narrower sense, measuring or counting – quanti-
fying characteristics of data objects, while we also allow derived knowledge to
describe data objects. The latter is then referred to as an observation. Figure
3.12 outlines the multi-levelled representation of biological information and
processing of data in the proposed fuzzy relational factor-space model and its
possible extension to relational biology.

Anticipatory
Systems

Biological Concept(s)

Feedback
Mechanisms

Observations
Gene

Function

Measurements Facts
Gene

expression

factors

(observables)

fuzzy sets

(mappings)
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Relational Biology

(categories)

dynamics

(time mappings)

Fig. 3.12 Multi-levelled representation of biological information and processing of data in
the proposed fuzzy relational factor-space model for genome analysis.

The fact that a fuzzy relational factor space genomic model is based on
sets, mappings and functions, has an attractive consequence. Rephrasing
our approach in terms of category theory would provide us with a language
of models. This should eventually enable us to compare and study models
not simply in terms of their ‘predictive power’ but also with respect to their
principal capability to capture the essence of biological phenomena. However,
as often we have to be careful not to overstate our expectations (and the
required category theory isn’t going to be easy either). Abstraction, as a shift
of domain in which a problem is discussed, has been a key idea in the present
text. Our first step was to translate an empirical or experimental problem
into a description frame (U, F, C) consisting of concepts C ∈ C (e.g. genes
itself or a gene expression experiment), characterised by factors f ∈ F which
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evaluate objects u ∈ U . We have thus established a formal system18 encoding
a natural system. Another example of abstraction was in Section 3.1.3 the
shift of the discussion of concepts in terms of objects to an analysis of the
concept in terms of its extension (representation extension respectively). In
Section 3.5, we will introduce another perspective of factors in terms of the
equivalence relations they induce on U . Instead of a purely functional and
abstract model we then have a means to validate or identify the model with
experimental data.

Remark. The work of Rosen and the foregoing discussion suggest that ba-
sic questions of biology cannot only be solved empirically but can also be
discussed in a conceptual framework. Recent development in the life sciences
and genomics in particular, provide evidence for Rosen’s contention that many
biological problems are conceptual rather than empirical. The “post-genome”
challenge is to be able to interpret and use the genome data: focus is shifting
from molecular characterisation to understanding functional activity. (Fuzzy)
relational biology is concerned with function and behaviour rather than struc-
ture. It is the system scientist’s main occupation to understand ways and
means of how to encode natural systems into formal systems by means of
modelling. It is for these reasons, why system scientists should play an im-
portant role in the research required to attack the interdisciplinary problems
in the modern life sciences.

3.4.2 Art Critics: Discussion

The role of mathematics and computation in describing, understanding, and
modifying biological complexity has, in recent years, focused on bioinformat-
ics and metabolic engineering. The area of bioinformatics, primarily occupied
with pattern recognition and data mining, provides the biologist with data,
information and facts from which he builds a model for inference in his mind.
Metabolic engineering is the manipulation of industrial organisms using ge-
netic tools. By identifying genes that confer a particular biochemical response
or phenotype it has been related to drug discovery and functional genomics.
So why should be look for novel mathematical models that go beyond those
in metabolic engineering and biochemical analysis19?

18The description frame does constitute a system according to the definition given in Sec-
tion 1.1 in that relations between objects are established by factors (induced equivalence
relations) as well as concepts viewed as abstract objects for which (fuzzy) relations are
established and considered in terms of approximate reasoning.
19The use of metabolic engineering as a methodology in biotechnology, control engineering
and biochemical process analysis is not questioned here. The question is to what extend
these models, in future, can help biologists solve basic biological (conceptual) problems (for
instance in functional genomics)?
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� Reductionism, modelling cell functions as a mechanism is bound to be
limited to specific aspects of molecular systems in order for (linear)
models to be tractable and to have explanatory value.

� Common assumptions and simplifications are that particular subsystems
(e.g. a single gene’s product) have a significant effect on the biochemical
network.

� Current mathematical approaches are unable to capture the inherent
complexity of biological systems which is due to interconnected and mul-
tileveled processes: Any pertubation of the cell will result in a multigene-
multitranscript-multiprotein response but changes in one level do not
neccessarily imply a corresponding change on other levels.

To consider an organism merely as a chemical machine is to take a re-
ductionist approach in which the organisms’s energy handling is explained in
thermodynamic and chemical kinetic terms. Physics is relevant to biology but
it can only deal with a part of the multi-levelled and highly interconnected
causal hierarchies of biological systems. If the analysis of biological systems
in terms of elements relating to the acquisition, transfer and utilisation of
energy is not sufficient, what other component could complement the ergonic
component? It is the study of everything functioning in the detection, pro-
cessing, retention and utilisation of information20. As we have structured
our presentation in analogy to the process of taking a photo, we notice that
research has focussed on the analysis of images in terms of ‘pixels’, i.e., the
detection of pattern. Though this provides statistical information, induced
by its elements, it does not describe conceptual information about the con-
tent of the picture taken. In short, there is an important distinction between
‘order’ and the informed ‘functional organisation’. Physical modelling and
pattern recognition will therefore have to be integrated into a more ‘holistic’
framework if we are hoping to convince biologists of the usefulness of formal
mathematical models.

In analogy to the question of ontology versus epistemology in philosophy,
in science we can take alternative perspectives to modelling. Studying a bio-
logical phenomena, we may use systems of equations to model the chemical or
biophysical structure of the process ‘itself’21. Instead of attempting an onto-
logical model of the thing itself, we may build a phenomenological model de-

20For a survey and discussion of the role of energy and information in modelling biological
processes see for example [13].
21The basis for such thinking is that reductionism works, i.e., by decomposing a system into
parts we can establish knowledge of the whole. Historically, this view and its consequences
when generalised has led to a lack of respect for the complexity of nature. Marvel or
fascination usually leads to a form of ‘respect’ while reductionist radicalism seems to have
had more destructive consequences.
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scribing “what we can know about it”, i.e., representing measurements (sam-
ples taken experimentally) and observations22 (facts or conclusions derived
from perception or measurements) and constructing relationships that sup-
port the explanatory process. The role of uncertainty, the representation and
quantification of uncertainty in measurements, observations and the model
are of utmost importance in this approach.

Robert Rosen, arguing his case for relational biology, writes in [61] :
“At the moment, biology remains a stubbornly empirical, experi-

mental, observational science. The papers and books that define con-

temporary biology emanate mainly from laboratories of increasingly

exquisite sophistication, authored by virtuosi in the manipulation of lab-

oratory equipment, geared primarily to isolate, manipulate, and charac-

terise minute quantities of matter. Thus contemporary biology simply

is what these people do; it is precisely what they say it is.”

One could argue, that up to now, biologists have succeeded without system
theory and it may be doubtful whether a formal mathematical approach (for
genetic networks) will ever be useful in providing new insights rather than just
simulating what is already known. There are no theories of molecular biology
like there are for instance in physics or statistics23. There seems not much
effort in this direction either, as most biologist are occupied with extensive
experimentation providing vast collections of data to be analysed. For many
biologists the main problem in the progress of their field therefore appears to
be the need for Information Technology (IT), i.e., tools for storage and search
in such databases. In general, this leads to the impression that Computer Sci-
ence provides the most important additions to progress in molecular biology.
It is important to realise that IT alone will not be sufficient. In order to cope
with complexity, not only interfaces to data sources but also conceptual tools,
i.e., ways of system theoretic thinking are necessary to organise, structure
the biologists enquiries which are at the root the identification of relations.
Despite the Internet, providing an increasingly comprehensive collection of
genome information coupled with sophisticated search interfaces, there is a
need for concepts that summarise and capture the structure and interactions
of components and (nonlinear, hierarchical) systems in their entirety, in a way,
empirical or experimental techniques cannot. System theory, which is defined

22Take for example the measurement of the gene expression level of a particular gene.
An observation could be the annotation of that gene in a database. If the annotation
classifies the gene to a particular functional class, this fact or observation would originally
be determined by means of experiments.
23Debates in biology do not seem to be about which technique is appropriate to solve a
given problem but are rather more concerned with general aspects such as the interpretation
of general principles. An example is the debate between ultra-darwinists (R.Dawkins),
sociobiologists (E.Wilson), taking a gene-phenotype relationship as the basis for life, and
opponents (e.g S.Rose, I.Lewontin) who suggest that there is more to life than is determined
by genes alone.
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as the study of organisation per se, may therefore provide not just tools but
also a way of thinking. In this respect, system theory24 may be a useful com-
plement to the biologist’s experimental work helping him to prevent pitfalls
provided by the enemies of complexity and nonlinearity. I therefore believe,
that the challenge in modern biology is an intelligent combination of human
context-dependent expert knowledge, an interface to databases, a conceptual
(system theoretic) framework as well as working methodologies in the analysis
of data and simulation of systems.

3.5 FORMALITIES

Having claimed that basic problems in biology are conceptual and that these
could be studied with abstract mathematical models, we ought to reconcile a
conceptual framework with empirical research. In other words, to make our
approach acceptable to experimental biologists, a model should be verifiable
or identifiable with data. In the present section, we review our factor-space
model in terms of equivalence relations induced by factors. This is going to
open new pathways, establishing formal relationships to evidence theory and
rough set theory, the latter of which has been used in data mining.

In the previous section, we noted that if we could integrate the factor-
space approach into Rosen’s relational theory of systems, we would have a
powerful set of inferential tools available such as a ‘language of models’. Such
constructions would not only provide insights into biological phenomena, but
we could also say something about the process of modelling itself – its lim-
its, how much, how well we can infer causal entailment in a natural system
from a formal model. This section therefore investigates the relationship be-
tween factor-space theory and Rosen’s relational biology. Because a detailed
overview of Rosen’s work is beyond the scope of the present text, we will
confine our discussion to pointing out the similarities of factors to observables
and introduce the concept of linkage between observables in the context of our
fuzzy relational factor-space model. In Section 3.5.1, we will demonstrate that
if we accept the modelling relation and factors (observables) as an appropriate
way of modelling biological phenomena, then uncertainty is certain. In Section
3.5.4, we establish a formal relationship to evidence theory which could serve
as a means to capture probabilistic uncertainty if necessary. Finally, Rosen’s
concept of linkage, Shafer’s inner/outer entailments and Pawlak’s rough sets
are shown to be closely related. With this package of connected research ar-
eas and tools established by them we hope for success in applying the fuzzy
relational factor-space model to biological databases.

24System theory, like cybernetics, is a way of thinking, not a collection of facts. Thinking
involves concepts: forming them and relating them to each other [20].
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One way to describe a theory of systems is to define the three fundamental
concepts system, state, and observable. An observable25 of a system is some
characteristic of it which can, in principle, be measured. Its formal definition
is a mapping from a set of possible states to real numbers. Using the real line
R as the domain has dominated system theory because of its mathematical
structure and the assertion that natural processes are ‘continuous’. Our defi-
nition of a factor has been somewhat more general but otherwise very similar
to an observable, allowing us to borrow some ideas from Rosen’s work, in
particular the discussion of factors in terms of equivalence relations and the
partitions they induce on U .

On page 55, we defined the family of factors F ⊂ V available to us as
sufficient, (3.4), such that for any two objects in U there exists a factor able
to distinguish between the objects, i.e., the values of the factors on the objects
differ, f(u) = f(u′). In many practical situations we cannot choose the objects
and neither select an arbitrary way of measuring or observation. Given an
abstract set U , representing the set of objects of some system, a factor defines
a mapping f : U → X(f) but then also induces an equivalence relation Ef on
U :

Ef : U × U → {0, 1}

(u, u′) �→ E(u, u′) =

{
1 if f(u) = f(u′),
0 otherwise.

A factor therefore forms equivalence classes from those objects u ∈ U for
which the factor f assumes the same value. That is, if x = f(u), the class of u
is the set f−1(u). Our choice for a factor may therefore lead to the situation in
which two objects are indistinguishable by our measurement or observation.
The imprecision or resolution of our factor or model in general is an important
aspect for the description of biological systems and we shall discuss the issue
in terms of equivalence classes following closely Rosen’s work26 [59].

Definition 11 (Equivalence Relations). Let U be a set, then a (crisp)
relation R on U will be a subset of the Cartesian product, R ⊂ U × U . If
(u, u′) ∈ R, we shall write R(u, u′) = 1 (or simply R(u, u′) for short) to state
that u is related to u′ via R. A relation R in U is an equivalence relation,

25The term observable is well established not only in system theory but also quantum
physics [5].
26In Rosen’s definition of an observable, U is referred to as the set of states opposed to
X(f) in the factor-space model.
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denoted E if is satisfies the following conditions

E(u, u) = 1 ∀ u ∈ U (reflexive),
E(u, u′) = 1 ⇒ E(u′, u) = 1 (symmetry),

E(u, u′) = 1 ∧ E(u′, u′′) = 1 ⇒ E(u, u′′) = 1 (transitivity) .

Intuitively an equivalence relation is a generalisation of equality (which itself
is an equivalence relation).

Definition 12 (Equivalence Class, Quotient Set). If E is an equivalence
relation on U , and if u ∈ U , then the set of all objects u′ such that E(u, u′)
is the equivalence class of u under E, denoted [u]E :

[u]E = {u′ ∈ U : E(u, u′) = 1} .

By definition for every pair of objects u, u′ in U we have [u] = [u′] or [u]∩[u′] =
∅. That is, every object in U belongs to one and only one equivalence class
under E. As a result of which U is effectively decomposed into subsets forming
a partition of U . The set of equivalence classes of U under E is called the
quotient set of U under E, denoted U/E :

U/E =
{
[u]E : u ∈ U and [u]E ∩ [u′]E = ∅} .

Let f : U → X be any mapping, and let Ef be the associated equivalence
relation on U . Then there exists a one-to-one correspondence between f(U),
the range (also called spectrum) of f in X , and U/Ef . In other words, for
any x ∈ f(U), there exists an u ∈ U such that f(u) = x where each x can
be identified with the equivalence class [u]Ef

(also denoted [u]f for short).
Similar, an important fact is that there exists a one-to-one correspondence
between the equivalence relations on a set U and the partitions of U which
effectively allows us to shift our discussion about factors on U to equivalence
classes or equivalently quotient sets on U . These ideas effectively establish the
relationship of the fuzzy relational factor-space model with relational biology.
The formal link to fuzzy mathematics is introduced in the next section while
in subsequent sections we will discuss modelling of systems using factors.
The choice of factors and their effectiveness in describing the process under
consideration is then established by means of the equivalence relations and
partitions they induce on U .

Denoting the one-to-one correspondence, between f(U) and U/Ef , by f̄ ,
it is the mapping that makes the following diagram commutative.

U X

U/Ef

f

ρf f̄
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Where f(U) is a subset of X and the mapping

ρ : U → U/Ef

u �→ ρ(u) = [u]Ef

is called the natural mapping of U onto U/Ef . Hence, using factor f , what
we observe is not the set of objects, but rather the quotient set U/Ef . The
set U/Ef is therefore referred to as by Rosen as the set of reduced states of U
under f and for any given u ∈ U , the corresponding equivalence class [u]Ef

is
called a reduced state of u. The space of reduced states plays then the role of
the ‘state-space’ or ‘phase-space’ in control theory and physics respectively.
The special case in which X ≡ R implies that U/Ef is a topological space
and hence allows an analysis of any two f(u) in terms of distances or a metric
between them. The books by Rosen [60, 59] provide a rich source of material
for this case which is closely related to Von Neumann’s approach to quantum
physics [5].

3.5.1 Through the Blurred Looking Glass

As suggested in Figure 2.9, if we are to reduce the process of a scientific
investigation to two concepts, it would be comparing and reasoning. We
use sets and operations on sets or, equivalently, relations in order to group
and hence compare objects. In the factor-space model, we use equivalence
relations as a means to validate the effectiveness of a factor – our tool to
probe or describe a biological system. A factor is, in general, designated
by a noun, a state by a numeral, and a characteristic by an adjective. For
example, gene expression may be a factor; the amount/level of a protein
measurable is referred to as a state and the judgement of a “high level” is
a characteristic. Types of factors may be distinguished by their state-space
X(f). For measurable factors such as time, length, mass, etc. we usually
take the real line R or subsets while for degrees we may take the unit interval
[0, 1] as the state-space. The elements x of X(f) may however also be more
qualitative such as switching factors whose values may for instance come from
the set {“yes”, “no”}. This section will discuss problems that may occur when
using equivalence relations in an experimental context where imprecision in
form of measurement errors in unavoidable.

The previous section introduced equivalence relations for which equality
(=), and elementhood (∈) are examples. With respect to equality, it is obvious
that it satisfies the three conditions for an equivalence relation (Definition 11) :

a = a holds (reflexity)
a = b ⇒ b = a (symmetry)

a = b ∧ b = c ⇒ a = c (transitivity) .
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Transitivity enables us to infer something new about the relationship of two
variables given two pieces of information. The concept plays consequently
a fundamental role in reasoning. We can illustrate transitivity with another
important tool for comparison: the concept of a distance or metric.

Definition 13 (Distance). The function d(·, ·) defines a distance between
elements of X . Let for any x1, x2, x3 in X :

d(x1, x2) = 0 iff x1 = x2

d(x1, x2) > 0 iff x1 = x2

d(x1, x2) = d(x2, x1) symmetry .

Definition 14 (Metric). A distance is called metric iff ∀x1, x2, x3 ∈ X it is
transitive :

d(x1, x3) ≤ d(x1, x2) + d(x2, x3) (3.38)

called triangle inequality :

x2

x1 x3

d(
x1

,x
2
) d(x

2 ,x
3 )

d(x1,x3)

A simple example for a metric is the absolute value of the difference

d(x, x′) = |x − x′| .

Having established the basic tools for comparison and reasoning it remains to
define a mechanism of order. Examples of relations which establish an order
are the ‘greater than’ and ‘subsethood’ relations. Formally, they are estab-
lishing a partial order on X , making X a partially ordered set (poset). Again
these relations are transitive :

“greater or equal” ≥ : x1 > x2 ∧ x2 > x3 ⇒ x1 > x3

“set inclusion” ⊆ : A ⊆ B ∧ B ⊆ C ⇒ A ⊆ C

Definition 15 (Partial Order). A partial ordering (or semi-ordering) on
X is a binary relation � on X such that the relation is

reflexive, i.e., x � x ,

anti-symmetric, i.e., x � x′ and x′ � x implies x = x′ ,

transitive, i.e., x � x′ and x′ � x′′ implies x � x′′ .
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In our previously established framework we are required to establish the
equality of states, i.e., the values of a factor on an object u in U , f(u) = f(u′).
Accepting some imprecision in the measurement of values, we face a major
problem matching our theory with physical reality. The problem, referred
to as the Poincaré paradox describes the indistinguishability of individual
elements in non-mathematical continua. More specifically, for three points
x1, x2, x3 and let ε denote a threshold (tolerance, significance level), then
two elements x, x′ are indistinguishable for d(x, x′) ≤ ε, where d(·, ·) de-
notes a proximity measure such as a metric defined above. Transitivity for
(pseudo)metrics manifests itself in the triangle inequality

d(x1, x3) ≤ d(x1, x2) + d(x2, x3) . (3.38)

Let us consider the following measurements in R : x1 = 1.5, x2 = 2, x3 =
2.2, and ε = 0.6, and let us use the metric d(x, x′) = |x−x′|, w.r.t a threshold,
accuracy or error bound ε, to identify observations. Our analysis is based on
the theoretical model that if observations x1 and x2 are similar, as well as x2

and x3 are similar, then so should be x1 and x3, in other words,

x1 = x2 ∧ x2 = x3 ⇒ x1 = x3 .

Now, considering measured data,

|x1 − x2| = 0.5 < ε ⇒ x1 = x2

|x2 − x3| = 0.2 < ε ⇒ x2 = x3

but |x1 − x3| = 0.7 > ε ⇒ x1 = x3 . (3.39)

Fortunately, a solution to this dilemma (uncertainty is certain!) leads us
directly to fuzzy sets which we have incorporated in our factor-space model
right from the start. To bridge the mathematical idealisation with physical
reality, Karl Menger suggested a measure between 0 and 1, probabilities, to
quantify uncertainty while retaining the all important property of transitivity.
Specifically, he associated d(x, x′) with a (cumulative) distribution function
Fx,x′ whose value Fx,x′(a) for any a is interpreted as the probability that the
distance between x and x′ is less than a. Menger’s approach generalises a
metric space to become a probabilistic metric space [68].

Starting with the triangle inequality (3.38) we note that it implies the
logical proposition

d(x1, x2) < a ∧ d(x2, x3) < b ⇒ d(x1, x3) < a + b .

Since A ⇒ B implies that Pr(A) ≤ Pr(B), we get

Pr
(
d(x1, x2) < a ∧ d(x2, x3) < b

) ≤ Pr
(
d(x1, x3) < a + b

)
= Fx1x3(a + b)

Thus if T is such that T (Pr(A), P r(B)) ≤ Pr(A∧B) for any two propositions
A, B, we obtain the inequality

Fx1x3(a + b) ≥ T
(
Fx1x2(a), Fx2x3(b)

)
, (3.40)
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where T denotes a triangular norm, so called because it generalises the triangle
inequality. The function T is a mapping [0, 1] × [0, 1] → [0, 1]. For example,

Tmin(a, b) = min(a, b) (minimum operator),
TLuk(a, b) = max(a + b − 1, 0) (Lukasiewicz norm), (3.41)
Tpro(a, b) = a · b (algebraic product).

Let T = a · b, then (3.40)

Fx1x3(a + b) ≥ Fx1x2(a) · Fx2x3(b) (3.42)

states that the probability of the distance between x1 and x3 being smaller
than a+b is at least the joint probability of the independent occurrence of the
distance between x1 and x2 being smaller than a and the distance between
x2 and x3 being smaller than b. In other words,

Pr
(
d(x1, x3) < a + b) ≥ Pr

(
d(x1, x2

)
< a, d(x2, x3) < b

)
.

So much for probabilistic uncertainty and the introduction to triangular
norms. We now show that a metric induces a similarity (fuzzy) relation for
which transitivity is generalised in the form of inequality (3.40). In the factor-
space model, values x in X(f), referred to as states, are in fact evaluations of
factors on objects in U . That is, for two such values being very close, f(u) ≈
f(u′), two objects u and u′ are indistinguishable by f , their values are similar
and hence, with respect to f , they are equivalent. This observation motivates
the definition of a fuzzy equivalence relation, Ẽ as a direct generalisation of
the crisp equivalence relation E in Definition 11.

Definition 16 (Fuzzy Equivalence Relations). A fuzzy equivalence or
similarity relation, Ẽ, is a fuzzy relation which is reflexive, symmetric, and
transitive. It defines a function Ẽ : U×U → [0, 1] that satisfies the conditions :

Ẽ(u, u) = 1 ∀ u ∈ U (reflexive),

Ẽ(u, u′) = Ẽ(u′, u) (symmetric),

Ẽ(u, u′′) ≥ T
(
Ẽ(u, u′), Ẽ(u′, u′′)

)
(transitive) .

Transitivity for fuzzy relations is therefore defined in analogy to Menger’s
inequality, (3.40), for probabilistic metric spaces. In this context, the trian-
gular norm, T , extends the domain of logical conjunction from the set {0, 1}
to the interval [0, 1]. Using the min-operator, we speak of min-transitivity as
a natural extension of the equivalence relation above. The equivalence classes
partition U into sets containing elements that are all similar to each other to
degree at least ε.



FORMALITIES 93

For a bounded metric space (X, d) there exists a non-negative value ε ∈ R
+

such that d(x, x′) ≤ ε, for all x in X . The distance d between values of factors
on objects then induces a fuzzy relation over U :

Ẽ(u, u′) = 1 − 1
ε
d
(
f(u), f(u′)

)
. (3.43)

The bound ε allows scaling such that the distance between any two values
in X lies in the unit interval [0, 1]. The correspondence of transitivity for a
distance function and transitivity of fuzzy relations depends on the T -norm
employed. The metric equivalent of the Lukasiewicz norm, (3.41), is the
triangle inequality, (3.38); the metric equivalent of product transitivity is the
inequality

d(x1, x3) ≤ d(x1, x2) + d(x2, x3) − d(x1, x2)d(x2, x3)

related to (3.42) w.r.t probabilistic uncertainty. If a fuzzy equivalence rela-
tion is min-transitive the distance satisfies the more restrictive ultrametric
inequality :

d(x1, x3) ≤ max
(
d(x1, x2), d(x2, x3)

)
.

The Lukasiewicz norm turns out to be the least restrictive one. For the
comparison of factors on objects u it would usually be reasonable to assume
that to objects are similar in their contribution to the model if |f(u)−f(u′)| ≤
ε, where ε is a number representing our “indifference” with respect to the
measurement process.

We saw that if we are to use equivalence relations, in practical situations,
we may allow for a tolerance to identify two objects as the same (as having
the same observable consequence). The inequality |f(u)−f(u′)| ≤ ε describes
a subset (relation) Rε ⊂ U × U

Rε = {(u, u′) ∈ U × U : |f(u) − f(u′)| ≤ ε} .

The Poincaré paradox (3.39) demonstrated that this relation is not an equiva-
lence relation, i.e., it is not a transitive relation. We therefore could not study
the quotient set induced by this relation. Kruse et al. [32]27 showed however
that we can define a mapping Ẽε such that Ẽε(u, u′) is greater than 1 − ε if
and only if u and u′ are indistinguishable with respect to the tolerance ε :

(u, u′) ∈ Rε if and only if Ẽε(u, u′) ≥ 1 − ε ,

27Their book [32] and various papers by R.Kruse and F.Klawonn provide an extensive
treatment of equivalence relations and how rule-based systems can be build from them.
They also generalise the case described here with ε ∈ [0, 1] and Ẽε(u, u′) = 1−min{|f(u)−
f(u′)|, 1} to any unit in X by means of a scaling factor s > 0, Ẽε(u, u′) = 1 − min{|s ·
f(u) − s · f(u′)|, 1}.
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where

Ẽε : U × U → [0, 1]
(u, u′) �→ 1 − inf{ε ∈ [0, 1] : (u, u′) ∈ Rε}

with ε ∈ [0, 1] and if there is no ε for which the relation holds, we define
inf ∅ .= 1. Ẽε is a fuzzy equivalence relation w.r.t. TLuk. The value Ẽε(u, u′) =
1−min{|f(u)− f(u′)|, 1} describes the degree to which two objects u and u′

have similar observable consequences and transitivity of this relation implies
that if u and u′ are similar and u′ and u′′ are similar in their values in X ,
then u is similar to u′′.

Remark. Similarity relations were introduced by Zadeh [82] and have since
been considered in various contexts. For example in clustering, fuzzy equiva-
lence classes [u]Ẽ define clusters while the fuzzy quotients U/Ẽ partition U .
The mapping from elements of U to equivalence classes in U/Ẽ then defines a
classifier. The formal setting of fuzzy equivalence relations, classes and quo-
tients in fuzzy mathematics and category theory has been developed largely
by Höhle [22, 23, 24].

At the beginning of this section, we introduced equivalence relations as a
fundamental notion for comparing, ordering and reasoning. We showed that
in an experimental context the relation |f(u) − f(u′)| ≤ ε is reflexive, sym-
metric but not transitive on R. As a consequence, uncertainty in analysis
is certain and a extension of the classical definition of equivalence, first sug-
gested by Karl Menger, seems sensible. The following section explores the use
of (classical) equivalence relations to assess the role of factors in modelling
process itself.

3.5.2 The Art of Modelling: Linkage

In molecular biology, the objects which constitute a system are usually not
directly accessible for measurement. We therefore introduced factors in order
to describe a concept by means of observable characteristics. Following the
definition of a factor as a mapping in Section 3.1.3 and the discussion of
its properties in terms of equivalence classes, we are now in the position to
discuss or compare ‘different’ ways to describe the same process. Let us
therefore suppose we are given two factors f, g ∈ F such that for each u ∈ U
we have two ‘coordinates’, f(u) in U/Ef and g(u) in U/Eg, as independent
descriptions of the same concept. Our discussion extends the definitions 3,
4, 5 but now with the focus on how to improve our description of a concept
through equivalence classes induced by the factors chosen. In Section 3.5.4,
we are going to introduce yet another way to discuss the relationship between
factors. A measure of linkage between factors f and g, is devised based on
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equivalence relations and can be used to identify cause-effect relationships in
data.

What follows is an introduction of Rosen’s concept of linkage between
factors. We shall discuss three cases for which two factors are ‘unlinked’,
‘linked’ and ‘partially linked’. First consider the illustration in Figure 3.13
defining two factors f and g which partition U in different ways.

U/Ef

u
f

[u]f

g

U/Eg

Fig. 3.13 Example of two totally unlinked factors f and g. They grey area on the left is the
equivalence class [u]f generated by f on U .

The concept of linkage between factors f and g becomes plausible by as-
suming a given [u]f in U/Ef and subsequently to discuss which g-equivalence
classes intersect with [u]f . From Figure 3.13, we find that factor g splits the
classes of Ef such that g can distinguish between objects, undistinguishable
via f . We say that the greater the extend of the splitting of [u]f by g, the
more unlinked g is to f at [u]f . We find that

• The whole of U/Eg, i.e., both g-classes intersect with [u]f : g is said to
be unlinked to f at [u]f .

• g is unlinked to f at each [u]f ; every Ef -class intersects every Eg-class
and conversely : g is said to be totally unlinked to f .

Having fixed some value x in f(U), g(u) is not arbitrary in g(U); the coordi-
nates f(u), g(u) of an object u ∈ U are not independently variable in U/Ef ,
U/Eg, respectively.

Figure 3.14 illustrates the second extreme: total linkage. We make the
following observations :

• Only a single g-class intersects with [u]f : g is said to be linked to f at
[u]f .

• Since g is linked to f at each [u]f ; every class of Ef intersects exactly
one class of Eg, namely the one which contains it : g is said to be totally
linked to f .
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U/Eg = U/Ef

u
g = f

[u]g = [u]f

g

U/Eg

[u]g

[u]f
f

u

U/Ef

Fig. 3.14 Two examples of two totally linked factors f and g such that Ef refines Eg .

If g and f are totally linked, Ef is said to refine Eg, g does not split the
classes of Ef and no new information is obtained from an additional factor
g. The coordinates f(u) and g(u) are independently variable in U/Ef , U/Eg

respectively. That is, having fixed some value x in f(U) we may find an object
in U such that f(u) = x and g(u) is arbitrary in g(U).

In general, let Ef , Eg be equivalence relations on a set U . Ef is said to be
a refinement of Eg if Ef (u, u′) implies Eg(u, u′). In terms of equivalence class,
this means that every Ef -equivalence class is a subset of some Eg-equivalence
class or in other words, Ef refining Eg means that elements of the partition
from Eg are further partitioned by Ef and blocks of the Eg partition can be
obtained from the set-theoretic union from Ef -blocks. If Ef is a refinement
of Eg, then there is a unique mapping

Γ: U/Ef → U/Eg (3.44)
[u]f �→ Γ([u]f ) = [u]g

which makes the following diagram commute :

U

U/Ef U/Eg

ρEf ρEg

Γ

Thus the value of g on an object u in U is completely determined by the
value of f on that object through the relation g(u) = Γ(f(u)). That is, g is a
function of f . Next, let f, g : U → {0, 1} be defined such that its value is equal
to one if u is on the right of the line which partitions U and zero otherwise.
We then have the situation depicted on the right in Figure 3.15 where find
that :

• For u1, only one g-class intersects with [u]f but not all of U/Eg. That
is, g is linked to f at [u]f .

• For u2, both g-classes intersect with [u]f and hence g is unlinked to f
at [u]f .
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We also note that the linkage relationship between f and g is not symmetric;
i.e., the linkage of g to f at [u]f can be different from the linkage of f to g. Here
we have motivated the concept of linkage as a means to discuss the usefulness
of additional factors in our model while in Rosen’s work its importance comes
from the possibility of prediction. That is, if g is linked to f at u, we can
determine information about g(u) via f .

U/Eg = U/Ef

u f
g

[u]f

[u]g

u1

f(u) = 0
g(u) = 0

f

u2

f(u) = 1
g(u) = 0

g

f(u) = 1
g(u) = 1

Fig. 3.15 Two examples for partial linkage between factors.

Before concluding this subsection, we look at another illustration of linkage.
From Figure 3.16, we have the following equivalence classes for f and g from
which we find that f and g are totally unlinked.

[u1]f = {u1, u2} [u1]g = {u1, u3} U/Ef =
{{u1, u2}, {u3, u4}

}
[u2]f = {u1, u2} [u2]g = {u2, u4} U/Eg =

{{u1, u3}, {u2, u4}
}

[u3]f = {u3, u4} [u3]g = {u1, u3}
[u4]f = {u3, u4} [u4]g = {u2, u4} U/Efg =

{{u1}, {u2}, {u3}, {u4}
}

u1

u2

u3

u4

x1

x2

x3

x4

f

u1

u2

u3

u4

x1

x2

x3

x4

g

Fig. 3.16 Example of two totally unlinked factors f and g.

In Figure 3.17, we find an example for total linkage. The equivalence classes
and quotient sets are as follows.

[u1]f = {u1, u2} [u1]g = {u1} U/Ef =
{{u4}, {u3}, {u1, u2}

}
[u2]f = {u1, u2} [u2]g = {u2} U/Eg =

{{u3, u4}, {u2}, {u1}
}

[u3]f = {u3} [u3]g = {u3, u4}
[u4]f = {u4} [u4]g = {u3, u4} U/Efg =

{{u1}, {u2}, {u3}, {u4}
}
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u1

u2

u3

u4

x1

x2

x3

x4

f

u1

u2

u3

u4

x1

x2

x3

x4

g

Fig. 3.17 Example of two totally linked factors f and g.

Finally we look at an example for partial linkage, illustrated in Figure 3.18.
The equivalence classes and quotient sets are :

[u1]f = {u1, u2} [u1]g = {u1} U/Ef =
{{u1, u2}, {u3, u4}

}
[u2]f = {u1, u2} [u2]g = {u2, u3} U/Eg =

{{u1}, {u2, u3}, {u4}
}

[u3]f = {u3, u4} [u3]g = {u2, u3}
[u4]f = {u3, u4} [u4]g = {u4} U/Efg =

{{u1}, {u2}, {u3}, {u4}
}

With respect to the linkage of g to f we find that for all u in U , g is partially
linked to f at [u]f since it intersects with more than one g-class but not all
of U/Eg. The linkage of f to g at [u]g is however different :

• Linkage at [u1]g : Intersects with a single f -class.

• Unlinked at [u2]g and [u3]g : Intersections with all of U/Ef .

• Linkage at [u4]g.

u1

u2

u3

u4

x1

x2

x3

x4

f

u1

u2

u3

u4

x1

x2

x3

x4

g

Fig. 3.18 Example of partial linkage between f and g.

3.5.3 The Art of Modelling: Product Space Representation

In this section, we show how a family of independent atomic factors defined on
U can be used to obtain a more comprehensive description of the elements of
U than is possible with one factor. The following therefore extends equation
(3.3) of the Cartesian product of independent factors. The aim of the product
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representation is to obtain for a given u ∈ U a unique representation in form
of ‘coordinates’ :

U → X(f) × X(g)

u �→ (
f(u), g(u)

)
.

In order to improve our description of the system via U , the equivalence
relation of both factors, Efg should lead to a finer partition than from either
f or g alone. Taking the intersection, Efg = Ef ∩Eg, such that Efg(u, u′) iff
Ef (u, u′) and Eg(u, u′), we find the equivalence classes as [u]fg = [u]f ∩ [u]g.
The new equivalence relation does only hold if and only if f(u) = f(u′) and
g(u) = g(u′). We thus seek an embedding

φ : U/Efg → U/Ef × U/Eg . (3.45)

Rosen [59] derived the following conditions for φ :

• The embedding φ is onto if and only if f and g are totally unlinked.

• If φ is not onto, there is linkage between f and g, that is, not all pairs
in U/Ef × U/Eg represent objects in U (represent equivalence classes
of objects under Efg).

• If Ef refines Eg, U/Efg is a ‘curve’ in U/Ef × U/Eg; i.e., a one-
dimensional subspace.

• If Ef = Eg, the projections of this curve on each of the ‘coordinate axis’
U/Ef and U/Eg is one-one onto; the curve is the graph of the function
h (3.44).

The case for two factors can be generalised to an arbitrary family of factors
G = {f1, f2, . . . , fr} corresponding to the definition of atomic factors on page
55 and the G-envelope (page 64). With

∏
denoting the Cartesian product,

we define for the atomic factors fi ∈ G the one-to-one mapping

φ : U/EG →
r∏

j=1

U/Efj

where each [u]G is the unique intersection of the classes [u]fj
for each fj in

G such that each [u]G is associated with the sequence of numbers
(
fj(u)

)
uniquely determined in

∏
fj∈G U/Efj and denoted by φ([u]G). For the map-

ping φ to be onto the factors in G have to be pairwise unlinked.

Since in experimental biology, we may not be sure about the extend of the
linkage between factors a priori, a measure of the magnitude between two
factors f and g in an object u is desirable. From the preceding argument such
a measure can be regarded as the number of distinct g-classes which intersect
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[u]f . Each of these distinct g-classes [u′]g gives rise to a distinct element
in the set U/Efg and hence a distinct point (f(u′), g(u′)) in the Cartesian
product U/Ef × U/Eg. If f and g are totally linked, there is only one such
point; if they are unlinked, then this set is of the form {[u]f} × U/Eg. Rosen
therefore defines the magnitude of linkage by the number of points of the form
(f(u), g(u′)) in U/Ef × U/Eg which are actually representatives of elements
in U/Efg. If the spectrum g(U) is finite, the magnitude of the linkage of g to
f at object u is defined as

L(f, g) =
η
(
φ([u]f ) ∩ [u′]g

)
η
(
g(u)

) (3.46)

where u is fixed and u′ is variable over U . Finally, another way of measuring
the linkage between g and f can be based on replacing a given object u by a
new object u′, such that f(u) − f(u′) but g(u) = g(u′).

The key to our ability to understand the world around us is to form relations
between percepts matching those between objects in the real world. In the
formal approach presented here percepts are represented by abstract objects
and/or concepts. The choice of factors to observe a system or the change to a
system, observing its response, makes the scientific enquiry, captured by the
modelling relation, an art.

3.5.4 Double Vision: Evidence Theory and Rough Sets

In the present section we are going to explore affinities of the factor-space
approach to evidence theory (Dempster-Shafer) or rough set theory (Pawlak).
We are interested in such link for two reasons. Evidence theory provides
a way of allowing for partial (probabilistic) evidence in the description of
concept C in U via its extension A. Secondly, rough set theory is said to have
been successful in data mining applications and hence these results could
be beneficial in implementing the fuzzy relational factor space approach and
applying it to biological databases.

Looking first at evidence theory [69], U is referred to as a frame of discern-
ment ; a set of alternatives perceived as distinct answers to a question. Let
P(U) denote the set of subsets of U (the power set). Whereas the degrees of
membership Ã(u) are specifying the relevance of u to concept C, (cf. Section
3.1.2), partial evidence in terms of probabilities is modelled in evidence theory
by considering a mass distribution (probability assignment) m : P(U) → [0, 1]
where m(∅) = 0 and

∑
A : A⊆U m(A) = 1. These are in fact axioms defining a

probability measure. m(A) is understood as a measure of belief committed to
A. If m(A) is not known exactly but partial evidence exists for subsets B of
U , the following two real-valued functions describe the belief and plausibility
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of A, respectively :

Bel : P(U) → [0, 1]

A �→ Bel(A) .=
∑

B : B⊆A

m(B) .

and

Pl: P(U) → [0, 1]

A �→ Pl(A) .=
∑

B : B∩A �=∅
m(B) .

Whereas the book by Shafer [69] is a comprehensive introduction to the the-
ory, the book by Kruse and Schwecke [31] provides an extensive treatment of
evidence theory, its relation to possibility theory and their implementation in
knowledge-based systems. The generalisation of belief functions to deal with
fuzzy sets Ã is described in [81].

In his book, Shafer also discussed ways of comparing two frames of dis-
cernment and in particular how one frame can be obtained from another by
refinement. We find that our discussion on linkage in Section 3.5.2 can be
rephrased in evidence theory. What has been a discussion about additional
factors is now the study of frames that are different but compatible. A frame
being compatible means that it does not provide contradictory information
but instead refines in some way the description of the concept of concern.
What follows is a mathematical representation of how one frame of discern-
ment U ′ is obtained from another frame of discernment U by splitting (refin-
ing) some or all of the elements of U . Following closely Shafer’s description
we introduce the mapping Γ which for each u ∈ U , defines a subset Γ({u}) of
U ′. The sets Γ({u}) are required to be non-empty, Γ({u}) = ∅, and together
form a partition, that is, the sets Γ({u}) are disjoint, non-empty and their
union form U ′. The mapping (cf. (3.44))

Γ: P(U) → P(U ′)

A �→ Γ(A) =
⋃

u∈A

Γ({u})

is called a refining and U ′ is said to be the refinement of U . Equivalently, U
may be seen as the coarsening of U ′ as illustrated in Figure 3.19. In terms of
two factors, f and g, we then have

Γ({u}) = Γ
(
[u]f
)

= [u]g .
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U ′

Γ({u1})

Γ({u3})

Γ({u2})

Γ({u4})
Γ({u6})

Γ({u5})

Fig. 3.19 A coarsening U = {u1, . . . , u6} of frame U ′ [69].

A frame of discernment, U , is understood as a set of alternative propositions
perceived as distinct conclusions to a hypothesis. If the refinement Γ exists,
U and U ′ are said to be compatible. The concept of refinement is a tool to
compare two frames. On the other hand, coarsening is equivalent to clustering
elements by building a partition on U . Therefore considering only one factor
f , U/Ef is a coarsening of U , and U is a refinement of U/Ef . Then for
[u]f ∈ U/Ef , Γ([u]f ) defines a subset of U and for any B ⊂ U/Ef ,

Γ(B) =
⋃

[u]f∈B

Γ
(
[u]f
)

.

In the context of comparing two compatible frames, associated with a refine-
ment Γ: P(U) → P(U ′), Shafer also defines for a subset A of U the following
two sets, called inner and outer reduction respectively :

R∗ = {u ∈ U : Γ({u}) ⊂ A},
R∗ = {u ∈ U : Γ({u}) ∩ A = ∅} .

In our context, using factor f , inducing the equivalence relation Ef on U , we
therefore define for a subset A of U , two subsets of U/Ef , the inner reduction

E∗(A) = {[u]f : [u]f ⊆ A} (3.47)

and outer reduction

E∗(A) = {[u]f : [u]f ∩ A = ∅} . (3.48)

As illustrated in Figure 3.20, if we take A to be the grey shaded subset of
U , then

E∗(A) = {[u3]f},
E∗(A) = {[u1]f , [u2]f , [u3]f , [u4]f} .
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A

[u1]f

[u3]f

[u2]f

[u4]f
[u6]f

[u5]f

Fig. 3.20 Inner and outer reductions [69].

Reminding ourselves of the meaning of Ã ∈ F(U) being the extension of a
concept C in U (the biological phenomena in question), we find that for the
crisp set A ∈ P(U) the pair E∗, E∗ of subsets of U/Ef represents in fact
an approximation of A from the outside and inside respectively. With the
factor f being our only way of practically describing the concept C in terms
of measurements, we can only observe the quotient set (coarsening) U/Ef of U
w.r.t. Ef . Note also that an equivalence class [u]f consists of those elements
u′ of U for which f(u) = f(u′) and f(u), f(u′) ∈ X(f).

In Definition 7 on page 59, we introduced a measure of coincidence of the
actual Ã with the representation extension f(Ã) of C in X(f) which we can
observe via f . With E∗ and E∗ we have now a similar way to discuss the
approximation of a (crisp) subset A. In [18], Dubois and Prade point out that
the pair of subsets E∗(A), E∗(A) of U/Ef obtained from Shafer’s inner/outer
reductions, are in fact what Pawlak [54] later called a rough set. In rough
set theory, E∗(A) (resp. E∗(A)) are called upper (lower) approximation of
A by Ef . E∗(A) ⊆ E∗(A) and whenever E∗(A) = E∗(A), A ⊂ U cannot be
perfectly described because of the indiscernibility of objects in U . Rough set
theory has claimed success in data mining applications [55, 56, 83, 84] and it
may therefore be useful to familiarise ourselves with its terminology in order
to investigate its application to biological databases.

In rough set theory, the pair (U, Ef ) is called an approximation space.
In the approximation of A, the set difference E∗(A) − E∗(A), defined by
E∗(A) ∩ (E∗(A)

)c is called boundary region. For the example depicted in
Figure 3.20 we have

E∗(A) − E∗(A) =
{
[u1]f , [u2]f , [u3]f , [u4]f

} ∩ {[u1]f , [u2]f , [u4]f , [u5]f , [u6]f
}

=
{
[u1]f , [u2]f , [u4]f

}
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A rough set membership function of A is then defined ∀u ∈ U by the mapping

µr
A(u) =

#
(
[u]f ∩ A

)
#
(
[u]f
) (3.49)

where #(·) denotes the cardinality, assuming a finite set U . We find that

µr
A(u) =


1 if u ∈ E∗(A)
0 if u ∈ U − E∗(A)
0 ≤ µr

A(u) ≤ 1 if u ∈ E∗(A) − E∗(A) .

The membership function µr
A(u) describes the degree of possibility of u be-

longing to A in U . The relationship between rough set theory and possibility
theory (fuzzy sets) is discussed in [18]. In particular, the upper and lower
approximations E∗(A), E∗(A) of a fuzzy set Ã by E are fuzzy sets of U/E
with membership functions defined by

µE∗(A)

(
[u]f
)

= sup
{
µÃ(u) : Γ([u]f ) = [u]f

}
µE∗(A)

(
[u]f
)

= inf
{
µÃ(u) : Γ([u]f ) = [u]f

}
where µE∗(A)([u]f ), (µE∗(A)([u]f )), is the degree of membership of [u]f in
E∗(Ã), called a rough fuzzy set. The accuracy of approximation of A by a
rough set is calculated by

A(A) =
#
(
[u]f ∈ E∗(A)

)
#
(
[u]f ∈ E∗(A)

) =
#
(
[u]f ⊂ A

)
#
(
[u]f ∩ A = ∅) (3.50)

with #
(
[u]f ∈ E∗(A)

)
being non-empty such that 0 ≤ A(A) ≤ 1. The concept

of linkage between two factors and a measure of accuracy like (3.50) are very
important for formal modelling as only if we have achieved a synthesis with
experimental data and with the elimination of information about variables
(factors) that are irrelevant for the “sufficient” description of the phenomena,
we achieve real understanding. If these elements are not given in a conceptual
framework, the model will fail to ‘explain’ the phenomena and at best suggest
that observed events have a reason.

Studying pairs of factors, in sections 3.1 and 3.5.2 we studied the limits of
discernability of a subset of objects A belonging to the domain, or universe
U . The question has been how well subset A (resp. Ã) can be characterised
in terms of the information available from using factors f evaluating objects
in universe U . The limits of discernability of objects are due to equivalence
relation Ef induced by f . The factor f plays a central role in our model real-
ising the modelling relation (Fig. 2.1), describing the uncertainty associated
with measurement and observation.
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To discover cause-effect relationships among two factors f and g in F we
consider the quotient set U/Eg of U w.r.t Eg. The lower approximation of
the equivalence class [u]g ∈ U/Eg in terms of equivalence classes generated
by Ef , is the set

E∗([u]g) =
{
[u]f : [u]f ⊆ [u]g

}
. (3.51)

Then a measure for the linkage between factors f and g (cf. (3.46), pg. 100)
is given by

L(f, g) =
#
(∪{E∗([u]g) : [u]g ∈ U/Eg}

)
#(U)

. (3.52)

The measure 0 ≤ L(f, g) ≤ 1 describes the dependency of g on f such that
for L(f, g) = 0, f and g are considered to be independent. A value close
to 1 suggests a cause-effect relationship between f and g representing the
conditions in which gene-expression, protein-protein or gene-gene interactions
are analysed.

Remark. Note that in the present section we have considered crisp sets A,
which are only a special case of a fuzzy set Ã introduced in Section 3.1. The
ideas presented so far are directly applicable to nominal (categorical or qual-
itative, boolean or integer-valued) factors for which an equivalence relation
can be established without considerations of an error or tolerance bound.
If however, X(f) = R, measurements are in a continuous space, we have
the situation discussed in Section 3.5.1, leading to a non-transitive relation
(3.43). Alternatively, we may quantise the X(f) such that comparisons such
as f(u) = f(u′) become again binary-valued.

3.6 SUMMARY: THEORY IN PRACTISE

Molecular biology and the biotechnology it has created, has generated vast
amounts of information about properties of components and their involve-
ment in various biological processes. However, relatively little synthesis of
basic biological facts has occurred so far and the post-genome challenge is to
be able to interpret and use the genome data: focus is shifting from molecular
characterisation to understanding functional activity. The historical roots of
analytical, reductionist paradigms are likely to be the cause for a lack of syn-
thetic, integrative thinking required to acquire such knowledge. The research
underlying the present text has been the attempt to escape the vicious circle
and to contemplate about the questions of what genes do, how they interact,
and whether or how integrated models of such phenomena are possible.

The fuzzy relational factor space approach developed has been based on
a phenomenological theory of gene function and gene expression. That is,
the model is based on the phenomenology of observations (measurements)
rather than physical models of their causes on a molecular level. The interface
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between an experimental context and the concept of gene function has been
formally established by means of factors. A factor f induces an equivalence
relation Ef on U and hence generates a partition in form of the quotient set
U/Ef . On the basis of an one-to-one correspondence between the quotient set
U/Ef and the image set or range f(U) we are able to discuss the effectiveness
of one factor describing the biological context and the effect of additional
factors by means of equivalence classes.

Table 3.2 Summary of biological aspects in genome analysis and their formalisation using
a fuzzy relational factor-space approach.

Biological Concept Formalisation

Genome study, experiment Description frame (U, C, F ).
Sequence, gene Object u ∈ U .
Context Concept C ∈ C.

Gene function, “phenomenon” Extension of C in U : Ã ∈ F(U).
Observable aspect of gene expression Factor f ∈ F .
Representation space of f State space X(f).
Collection of factors describing C Factor Space {X(f)}f∈F .

Measurement, characterisation State f(u) ∈ X(f).

Gene expression, “symptom” Repres. ext. of C in X(f): f(Ã) ∈ F(X(f)
)
.

Known gene expression, observation B̃(f) ∈ F(X(f)
)
.

Modelling relation: Ã vs. B̃(f) Feedback extension of C w.r.t. f : f−1
(
B̃(f)

)
.

The description frame (U, C, F ) is suited for a variety of problems and
the interpretation or semantics of the objects in U and factors in F is of
utmost importance. In most cases, we shall study gene function and expression
by means of some changes which, for instance, may be caused by genome
modification. A collection of modifications to genes is called a strain. A
strain usually leads to variations in the phenotype of the organism. Each
modification to a gene in a strain is referred to as an allele which in turn are
described as either mutants or wild type. The ‘wild type’ characterises the
cell or organism that displays the ‘typical’ phenotype and/or genotype while
a mutant refers to the altered or changed DNA. If a gene is considered to be a
concept C ∈ C, alleles, that is, alternative forms of a gene are then represented
by C. We may therefore use the approach in comparative studies (focussing
on structural genome properties such as gene location, synteny – primarily
relying on sequence information) as well as for the study of gene-expression
data. These data are obtained from arrays in which each cell in an array can
for example represent an ORF that is expressed in a certain context which
provides clues to the function of the gene. For instance, in yeast, the context
could be the study of genes effecting its growth. Transcriptome data measure
an intensity of flourescent or radiating material, proportional to the level of
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expression of the particular gene in question. The factors in a description
frame (U, C, F ) could therefore

• describe different conditions (contexts) in which gene expression levels
are measured,

• reflect different experimental techniques in obtaining these measure-
ments,

• represent measurements of the same context but at different levels (Tran-
scriptome and Proteome, cf. table 1.1).

In any of these cases, the relationship or linkage between factors is of interest.
While in Sections 3.1 and 3.5.2 we investigated factors w.r.t the information
they represent and the effect of additional factor. In Section 3.5.4 however
we introduced a measure of linkage describing causal entailment. Though
the concepts and ideas, introduced in previous sections, lead to models which
are sets of rules, statements about local associations or dependencies among
variables, we acknowledge that the causal problem28 is an ontological, not a
logical question, it cannot be reduced to logical terms but it can be analysed
with the help of formal reasoning. In the words of Bertrand Russell: “Infer-
ences of science and common sense differ from those of deductive logic and
mathematics in a very important respect, namely, when the premises are true
and the reasoning correct, the conclusion is only probable.”

So far, we have discussed ‘practical problems’ but only in theory. We have
yet to develop means to identify, model and quantify theoretical concepts by
means of sampled data. Let us summarise some formal aspects of the fuzzy
relational factor-space model which are relevant to this task :

• An object is relevant to a factor if there exists a state f(u), the evalua-
tion of a factor on object u ∈ U .

• On page 53, we started off with the assumption of V (u) = {f ∈ V : R(u, f) =
1} and U is chosen to coincide with D(f) = {u ∈ U : R(u, f) = 1}.

• Throughout Section 3.1 and Section 3.2, a subset F ⊂ V was assumed
to be sufficient, i.e., (3.4), ∀u1, u2 ∈ U, ∃f ∈ F : f(u1) = f(u2). (See
page 55).

• A fact was formalised by the extension of concept C in U , (3.5), denoted
Ã. The extension of C in U is a fuzzy set and Ã(u) describes the degree
of relevance of u w.r.t C. (See page 56).

28As a definition of a ‘causal law’, which is not strictly bound to any specific philosophical
perspective, we shall understand by a ‘causal dependency’ a general proposition by virtue
of which it is possible to infer the existence of an event from the existence of another.
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• We accepted that we will only be able to analyse a natural system
(i.e., C or Ã) by means of observable facts leading to the representation
extension of C in X(f), (3.6), on page 58 : f(Ã)(x) =

∨
f(u)=x Ã(u)

such that Ã ⊆ f−1(f
(
Ã)
)
.

• As Ã is generally not known, we defined the feedback extension, (3.13),
of C w.r.t. f based on a known representation extension B̃(f) on X(f)
such that the modelling relation could be described by a rule IF f is B̃,
THEN C is Ã.

• The intension of a concept C is its description by means of a family of
independent factors G ⊂ F . The feedback extension of Ã by means of
independent factors in G defined, on page 64, the G-envelope, denoted
Ã[G].

• For known representation extensions B̃(fj), fj ∈ G, we can approximate
the representation extension of C on X(f), f =

∨
fj , by means of the

direct product, (3.22), B̃ ≈ ∏r
j=1 B̃(fj). (See page 66). This required

the cylindrical extension, ↑f
fj

B̃(fj), (3.15), (See page 63).

• The intersection of the cylindrical extensions ↑f
fj

B̃(fj) then forms our

model of the extension of C in U via (3.23) : Ã(u) ≈ ∧r
j=1 B̃(fj)(fj(u))

which may also be viewed as the rule IF fj is B̃(fj), THEN C is Ã. (See
page 66).

• Section 3.2 was concerned with approximate (rule-based) reasoning with
facts represented by fuzzy sets.

• Section 3.5, reconsidered subfactors, linkage between factors. If factor g
is linked to factor f at u, we can predict information about g(u) via f .

• Section 3.5.4 demonstrated how probabilistic uncertainty can be inte-
grated into the model using Bayesian belief functions.

• Section 3.5.4 also described the formal relationship of factor spaces,
evidence theory with rough set theory and how cause-effect relationships
can be discovered and quantified using (3.52).

Throughout the present text, the availability or use of more than one factor
has been discussed in various different perspectives:

• A family of state spaces {X(f)}f∈F defines a factor space, for which the
set of factors F defines a Boolean algebra. See Definition 3, page 54.

• The extension Ã of concept C in the universe of discourse U , together
with the representation extension f(Ã) defines a fuzzy graph G̃ =

∨
k f(Ãk)×

Ãk.
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• Using cylindrical extension we can get an approximate representation
extension ↑f

g g(Ã) of C w.r.t. a more complicated factor f , by using
representation extension g(Ã) of C w.r.t. a simpler subfactor g. See
(3.16) on page 63.

• Let G ⊂ F be a family of independent factors, then Ã[G](u) =
∧

j fj(Ã)(fj(u))
defines the G-feedback extension of Ã. The extension of Ã can then be
approximated by Ã(u) ≈ ∧r

j=1 B̃(fj)(fj(u)). See (3.18) on page 64, and
(3.23) on page 66.

• The extension of C in U can be represented as a set of if-then rules:
IF fj is B̃(fj), THEN u is Ã. The link to approximate reasoning using
fuzzy systems may prove useful in implementations.

• A factor f induces an equivalence relation Ef on U and hence partitions
U . Comparing the overlap between two quotient sets U/Ef and U/Eg,
the concept of linkage between two factors f and g was developed in
the context of two independent descriptions of the same concept. If g
is linked to f , we can use f to make predictions about g. The mea-
sure of linkage L(f, g) can be used to identify cause-effect relations or
correlations between factors. See Section 3.5.

We emphasised on the outset, that for an observer-based or phenomeno-
logical model it is of utmost importance to be precise about uncertainty. As
Karl Popper demonstrated, scientific theories deal with concepts not reality.
Formula and theories are so formulated as to correspond in some ‘useful’ way
to the real world. However, this is an approximate correspondence. Mathe-
matical forms say by themselves nothing about material reality. Any objective
content lies entirely in the (biological, physical, ..) meaning attached ad hoc
to the symbols appearing in mathematical formulations. There is no wrong
theory, model etc. instead one may be more useful or convenient than another.
The quest for precision is analogous to the quest for certainty and both pre-
cision and certainty are impossible to attain. It is therefore important to be
precise about uncertainty, not to ignore it but to incorporate it in our mod-
els and theories. The presented approach addressed model uncertainty and
uncertainty of the modelling process in the following ways:

Uncertainty in Modelling:

• The intension of a concept describes the properties of a concept in
terms of factors. The extension of a concept is the aggregate of
objects characterising it.

• Knowledge about extension Ã of concept C is gathered via mea-
surements f(u) leading to the representation extension f(Ã) in
X(f). See Definition 6.

• Fuzziness: The relevance of an object u ∈ U w.r.t concept C ∈ C
is expressed by fuzzy set Ã in U . See (3.5) on page 56.
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Model Uncertainty:

• A measure of coincidence (Def. 7), is used as a means to quantify
the ‘precision’ to which Ã is described by f(Ã).

• An approximate description of a set A in U is possible in the setting
of equivalence relations and rough set theory. The quality of the
approximation A(A) of A by a rough set is determined by (3.50),
page 104. As shown by Dubois and Prade, the rough set approach
can be extended to fuzzy sets Ã.

• Partial evidence about A in U can be integrated by means of a
probability measure m : P(U) → [0, 1] leading to evidential reason-
ing. See Section 3.5.4.

Uncertainty in Data and Measurement:

• We allowed for nominal (categorical or qualitative) data as well as
real numbers.

• Imprecise (interval valued) data can be considered. The member-
ship function B̃ in X(f) is estimated as the one-point coverage
function (cf. [78, 37]).

• For sampled data, assumed to follow a probability law, a bijec-
tive transformation between histograms and possibility distribu-
tions can be used to determine fuzzy set B̃ (cf. [77]).

• In Section 3.5.1 measurement errors were introduced. For an er-
ror or tolerance bound ε two evaluations of a factor on two ob-
jects u and u′ are indistinguishable and induce a relation Rε =
{(u, u′) : |f(u)−f(u′)| ≤ ε} which in not transitive. Non-transitivity
motivates fuzzy relations.

We have shown that a comprehensive (mathematical) theory for genome
analysis can be realised (on paper...) using fuzzy mathematics and system
theory. We considered two particular aspects: the study of genome structure,
location and dependency of genes based primarily on sequence information
and the study of gene function using gene-expression data. Our approach is
characterised by

� Scalability: The concept of factors spans a range of magnitudes (see
Figure 1.1).

� Flexibility: The theory is applicable to a wide range of problems.

� The possibility to discuss the modelling process itself; hence allowing us
to be precise about uncertainty.

For a software implementation we established formal relationships between a
factor-space model and
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� Fuzzy Rule-Based Reasoning,

� Rough Set Theory,

� Evidence Theory.

Each approach to knowledge representation for itself as hybrid paradigms have
lead to a wide range of successful applications and hence promise a feasible
way forward to verify the presented fuzzy relational theory with real data
from biological databases.

The formal mathematical model was developed in the context of the mod-
elling relation (Figure 2.1, page 23) describing the process by which we model
natural systems and reason about natural laws. The modelling relation how-
ever is more than merely a representation of modelling, it represent the sci-
entific approach in general and the process by which individuals learn in par-
ticular. In Section 2, the concept of ‘differentiation’ was described as central
to science, and modelling. Previous discussions Section 3.5, considered equiv-
alence relations arising from observation only, i.e., different modes of obser-
vation by means of more than one factor to discern objects. An equivalent
approach is to observe a system with the same factor but under changed condi-
tions. Removing parts of system, perturbation or excitation produce a change
which allows us to study a system’s behaviour. The discrepancy between be-
haviours helps us to determine the function of a systems or its components.
The discrepancy of components helps us to determine the system’s structure.
The experiments involved may be simply comparative, in space or in time.

The dualism of understanding by observation (discerning) and manipula-
tion through changes is an interesting aspect for the history of science. Biology
itself currently undergoes a transition away from a field of observation and con-
templation. Its researchers have been primarily fascinated and motivated by
the complexity of behaviour and structure while recently biological research
is argued for with the possibility of manipulation. The excitement, marvel
and respect, arising from contemplating about nature is well summarised by
Arthur Schopenhauer’s observation that ‘anyone can squash a bug but all
professors of this world couldn’t build one’.

In the present chapter, we tried to develop a conceptual framework of ge-
nomics. The two central questions of genomics, regarding the genes’ biological
functions, i.e., relationships between groups of genes, and the analysis of inter-
actions between genes and proteins, both have their equivalent in mathemat-
ical equivalence relations and linkages between observable factors. The aim
of a conceptual framework of genomics, composed of these two mathematical
concepts, is to help explain unknown relationships, predict or simulate and
to help design experiments, telling us which variables to measure and why.
As the mathematician David Hilbert once said, ‘there is nothing more prac-
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tical than a good theory’. And yet we must be aware of Albert Einstein’s
caution that ‘as far as the laws of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not refer to reality.’ Although
the mathematical structures we employ to encode natural systems, are not in
themselves the reality of the natural world, I believe that they are the only
key we posses to that reality.



4
Systems Biology

In this chapter we discuss whether systems biology is the reincarnation of
systems theory applied in biology. There is necessarily some repetition with
parts of previous chapters in order to lead us to Rosen’s Metabolism-Repair
(M,R)-systems which form the main focus of this chapter1.

With the availability of quantitative data on the transcriptome and pro-
teome level, there is an increasing interest in formal mathematical models of
gene expression and regulation. International conferences, research institutes
and research groups concerned with systems biology have appeared in recent
years and systems theory, the study of organization and behavior per se, is
indeed a natural conceptual framework for such a task. This is, however, not
the first time that systems theory has been applied in modelling cellular pro-
cesses. Notably in the 1960s systems theory and biology enjoyed considerable
interest among eminent scientists, mathematicians and engineers. Why did
these early attempts vanish from research agendas? Here we shall review the
domain of systems theory, its application to biology and the lessons that can
be learned from the work of Robert Rosen. Rosen emerged from the early
developments in the 1960s as a main critic but also developed a new alter-
native perspective to living systems, a concept which deserves a fresh look in
the post-genome era of bioinformatics.

1Parts of this chapter have been published in [80].
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4.1 OVERVIEW

We see an ever-increasing move towards inter and trans-disciplinary attacks
upon problems in the life-sciences. The reason is the diversity of organiza-
tion and behavior in natural systems. The size of data sets and complexity
of patterns hidden in them has led to a renewed interest in mathematical
techniques that allow us to identify formal models of natural systems. The
next step in the post-genome era is not simply assigning biological function to
identified genes but to analyze the organization and control of genetic path-
ways. These pathways are of course dynamic systems; non-linear, adaptive
and anticipatory systems to be precise.

Systems biology is an emerging field of biological research that aims at a
system-level understanding of genetic or metabolic pathways by investigating
interrelationships (organization or structure) and interactions (dynamics or
behavior) of genes, proteins and metabolites. Recently, international confer-
ences, institutes [25, 30], research groups and articles [30], focussing on sys-
tems biology, have appeared. The reason for this renewed interest in systems
thinking is the rapid technological advance in the area of genomics. Genomics
is the field of biological research taking us from the DNA sequence of a gene
to the structure of the product for which it codes (usually a protein) to the
activity of that protein and its function within a cell and, ultimatively, the
organism. Crossing several scale-layers from molecules to organisms, we find
that organisms, cells, genes and proteins are defined as complex structures
of interdependent and subordinate components whose relationships and prop-
erties are largely determined by their function in the whole. This definition
coincides with the most general definition of a system as a set of components
or objects and relations among them [33]. Systems theory is then the study
of organization and behavior per se and a natural conclusion is therefore to
consider systems biology as the application of systems theory to genomics.

The idea to use systems theory in biology is however not new, notably
in the 1960’s a number of eminent researchers took a systems approach to
‘search for general biological laws governing the behavior and evolution of
living matter in a way analogous to the relation of the physical laws and non-
living matter’ [1, 41, 4]. It was the transfer of ideas from physics to biology and
the perception that biological systems are a special case of physical systems
that led to criticism which cumulated in the most comprehensive discussion
of the limitations of ‘classical’ systems biology in the work of Robert Rosen
[59, 60, 61, 62]. In the following sections, we review the need for mathematical
modelling, the usual approaches to modelling biological systems and problems
arising from them. In this paper we will focus on Rosen’s relational biology,
‘metabolic-repair’ (M,R)-systems, his discussion of anticipatory behavior and
causality. We show that, for metabolism and repair defined as mappings,
replication is implicitly defined. Anticipatory behavior or intrinsic control is
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realized through the boundary conditions of the repair and replication map.
Finally, it can be shown that the category which defines the (M,R)-system
is rich enough in entailment to allow the repair and replication maps to be
entailed by something and hence avoiding a finality argument when discussing
causal entailment.

4.2 THE CASE FOR MATHEMATICAL MODELLING

The engineering sciences are a good example of how mathematics has been
used effectively in a wide range of applications. One could argue that many
biologists find themselves now in a similar situation to engineers about six
decades ago when they were faced with the need to analyze and control com-
plex dynamic systems for which empirical means are inappropriate. Also,
both species, engineers and biologists are not born as mathematicians. En-
gineers have learned to use mathematics towards their ends and a symbiosis
of researchers from both areas should allow both to advance successfully. For
the engineer, the underlying strategy is to represent the natural system by
a set of random- and/or state-variables and then to investigate relationships
among those variables within a formal system (Figure 2.1). This approach
cumulates into a philosophy whereby, as Henri Poincaré suggested, “the aim
of science is not things in themselves but the relations between things; outside
these relations there is no reality knowable.”[51, page xxiv]

The importance of what we now call systems biology was pointed out by
Norbert Wiener in his book Cybernetics, on Control and Communication in
the Animal and the Machine, published in 1948 [76]. In 1970, cybernetics or
feedback regulatory mechanism on a molecular level were described by Jacob
and Monod [28, 45] who investigated regulatory proteins and the interactions
of allosteric enzymes in particular. Organisms as a whole are self-regulating,
adaptive and anticipatory systems and numerous examples have been pub-
lished. While the control of physiological mechanisms requires the processing
of information, the actual processes are sustained by energy obtained from the
environment. The acquisition, transfer and utilization of energy has subse-
quently been seen as a major component in the analysis of biological systems
[75]. Systems biology has a past and the the books by Ashby [1] and Berta-
lanffy [4] are a ‘must read’ for anyone attracted to the area of systems biology.
Bertalanffy provides a general introduction of system theory but also reviews
applications in biology with a discussion on models of open systems and or-
ganisms considered as physical systems. For an up-to-date account of the
systems sciences, including a historical perspective, the reader is referred to
Klir’s book [33] and the Principia Cybernetica Web [52]. Specifically referring
to applications in biology, the volume Systems Theory and Biology edited by
Mihajlo Mesarović [40] is valuable. Mihajlo Mesarović initiated and developed
one of the most comprehensive mathematical systems theories [42, 43]. The
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most extensive discussion of systems thinking in biology is James G. Miller’s
book on a ‘general theory of living systems’ [44]. Miller provides the most
detailed account of living systems in eight levels of increasing complexity -
from molecules to cells, organs, organisms and societies. Reality is described
as a continuous dynamic process, best represented as a system of systems
and natural systems are studied as a structure of processes evolving through
spatio-temporal events. The conclusion is that despite the endless complexity
of life, it can be organized and repeated patterns appear at different levels.
Indeed, the fact that the incomprehensible presents itself as comprehensible
has been a necessary condition for the sanity and salary of scientists.

4.3 CAUSING PROBLEMS

The principal purpose of mathematical models applied in the natural sciences
is to identify sets of rules, statements about local associations or dependen-
cies among variables. In genomics, mathematical models may be expected to
not only describe associations but also to explain dependencies among genes.
A ‘causal law’, which is not strictly bound to any specific philosophical per-
spective, is then understood as a ‘causal dependency’ a general proposition
by virtue of which it is possible to infer the existence of an event from the
existence of another. It is the explanatory aspect of mathematical modelling
which leads us to the limits of systems biology but it is also the most exciting
aspect of the developments in the post-genome area. We find that the ‘causal
problem’ is an ontological, not a logical question, it cannot be reduced to
logical terms but it can be analyzed with the help of formal reasoning. In the
words of Bertrand Russell: “Inferences of science and common sense differ
from those of deductive logic and mathematics in a very important respect,
namely, when the premises are true and the reasoning correct, the conclusion
is only probable.” [63, page 353]

The first comprehensive theory of causation was Aristotle’s. It distinguishes
four types of cause: the material cause (or stuff), the formal (formative) cause
(or shape), the efficient cause (or force) and the final cause (or goal). For a
formal logical system, given an ‘effect’, say proposition P , axioms correspond
to the material cause of P , production rules are understood as the efficient
cause of P and the specification of particular sequences of production rules or
an algorithm is identified as the formal cause. For a dynamic system a state
can itself be entailed only by a preceding state. If for a chronicle {(n, f(n))}
we ask why the nth entry gives the particular value f(n), the answer is because
of the initial condition f(0), i.e., f(0) is the material cause; and because of a
state transition mapping T for which f(n + 1) = T (f(n)), i.e., T corresponds
to the efficient cause; and because of exponent n from which f(n) is obtained
by iterating the transition map n times beginning with f(0); i.e., n refers to
the formal cause. As shall be discussed in further detail below, in Rosen’s
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relational biology, for a component f : A → B, such that a �→ f(a), the
question “why f(a)?” is answered by “because f” and “because a”. In other
words, “a entails f(a)” or formally f ⇒ (a ⇒ f(a)). Here f corresponds
to the efficient cause of (“effect f(a)”), and a refers to the material cause
of f(a). One of Rosen’s achievements is that he introduced a formalism rich
enough in entailment, to allow final causation without implying teleology. The
conceptual framework in which he developed his relational biology is category
theory [58, 36].

4.4 TOWARDS A RELATIONAL BIOLOGY

The problems of applying systems theory in biology can be summarized by
a) the difficulty of building precise and yet general models, b) the ‘openness’
of biological systems, the fact that these systems are hierarchical and highly
interconnected, and c) that models based on differential equations cannot
represent anticipatory behavior as present in cellular processes.

Modelling systems with sets of first-order differential equations,

dfj

dt
= φj

(
f1, . . . , fr

)
, j = 1, . . . , r

the rate of change of observable (state-variable) fj depends only on present
and past states but cannot be dependent upon future states. In other words,
these systems can only be reactive but not anticipatory [60]. The reactive
paradigm embodies one of the most important assumptions of science, effects
should not precede their causes. And yet simple biological systems suggest the
notion of self-reference, an implicit model of knowledge of itself. The following
example of a biosynthetic reaction network is due to Robert Rosen [60] (See
also [12]). Let metabolites Ai represent the substrates for the enzyme Ei that
catalyzes it at stage i. As illustrated in Figure 4.1, the initial substrate A0

activates the enzyme En (i.e., increases its reaction rate). Under the foregoing
hypotheses, with concentration A0 at time t the concentration of An at some
future time is predicted in order to maintain homeostasis in the pathway. The
ambient concentration of A0 serves as a predictor, which in effect ‘tells’ the
enzyme En that there will be an increase in the concentration An−1 of its
substrate, and thereby pre-adapts the pathway so that it can deal with the
expected changes.

The second problem faced by representing cellular processes with sets of
linear differential equations is captured by Zadeh’s uncertainty principle [34]:

As the complexity of a system increases, our ability to make pre-
cise and yet significant statements about its behavior diminishes until
a threshold is reached beyond which precision and significance (or rel-
evance) become almost exclusive characteristics.
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A0 A1 · · · An−1 An

E1 E2 En−1 En

Fig. 4.1 An anticipatory chemical reaction network.

The problem is that perturbations to cells have multi-gene / multi-transcript
/ multi-protein responses, ‘closing’ the system, i.e., restricting the model to
a small set of variables inevitably leads to an often unacceptable level of
uncertainty in the inference.

The tradition of describing cellular systems in terms of energy and masses
with forces acting on them is rooted in the realm of Newtonian mechanics.
In this context a system is closed by internalizing external influences through
added state variables and more parameters to the system. Take for example
the simplest of dynamical system, a single particle moving along a line under
the action of a constant force, the motion is governed by Newton’s Second
Law, which defines the force F acting on a mass point m to be the rate of
change of momentum (m · v) :

F = m · dv

dt
= m · d2x

dt2
,

with v denoting the velocity which, in turn, is defined as rate of change of
position or displacement x from some origin of coordinates. Conceptual clo-
sure amounts to the assumption of constancy for the external factors and the
fact that external forces are described as a function of something inside the
system:

F (x, v) = −θ · x ,

where θ is a parameter specific to the system under consideration. Rewritten
as a set of first-order differential equations, this system has two state-variables,
f1 denoted x and f2 denoted by v, such that

dx

dt
= v and

dv

dt
= − θ

m
· x .

The model is deterministic in that the object’s state at time t is fully de-
termined from the initial conditions (if known) and therefore permitting the
prediction of future states by integrating the set of differential equations. New-
ton’s laws of motion, which state that the acceleration of an object is directly
proportional to the force acting on it and inversely proportional to its mass,
imply that the future behavior of a system of bodies is determined completely
and precisely for all time in terms of the initial positions and velocities of all
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the bodies at a given instant of time, and of the forces acting on the bodies.
These forces may be external forces, which arise outside the system inves-
tigated, or they may be internal forces of interactions between the various
bodies that make up the system in question. Rosen described the response
of a system to forces as the ‘inertial’ aspect while the exertion of forces by
the system corresponds to the system’s ‘gravitational’ aspect. He suggested
a shift attention from exclusively ‘inertial’, i.e., structural aspects such as the
DNA molecule and its sequence, to ‘gravitational’ concepts. Instead of con-
cerning us with material causation of behavior, manifested in state sets, he
suggested formal and efficient causations as the focus of attention. Such a shift
of perspective is exemplified in category theory, Rosen’s preferred language
to discuss these problems in the abstract, by studying mappings between sets
(of objects) rather than analyzing the objects themselves.

Phenotypes are what we can observe directly about organisms. They are
tangible, material properties that we can measure, can compare and experi-
ment with. The phenotype is seen as being ‘caused’ or ‘forced’ by the geno-
type. As Rosen points out in [62], the phenotype–genotype dualism is allied to
the Newtonian dualism between states and the forces that change the states.
In Aristotelian language, the states represent material causation of behavior,
while the forces are an amalgam of formal and efficient causation. Biologi-
cal phenotypes, considered as material systems, are open. They are open to
‘forcing’ by genes as well as open to interactions with their environment. To
study an open system it is therefore necessary to consider the ‘outside’, the
environment in order to understand what is going on ‘inside’. The Newto-
nian paradigm, underlying the traditional approach to modelling biological
systems, is frequently seen as synonymous with reductionism and its failure
to supply the whole from its parts. On the basis of this analysis and continu-
ing the work of Rashevsky, Rosen argued his case for a new approach, called
relational biology. He emphasized that we must look for principles that gov-
ern the way in which physical phenomena are organized, principles that gov-
ern the organization of phenomena, rather than the phenomena themselves.
Relational biology is therefore about organization and describes entailment
without states. The association of energy or matter, described by states and
dynamical laws, is to be replaced by the description of a system in terms of its
components, their function and contribution to the organization of the sys-
tem. An example of this approach for molecular systems is Rosen’s concept
of Metabolism-Repair or (M,R)-systems.

4.5 METABOLISM-REPAIR SYSTEMS

Driven by technological advances and the sequencing of genomes, at present,
more hypotheses are generated than tested. However, with the availability
of data, biologists will soon return to refined biological questions, “zooming
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in” to specific genetic pathways. With the boom in bioinformatics, the at-
tempts to explain genetic systems are likely to proceed from the Cartesian
metaphor, viewing organisms as performing computations, describing biolog-
ical principles in the same way as machines are. This tradition has its roots
in Newtonian mechanics and formal logic, embodied in reductionism. As we
witness a shift of focus from molecular characterization to an understanding
of functional activity in genomics, this strategy is prone to repeat historical
failures as outlined in Rosen’s ‘Comprehensive inquiry into the nature, origin,
and fabrication of life’ [61]. As bioinformaticians dream of in silico models of
cellular systems, Rosen developed a new biology on paper. Starting from the
modelling relation, illustrated in Figure 2.1, he began by considering two nat-
ural systems N1 and N2 as analogues when they realize a common formalism
F . This relation of analogy between natural systems is then independent of
their material constitution. The formal system F is relational, consisting of
a set of formal, interrelated, components. Any two natural systems that real-
ize this formalism are said to manifest a common organization. In relational
biology a component is defined by a mapping

f : A → B

where the ‘identity’ of the component is embodied in the mapping itself, while
the influence of surrounding components of the natural system N and the
external environment are embedded in the specific arguments in the domain
A on which the mapping can operate.

Section 4.4 introduced the anticipatory character of biological systems. The
basis for anticipatory behavior is a form of self-reference or internal mod-
elling. A cell is a good example of a self-referential system. We can de-
scribe a cell functionally as consisting of two major functional components,
reflecting the morphological partition between nucleus (genome) and cyto-
plasm (phenome). The metabolic or ergonic component represents its basic
chemical activity through the acquisition, transfer and utilization of energy.
The repair or cybernetic component ensures continued viability of the cell
in the face of external disturbances. The latter requires the processing and
utilization of information to permit the control of what the cell does and char-
acterizing its temporal characteristics. Essential for the maintenance of life,
both components are closely interrelated in jointly sustaining the steady state
[75]. Rosen devised a class of relational cell models called Metabolism-Repair
(M,R)-systems to characterize the minimal organization a material system
would have to manifest or realize what is called a cell [61]. The present
section addresses Rosen’s answer to the problems of causation, discussed in
Section 4.3, and anticipatory behavior, described in Section 4.4. We are going
to review Rosen’s arguments and show (in the abstract) that the presence of
‘metabolism’ and ‘repair’ components imply the existence of a ‘replication’
principle. The key point is that replication comes without infinite regress in
modelling and hence allows the discussion of final causation while avoiding the
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explanation of phenomena by the purpose they serve rather than by postu-
lated causes (teleology). To achieve this, we require a conceptual framework
rich enough in entailment – such as category theory.

Let A represent the set of environmental inputs to the cell, while B is the
set of outputs, i.e, products the cell is capable of producing. The mapping f
could be described as an abstract ‘enzyme’, which converts substrate a ∈ A
into ‘product’ b ∈ B:

f : A → B, f ∈ H(A, B) (4.1)
a �→ f(a) = b .

Further, let H(A, B) be the set of metabolisms which are realizable by the
cell, i.e., a set of mappings from A to B. As pointed out by Casti [11], the
set of physically realizable cellular metabolisms H(A, B) is determined by
various physicochemical constraints and the classical Newtonian machinery
has been used to capture many aspects of the cell’s metabolic activity in
respect of the mapping f above. However, both Rosen and subsequently Casti
have argued that these formalisms lack a structure to account for repair and
replication. The purpose of repair is to stabilize cellular metabolic activity
against fluctuations and disturbances in both its environmental inputs and in
the metabolic map f itself. In other words the repair is to copy f while we
refer to replication as the process of copying the repair mechanism.

To arrive at a repair mechanism we consider the following diagram:

A B C .
f g (4.2)

In the diagram, a entails f(a) and referring to the discussion in Section 4.3
we can answer the question “why f(a)?” in two ways: because a entails f(a)
and because f acting on a entails f(a). We can summarize the entailment in
the diagram by

∀a ∈ A, f ⇒ (
a ⇒ f(a)

)
and g ⇒ (

b ⇒ g(b)
) ∀b ∈ B .

If an element b ∈ B is entailed, then it must lie in the range of mapping f
and we can write f(a) = b for some element a in the domain of f and obtain

g ⇒
(
f(a) ⇒ g

(
f(a)

))
.

Suppose the set C in the diagram denotes the collection of mappings from A
to B, H(A, B), we then find that g in fact generates a new f for any b ∈ B.
In other words, g(b) is itself a mapping such that g entails f :

g
(
f(a)

)
= f .
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In this case we denote this ‘repair map’ by Φ and illustrate the repair process
by the following augmented diagram:

A B H(A, B) .
f Φ

To allow some form of internal control, the repair map Φ converts the abstract
products b into new versions of f :

Φ : B → H(A, B) . (4.3)

For any specific activity, we denote the metabolism for which the cellular
process is designed by f∗; i.e., in the absence of disturbances, given the envi-
ronmental input a∗ ∈ A, f∗ produces the cellular output b∗ ∈ B. If there is a
disturbance to the metabolic function f∗ or a change from the environment
a∗, the cell ‘repairs’ the situation by generating new f∗ for any b∗. The repair
or control is implicit in the boundary condition of the repair map Φ: If there
is neither a change from the metabolic map f∗ nor from the environment a∗,
then Φ ought to produce f∗:

Φf∗
(
b∗
)

= f∗ ,

stabilizing the cell’s metabolic behavior in response to external influences
and/or errors. While in the simple diagram (4.1), representing a metabolism,
we could answer the question of “why f(a)”, f itself was unentailed. The
finality argument would be to answer “because f”, f is to bring A into B
and yet f is itself unentailed if we had not Φ in place. However, with the
introduction of of the repair function Φ ⇒ (f(a) ⇒ f), the question “why
f?” is answered “because Φ”, Φ being the efficient cause of f and “because
f(a)”, where f is entailed by its value, the material cause.

The construction of the repair map immediately poses the question to what
replicates Φ? One solution is to add yet another function to the diagram (4.2)
but this would lead to an infinite regress in the discussion of causal entailment.
The cell’s metabolic processing apparatus, through information stored in the
DNA, allows replication and it was Rosen’s major achievement to show that,
using category theory [58, 36], replication is in fact already built into the
scheme outlined in diagram (4.2). Although we can add a replication map to
the diagram, we do not need to argue for this map through an addition to
(4.2) as it already implicitly exists.

To arrive at this conclusion, we view the quadruple (A, B, f,Φ) as a simple
(M,R)-system on the category C. A category comprises a collection of objects
such as A, B and associated arrows (mappings) such as for example f : A →
B, where A is the domain of f and B its co-domain. The collection of all
mappings with domain A and co-domain B is denoted H(A, B). We suppose
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that C is a concrete category, i.e, its objects are structured sets and its arrows
are mappings compatible with their structure. If C is closed under cartesian
products, i.e., if A, B, C, D are objects of C, f ∈ H(A, B), and g ∈ H(C, D)
are maps of C, then A × C and B × D are objects of C, and f × g ∈ H(A ×
C, B × D), where (f × g)(a, c) =

(
f(a), g(c)

)
, then for H(A, B) defining an

object in C, we introduce for this special case a new notation:

BA = {f | f : A → B} .

In (4.3) above we have in fact assumed that H(A, B) = BA is an object in
the category to which A and B belong because only then BA can be the
range of another mapping in the category and hence can be entailed within
the category. In other words, for Φ to entail f , the exponential (function set
or map object) BA must exist. Note that BA does not necessarily exist as an
object in C, there is, for example, no analogous construction in the category
of monoids. If BA exists as an object of the category C, it is associated with
the existence of a special evaluation mapping e:

ef :
(
BA × A

) → B, (4.4)
(f, a) �→ ef (f, a) = f(a) .

Note that we use subscript f in ef not to denote a dependency on f but to
distinguish it from evaluations associated with maps other than f .

Returning to our cellular (M,R)-system

A B BA ,
f Φ (4.5)

the map Φ is an element of the set of mappings from B to the set of mappings
from A to B:

Φ ∈ (BA
)B

.

For this set to exist as an object in the category C, following the general
model (4.4), there then must exist the evaluation map

eΦ :
((

BA
)B × B

)
→ BA, (4.6)

(Φ, b) �→ eΦ(Φ, b) = Φ(b) .

The existence of the evaluation map eΦ can be explained as follows. The value
f = Φ(b) can be viewed as depending on two things: b as well as Φ. Although
we don’t usually think that way with functions, there is no reason why Φ is
fixed in the setting of (M,R)-systems. We can express this dependency on
both Φ and b as a two-valued mapping

(Φ, b) �→ f .
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Suppose we want to evaluate this map, which we denote by h for now, we
can describe this as a two-step process which effectively turns the mapping
h(Φ, b) of two variables into a map H(Φ) of one variable Φ but with values
H(Φ) which are a function of the second variable b. The formal definition of
this map H reads(

H(Φ)
)
(b) = h(Φ, b), where Φ ∈ (BA

)B
, and b ∈ B . (4.7)

Here each value H(Φ) is a function of b, hence an element of the exponential
set (

BA
)B

=
{
Φ | Φ: B → BA

}
such that H : B → (

BA
)B

.

In formula (4.7) on the left-hand side the mapping H(Φ) is evaluated at
argument b and h may therefore be called an evaluation map and denoted by
eΦ, leading us to the definition in (4.6).

Our reasoning so far can be summarized as follows. For Φ, the repair of f ,
being entailed by something (being replicated), it is required that the set of
mappings from B to BA exists as an object in C. Then, if such a map object
(exponent) exists, it is associated with the evaluation map eΦ. The evaluation
map in turn was explained by the bijection

h :
(
BA
)B × B → BA

H : B → (
BA
)B

between functions h in two variables and those H in one variable but which
maps into

(
BA
)B , the space in which Φ resides! In other words, given the

metabolic function f : A → B, and repair map Φ: B → BA, these imply the
replication of Φ. With replication of Φ in place, we can introduce a replication
map, denoted Υ,

Υ : BA → (
BA
)B

, (4.8)

such that Φ is entailed by f . As previously defined for the repair map, the
boundary condition for a stable operation is Υ(f) = Φf . The boundary
conditions are important as they define the (M,R)-systems as a controlled
process. In conventional control engineering the existence of a separate control
component is assumed. The control action is an external influence on the
process and we may refer to this type of control as extrinsic (exogenous). For
(M,R)-systems there is no direct control input and the separation between
controller and process is not recognizable (intrinsic or endogenous control).
Instead the ‘anticipatory regulation’ is implicit in the boundary conditions for
Φ and Υ. The boundary conditions imply an internal self-model of the cell.
Given A, B and H(A, B), it is possible to directly construct the maps Φf∗

and Υf∗ , i.e., repair (of metabolism f) and replication (of the repair map Φ)
emerge ‘naturally’ from the existence of an abstract metabolic component.
An argument in support of theoretical or mathematical biology is that such
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results, abstract they may be, are neither the outcome of in vivo, in vitro or
in silico analysis but can also be obtained, on papyrus... .

We can realize a (M,R)-system in different ways and initially automata
theory was considered. However as demonstrated by John Casti [11], since
Rosen introduced the concept, considerable advances in the mathematical
theory of dynamic systems should enable us to take his ideas further. In [10],
Casti developed a theory of linear (M,R)-systems. In the model above we
can consider a as an input time-series leading to output b. The input/output
space A and B are then finite-dimensional vector spaces whose elements are
sequences of vectors from R

m and R
p respectively:

A = {a : a = [u0, u1, . . . , uN ]} , ui ∈ R
m,

B = {b : b = [y1, y2, y3, . . .]} , yi ∈ R
p .

Mathematical causation is acknowledged by the fact that the first output
appears one discrete time step after the first input. If f is further assumed to
be linear and constant (autonomous), we can express the relationship between
cellular inputs and outputs by the following equation:

yt =
t−1∑
i=0

At−iui, t = 1, 2, . . . , (4.9)

where Ak ∈ R
p×m denotes the coefficient matrix which characterizes the pro-

cess.

The (M,R)-systems consists of f : A → B such that f(a∗) = b∗ plus
Φ: B → BA such that Φ(b∗) = f∗. With a linear realization (4.9) we are
now in a position to investigate how the (M,R)-system restores or stabilizes
disturbances in the cellular environment a and/or metabolic map f . A change
in the external environment, a∗ → a, for a fixed metabolic map f∗ leads to
f∗(a) = bnew subsequently to Φ(f∗(a)) = fnew. For a stable process, we
require that f∗(a) = f∗(a∗) or fnew(a) = b∗ for the cell to recover fully
from the disturbance. The cell’s metabolic activity would be permanently
changed to fnew if Φ(fnew(a)) = fnew. If we had Φ(fnew(a)) = f∗, then the
cell’s metabolism would only undergo periodic changes cycling back and forth
between f∗ and fnew.

In case of a fixed environment a∗, fixed repair map Φf∗ with a disturbance
f∗ → f , we require Φf∗(f(a∗)) = f∗ in order to restore the original design-
metabolism f∗. This in fact describes a map f �→ Φf∗(f(a∗)). Let us denote
this map as follows

Ψf∗,a∗ : BA → BA,

f �→ Φf∗
(
f(a∗)

)
.
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We may find that for some disturbances f the repair mechanism stabilizes the
system to Φf∗(f(a∗)) = f∗ but in some cases the system could settle for the
new metabolism f such that Φf∗(f(a∗)) = f . This situation is represented
by fixed points of the map Ψf∗,a∗ . One such fixed point is of course f∗, for
which our basic system is working normally such that Φf∗(f∗(a∗)) = f∗.

In [11, 12], Casti addresses other biological questions such as mutations and
Lamarckian inheritance. We may conclude that Rosen’s somewhat abstract
formulation of (M,R)-systems, initially argued for by calling upon category
theory and thereby allowing us to reason about more fundamental properties
of cellular systems, has also more ‘applied’ formulations in form of sequential
machines and linear dynamic systems. The formal tools required for such
an analysis are familiar to control engineers. John Casti described various
properties of such systems and established further links of these ideas to a
number of other areas of science and engineering [10, 12]. The, for many,
unexpected link between biological questions and engineering analysis should
encourage control engineers in particular to take an interest in systems biology.
We can expect that over the coming years new technology will allow us to
measure gene expression in time. Similar approaches to those discussed here
should then be developed to study gene interactions.

4.6 CONCLUSIONS AND DISCUSSION

The principal aim of systems biology is to provide both, a conceptual basis and
working methodologies for the scientific explanation of biological phenomena.
System theory is not a collection of facts but a way of thinking, which can help
biologists to decide which variables to measure and to validate their ‘mental
models’. Frequently it is the process of formal modelling rather than the
mathematical model obtained, which is the valuable outcome. In engineering
it is a common experience that we often learn most from those models that fail.
The purpose of a conceptual framework, is therefore to help explain unknown
relationships, to make predictions and to help design experiments, suggesting
to us which variables to measure and why. Or, as the mathematician David
Hilbert once noted, we might think that ‘there is nothing more practical than
a good theory’.

The need for mathematical models becomes apparent as we begin to analyze
the organization and control of genetic pathways. The complexity of molecu-
lar processes combined with the difficulties in observing them and measuring
quantitative data, leads inevitably to uncertainty in their analysis. Math-
ematical models, providing sufficiently accurate numerical predictions, are
possible in some cases as demonstrated in the areas of metabolic engineering
and control. With applications in biotechnology the inner structure of models
in this area is less important than the ability to replicate observable phenom-
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ena in simulations. If however, on the other hand, we are trying to answer
more fundamental questions regarding the mechanisms, principles or causal
entailment in genetic pathways, we find that the ancient problem of causality
haunts us once again.

Differential equations may be used to model a specific form of causal en-
tailment in natural systems, the equations by themselves however do not state
that changes are produced by anything, but only that they are either accom-
panied or followed by certain other changes. Considering df/dt = φ(t) or
equivalently df = φ(t) · dt, it merely asserts that the change df undergone
during the time interval dt equals φ(t) · dt. The notion of causality is not
a syntactic problem but a semantic one; it has to do with the interpretation
rather than with the formulation of theories or formal systems. In other words,
hypothesizing causal entailment in general, and gene/protein interactions in
particular, remains a task of the biologist, possibly supported by his choice
of mathematical model (conceptual framework). As problems of genomics
become conceptual as well as empirical, and models are expected to explain
principles rather than just simulating them, we are therefore likely to witness
interesting debates on the merits of alternative theories.

Scientific theories deal with concepts, not with reality and mathematical
models are representations, not reflecting what things are in themselves. All
theoretical results are derived from certain formal assumptions in a deductive
manner. In the biological sciences, as in the physical sciences, the theories are
formulated as to correspond in some useful sense to the real world, whatever
that may mean. Energy or matter is the primary object of physics. Its study
in the phenomenal world is based on changes and for anything to be different
from anything else, either space or time has to be pre-supposed, or both. Im-
manuel Kant identified the concepts of space, time and causality as a priori
and therefore conditional for experience. Changes in space and time are the
essence of causal entailment and as the philosopher Arthur Schopenhauer dis-
covered, the subjective correlative of matter or causality, for the two are one
and the same, is the understanding. “To know causality is the sole function
of the understanding and its only power. Conversely, all causality, hence all
matter, and consequently the whole of reality, is only for the understanding,
through the understanding, in the understanding” [38]. In his famous essay
“What is life?” [66], the physicist Erwin Schrödinger, comes to the conclusion
that “our sense perceptions constitute our sole knowledge about things. This
objective world remains a hypothesis, however natural”, echoing Albert Ein-
stein observation that ‘as far as the laws of mathematics refer to reality, they
are not certain; and as far as they are certain, they do not refer to reality.’

The work of Robert Rosen is important in that he not only identified the
weaknesses of our common approach to represent natural systems but he
also outlined a possible way to transcend the reactive paradigm in order to
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Biological Phenomena

Systems Analysis Formal System

Natural System
Measurement

Observation

Explanation Interpretation Induction Modelling

Deduction

Inference

Fig. 4.2 Systems biology: systems thinking in genomics.

obtain representations of anticipatory systems. Rosen was looking for ways
to characterize molecular and genetic systems in a general way and quite
independently of their physical or chemical constitution. His (M,R)-systems,
which we reviewed here, are unlikely to become a methodology that is useful
to biologists. However, they serve as an example of a mathematical study of
basic biological principles. His conceptual framework arose from a criticism of
the transfer of principles of Newtonian physics to biology. It is in this context
that his work deserves renewed interest in the post-genome era of biology and
bioinformatics.

One of the challenges for the emerging field of systems biology is then
to link abstract mathematical models, like for example (M,R)-systems, to
specific current problems of genomics. An important difference to the 1960s
is the availability of three types of gene expression data at different levels:
genome level (sequences), transcriptome level (microarrays) and proteome
level (mass spectroscopy, gel techniques). In particular with microarrays we
can now conduct time course experiments, generating data suitable for time-
series analysis. With the shift of focus from molecular characterization to an
understanding of functional activity in genomics, systems biology can provide
us with methodologies to study the organization and dynamics of complex
multivariable genetic pathways. What are then the conditions for systems
biology to succeed?

Mihajlo Mesarović wrote in 1968 that “in spite of the considerable interest
and efforts, the application of systems theory in biology has not quite lived
up to expectations. [..] one of the main reasons for the existing lag is that
systems theory has not been directly concerned with some of the problems of
vital importance in biology.” His advice for the biologists was that progress
could be made by more direct and stronger interactions with system scientists.
“The real advance in the application of systems theory to biology will come
about only when the biologists start asking questions which are based on the
system-theoretic concepts rather than using these concepts to represent in
still another way the phenomena which are already explained in terms of bio-
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physical or biochemical principles. [..] then we will not have the ‘application
of engineering principles to biological problems ’ but rather a field of systems
biology with its own identity and in its own right.” [41].





5
Bioinformatics

New technology means that we now can observe biological systems at the
molecular level. As a result, molecular biology currently witnesses a shift
of focus from molecular characterisation to the understanding of functional
activity. The two central questions are “What are the genes’ biological func-
tion?” and “How do genes and/or proteins interact?”. In the past single genes
were studied but now genomics researchers measure the activity levels of thou-
sands of genes at the same time. With microarray technology it is possible to
identify interrelationships between groups of genes (“gene function”) and gene
interactions, for both comparative studies and over time. Similar, proteomics
research shows that most proteins interact with several other proteins and
it is increasingly appreciated that the function of a protein is appropriately
described in the context of its interactions with other proteins. Most of these
relationships are dynamic and controlled processes. Formal mathematical
modelling of these interactions will therefore play an increasingly important
role and with the emphasis on linkages, and relationships between proteins
and genes, many problems become conceptual rather than just empirical.

For those interested in systems and control theory, the processes considered
in the modern life-sciences provide numerous challenges and opportunities. In
response to the challenge, systems and control theory are returning to their
roots in cybernetics, concerned with the mathematical modelling of natural
and physical systems in general. In bioinformatics, we require strategies to
train scientists and engineers for a good understanding of ways and means
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of how to encode the natural world into ‘good’ formal structures. The main
technical challenges are

Dimensionality: Very large number of variables (genes).

Uncertainty: Measurement noise, imprecision, missing data and outliers.
Often only a very small number of samples.

Complexity: Processes highly interconnected, hierarchical, non-linear, time-
variant, adaptive.

Observability: Arrays provide only limited and indirect view of gene ex-
pression. Information from the transcriptome and proteome level need
to be fused in an integrative approach. Studying the dynamic response
of a cell, the system is observed in “closed loop”.

5.1 BIOINFORMATICS AND SYSTEMS BIOLOGY

The area of bioinformatics has provided an important service to biologists;
helping them to visualise molecular structures, analyse sequences, store and
manipulate data and information. These activities will continue to be an es-
sential part of bioinformatics, developing working methodologies and tools
for biologists. However, in order to directly contribute towards a deeper
understanding of the biology, bioinformatics has to establish a conceptual
framework for the formal representation of interrelationships and interactions
between genes or proteins. At this point the application of systems theory to
genomics emerges as systems biology. Systems biology aims at a system-level
understanding of genetic pathways by investigating interrelationships (i.e. or-
ganisation or structure) and interactions (i.e. dynamics or behaviour) of genes
and proteins.

In my view, the biggest challenge of bioinformatics is not the volume
of data, as commonly stated, but the formal representation of knowledge.
Knowledge is the result of an exploratory, recursive process – the compre-
hension of information which in turn is extracted from experimental data
and observations. A look at biology textbooks shows that at present, bio-
logical knowledge is primarily encoded in a textual form and using diagrams.
For knowledge to be useful, i.e., accessible and verifiable; it has to be for-
malised. The amount of knowledge stored in texts and the preference for
natural language among biologists, has lead to a number of bioinformatics
research projects text mining: knowledge discovery in scientific texts.

From the current research literature, we find that the areas of proteomics
and genomics currently undergo changes which have a significant impact upon
the area of bioinformatics: While in the past single genes were studied, with
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INFORMATICS

BIOLOGY MATHEMATICS

Fig. 5.1 The area of bioinformatics is an interdisciplinary effort between biology, mathe-
matics and informatics.

microarray technology we can now measure the activity levels of thousands of
genes at the same time. Secondly, proteomics research has shown that most
proteins interact with several other proteins and while in the past the function
of a protein was for example described by its role as a catalyst in a reaction
it is increasingly appreciated that the function of a protein is appropriately
described in the context of its interactions with other proteins. The two
fundamental questions of genomics are:

“What are the genes’ biological functions?”

and

“How do genes/proteins interact?”

The first question refers to interrelationships in sets of genes, and is ef-
fectively a problem of describing organisation, using pattern recognition tech-
niques. The second question regarding the behaviour of molecular or genetic
systems is appropriately dealt with in system theory. We refer to the combina-
tion of pattern recognition techniques and system theory as data engineering.
In this chapter we will provide an example for such a combination.

From the developments in genomics and proteomics it becomes obvious that
the challenge for bioinformatics is not the overused statement that the volume
of data in molecular biology is increasing, but the representation of the diverse
interrelationships and interactions appearing in genetic or molecular systems.
The focus is shifting from molecular characterisation to an understanding of
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Fig. 5.2 Data engineering is the combination of pattern recognition techniques with system
theory. The diagram outlines the objectives and process of data engineering applied to the
life-sciences.

functional activity. As a consequence, problems in the life science will become
also conceptual as well as empirical. The two key questions are:

“How do we manage the complexity of these systems?”

and subsequently

“How can we be precise about uncertainty?”

... to allow reasoning in the presence of uncertainty. Note that we suggest that
complexity is to be considered a cause of uncertainty. The answer to these
questions lies in the way we encode relationships, specifically interrelationships
and interactions. The approach taken in this text, is summarised in Figure
5.3.

The purpose of mathematical modelling in the life sciences should not be to
replicate the biologists work on paper or in a computer; mathematical mod-
els can only complement the biologists work and the role of systems theory
is to provide a way of thinking, to help design experiments, to decide which
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Fig. 5.3 Systems biology: Summary of the approach taken.

variables to measure and why. To achieve this perspective of mathematical
modelling we can learn from the engineering sciences. Over the last century,
engineers have found themselves in a situation similar what molecular biolo-
gists experience now: the systems they investigate are complex in the sense
that observations cannot be simply analysed using ‘common sense’ or ‘intu-
ition’. In many cases, the dimensionality, non-linearity and dynamics of the
system are incomprehensible to common reasoning, regardless of the expertise
or experience of the investigator.

Engineers have learned to translate the given practical problem into a set of
(usually random- or state-) variables and then to use a conceptual framework
(probability theory, control theory) to investigate relationships between vari-
ables using a mathematical or formal system. These relationships, encoded
by the mathematical model, will reflect the scientists’ view of the biological
problems. From systems theory we know that there is no single valid model
structure and set of parameters to appropriately describe a set of data and
hence the conclusion that in future we are going to see interesting debates
among biologist on the interpretation of models intended to represent genetic
pathways.

To illustrate the use of mathematical models, consider the experiment of
rolling a dice. Asking for the likelihood or probability of any specific num-
ber to show up, we “know” from physical symmetry that each side has an
equal chance to appear and hence the probability is one over six. However,
this inference already assumed a model and assumptions. We assumed phys-
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ical symmetry and thereby generalised the problem - ignored the homemade
dice I hold in my hands and instead consider ‘some’ dice. This process of
abstraction through generalisation is mathematical modelling. Mathemati-
cal concepts are abstract mental objects which, through the phenomena they
are to represent, can be experienced. Whether we like it or not, we all use
mathematical modelling, we all go shopping. Numbers, for example, are such
mental construction and although arithmetic doesn’t make the shopping eas-
ier, it helps us making the right decisions on the way to the till.

Descriptive Statistics Probability Theory

relative frequency probability p(u)

1
6

real dice ideal dice

Fig. 5.4 Mathematical modelling as an abstraction. A specific real-world process is gener-
alized by using a conceptual framework, such as probability theory, to represent it. To verify a
model, a real-world interface, such as descriptive statistics, is used to validate a concept with
data.

As shown in Figure 5.4, studying the dice we ‘translate’ the real world
problem into a conceptual framework - probability theory in this case. Once
a model is obtained, we validate it with experimental data. For a homemade
dice we may then find that the distribution favors larger numbers. This un-
expected result forces us to rethink our model and its assumptions. We may
find that drilling holes into the dice, the sides with small numbers become
heavier than its opposite side (both sides add up to one). We can then use
basic physical principles to explain the result, dismiss the model or revise the
experimental set-up.

The mathematical model requires assumption on the actual process and in
the formal system. The main elements of the formal system are the probability
distribution

p : S → [0, 1]
s �→ p(s)
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Fig. 5.5 Sample space for an experiment involving two ideal dice.

where s denotes an elementary outcome of the experiment and p(s) is its
likelihood. For more general events, represented by subsets of sample space
S = {s}, the probability measure, Pr(A), of the event A ⊂ S should satisfy
three further conditions:

Pr(S) = 1
Pr(A) ≥ 0

Pr(A ∪ B) = Pr(A) + Pr(B)

where Pr({s}) .= p(s). To investigate the result of rolling two dice, let use
introduce a random variable f which is to describe the sum of the two numbers
showing up:

f : Ω → Rf = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
ω �→ f(ω) = s1 + s2 .

We notice that a random variable is neither random nor variable - it is a
(real-valued) mapping with domain Ω and range Rf . The range Rf of the
mapping f are all possible sums of any two numbers showing up. In general, a
random variable is a mapping from the sample space of possible outcomes to a
space of real numbers. The elements of the sample space can be mathematical
or material objects and f(ω) describes some observable characteristic. The
sample space Ω in this case is the product space S1 × S2 of the two dice:

Ω = {(s1, s2) : s1 = 1, 2, ..., 6 s2 = 1, 2, ..., 6}
where ω

.= (s1, s2) ∈ Ω. The event of the sum of any two numbers showing
up being equal to three, can be represented as the subset {(1, 2), (2, 1)} of Ω
or the set {3} of Rf .
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As illustrated in Figure 5.5, there are 36 possible elementary outcomes
with equal probability p(ω) = 1/36. The probability that the sum of the
two dice is equal to eight than becomes Pr(8) = 5/36. To investigate the
concept “the outcome is an even number”, its extension is the singleton set
{2, 4, 6, 8, 10, 12}. With the probability law p(ω) defined on Ω, the probability
of an event A in Rf is determined by relating the set A ⊂ Rf to p(ω) on Ω.
This is achieved using the inverse mapping f−1 : A �→ f−1(A) = {ω : f(ω) ∈
A}:

Pr(A) = PrΩ ◦ f−1(A) = PrΩ

(
f−1(A)

)
= PrΩ{ω : f(ω) ∈ A}
=

∑
f∈f−1(A)

p(ω) .

Figure 5.6 shows the probability distribution over Rf and a possible scenario
using ‘homecrafted’ dice.
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Fig. 5.6 Probability distribution for the sum of numbers showing when rolling a pair of ideal
dice (left). Sample distribution from using a homemade pair of dice (right).

I believe it was the molecular biologist Jacques Monod who said ’we might
prefer to ignore philosophical questions but we cannot avoid them’. For me,
the most exciting question of “how nature works” is necessarily connected
to the question of “how do we know?” In the post-genome era, this epis-
temological problem is related to the validity of the many mathematical or
computational models that have been proposed. Depending on who you ask,
say computer scientists, a control engineer, a “Bayesian” etc., each will have
a different approach to establishing a model and even if at a formal level the
result is equivalent, the semantics usually differ.

In engineering, a mathematical model is primarily expected to provide
numerically accurate predictions; the internal structure and the interpretation
of the model are often only of secondary interest. In life sciences, however, the
purpose of models is not just replicating the external or observable behaviour
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of a molecular or genetic system but also helping the biologist explain the
underlying mechanisms. The semantics of the (mathematical) model should
therefore have biological significance.

I personally have my doubts about what we can achieve with formal sys-
tems. Artificial Neural Networks and Genetic Algorithms are only two ex-
amples of computational techniques for which nature provided the inspira-
tion. Their successful application to modelling and optimisation in many
non-biological fields has established them (but without any relevant reference
to the biological ancestry). No doubt the knowledge-transfer from nature
to, for example, the engineering sciences, has been successful but we should
be careful and avoid the reverse approach. I am very suspicious of sugges-
tions that nature performs “computations” or optimises a “cost function”.
We should never forget that although we may find reasonable representations
of natural systems, philosophers like Arthur Schopenhauer and scientists like
Robert Rosen demonstrated long ago that this does not imply knowledge of
“what the things are in themselves”.

In the present book, we are interested in the development of a mathe-
matical framework for modelling genome expression and regulation. Based
on Schopenhauer’s unsurpassed discussion of causation, causal entailment in
natural systems is identified as the principle of explanation of change in the
realm of matter. Causation is therefore a relationship, not between compo-
nents, but between changes of states of system. I subsequently view genome
expression (formerly known as ‘gene expression’) as a dynamic process and
use methodologies developed within the areas of systems and control theory.
Norbert Wiener pointed out the importance of what we now call Systems Bi-
ology when he introduced the area of Cybernetics in 1948. Wiener’s work was
followed by intensive research into the mathematical foundations of systems
and control theory. These developments have been accompanied by numer-
ous applications of the theory in engineering but generally failed to impress
molecular biologists.

In the 1970’s, Francois Jacob and Jacques Monod investigated regulatory
proteins and the interactions of allosteric enzymes. They introduced a distinc-
tion between ’structural genes’ (coding for proteins) and ’regulatory genes’,
which regulate the rate at which structural genes are transcribed. This control
of the rate of synthesis of proteins gave the first indication of such processes
being most appropriately viewed as dynamic systems driven by a multitude
of factors and feedback regulated. Indeed, negative feedback is used in all
cells and in metabolic pathways in particular. Control of such processes is
achieved through regulatory enzymes that respond to effector concentrations
by increase or decrease in their reaction rates. Despite their insights, biol-
ogists prefer to describe cellular processes in terms of material objects and
their spatial relationships. To represent such knowledge diagrams, pictures,
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and natural language are used in analysis and inference. However as Jacob
and Monod have already suggested, such “Lego-style” modelling may not be
the optimal approach to explain gene expression and regulation. Instead of
trying to identify ’genes’ as causal agents for some function, role, change in
phenotype or the cellular response of proteins, we should identify these ob-
servations with sequences of events. In other words, instead of looking for a
’gene’ (whatever that may mean) that is the reason, explanation or cause of
some phenomenon we should seek an explanation in the dynamics (sequences
of events ordered by time) that led to it. Molecular biology has focussed on
the physico-chemical characterization of “parts and components” but with the
emergence of new “post-genome technologies”, a shift of focus to an under-
standing of functional activity is taking place.

While systems and control theory provides us with precise inference and
quantitative predictions, it “works” only for systems that, compared to cellu-
lar processes, are simple. Biologists on the other hand have been successful in
describing complex systems using empirical means and qualitative reasoning.
Our mathematical models of dynamic systems are not the long awaited solu-
tion to questions in genomics but a combined effort in the modelling process;
“the way of thinking” about genome expression and regulation seems a good
idea. The phenomenological model developed in previous chapters does not
describe what ‘things are in themselve’ but of what we perceive and conceive
about the natural system under consideration. As a mathematical model it
integrates observation and measurement; experimental data and relationships.

For all the reasons mentioned above, a discussion of different mathematical
or computational models of biological systems is very valuable. It is a mistake
to argue or to look for a single best, true or correct model but as I tried to
point out, the thinking about how we model natural systems will actually help
us in understanding how nature works.



6
Symbols and Notation

R set of real numbers, real line.
→ mapping.
≤ less or equal.
⊆ subsethood.
∈ elementhood.
×,
∏

Cartesian or direct product of sets (spaces).
◦ composition.
∨ disjunction.
∧ conjunction.
∪ union.
∩ intersection.
¬ negation.
c complement.
: “for which”, “given”.
∃ “there exists”.
∀ “for all”.
.= “defined”.
≈ “approximately”.
≡ “identical”.
⇒ “implies”, material implication.
∴ “therefore”.
�→ “maps to”.
iff “if and only if”.
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U objects u ∈ U , description frame, universe of discourse.
C set of concepts C ∈ C.
F set of factors.
f, g factors, f, g ∈ F .
0 zero factor.
(U, C, F ) description frame.
X(f) state-space of f , repres. universe, denoted X for short.
f(u) state, value of f at u, f(u) ∈ X(f).
D(f) set of objects u ∈ U for which f is relevant.
V (u) set of factors f ∈ V relevant to u.
R relation.
R̃ fuzzy relation.
Ã fuzzy set.
Ã(u), µÃ(u) membership of u in Ã.
E equivalence relation.
Ẽ fuzzy equivalence relation, similarity relation.
F(U) the set of all fuzzy sets in U .
P(U) the set of all crisp sets in U (power set).
µÃ(·) membership function of fuzzy set Ã.
f̃ fuzzy mapping.
G fuzzy graph.
T (·) triangular norm, T -norm.
S(·) triangular co-norm, S-norm.
↑f

g cylindrical extension.
x fuzzy or random variable.
d(·) distance, metric.
[u] equivalence class.
U/E quotient set.
∅ empty set.
≺ partial order.
| · | absolute value.
ε error bound, tolerance.
Pr(·) probability measure.
F (·) cumulative probability.
Ã extension of C in U .
f(Ã) (repres.) ext. of C in X(f), f(Ã) ∈ F(X(f)).
f−1(B̃(f)) feedback extension of C w.r.t f .
Λ measure of coincidence.
Ã[G] G-envelope, G-feedback extension of Ã.
ρ natural mapping.
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φ embedding.
L(f, g) measure of linkage between factors f and g.
η general measure, count.
(U, Ef ) approximation space.
A − B = A ∩ Bc set difference.
µr

A(u) rough set membership function of A.
µE∗(Ã)([u]f ) membership function of a rough fuzzy set.
E∗(A), E∗(A) lower (upper) approximation of A.
A(A) accuracy of approximation of A in U by E∗ and E∗.
#(B) cardinality of (finite) set B.
Bel belief function.
Pl plausibility function.
m : P(U) → [0, 1] basic probability assignment (mass distribution).
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