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Abstract

The analysis of gene expression profiles, obtained from DNA microarray experiments, is used
to discover relationships between genes and to discern groups of genes involved common processes.
The principal aim of this paper is to introduce dynamic modelling of microarray time course data.
A novel approach to identify similar gene expression profiles is presented. Using parametric
modelling, we define a distance between expression profiles that identifies genes with similar
dynamic responses opposed to distances among vectors. This approach provides an intuitive
interpretation of similarity in the time domain and allows fast clustering using nearest neighbors.

1 DNA Microarray Data

For the data considered in this paper we assume that gene expression profiles were obtained from
time course DNA microarray experiments. To illustrate the idea and without loss of generality, we
use the yeast data set described by Eisen et al. [ESBB98]. The data set is chosen to illustrate the
proposed concept and no reference is made to the biology or the experiments which generated the
data. The data matrixX has i = 1, . . . , n rows representing genes and j = 1, . . . , r1, r1+1, . . . , r1+
r2, . . . ,

∑m−1
i=1 ri+1, . . . ,

∑m
i=1 ri = r columns of samples grouped intom experiments consisting of

r1, r2,..., rm measurements respectively. The data set discussed in [ESBB98] describes n = 2647
genes for m = 9 experiments. The number of measurements per experiment varies between 4 and
18.

A common approach is to combine the gene expression profiles of a number of experiments into
a single row vector. Referring to the distances between row vectors, this makes sense and can be
useful for clustering directly on the matrix X. For example, by using the Euclidean distance, the
same importance is given to any data point in a row, independently of the experiment to which
it belongs. Other weighted distances could in principle be used to give different importance
to each experiment. Although creating a larger sample, this approach makes the assumption
that a similar response of genes in unrelated experiments provides stronger evidence for common
function. Considering time course data, grouping times series of unrelated experiments, does not
make any sense since a model for the combined experiments will explain individual characteristics
only poorly. For no reason other than to illustrate the basic ideas, we have worked with the time
series corresponding to the first experiment, where n = 2647 and m = r1 = 18.

Each row vector xi = [xi1, . . . , xij , . . . , xi18] represents a particular gene expression profile.
Throughout the paper we refer to a gene by its (row) number in X. xij is the gene expression
level at time j of gene i. xij ∈ xi is the normalized log2 ratio Eij/Rij where Eij is the expression
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Fig. 1: On the left, three gene expression profiles (1274, 1281 and 1745) with the
same dynamic response pattern but shifted in time. On the right, two signals with
the same pattern but with difference levels of response (1613, 1384).

level or state at time j of the gene i, and Rij is the reference state of the gene, which is a constant
value throughout the experiment [BGL+00]:

xij =
log2

(
Eij

Rij

)
√∑18

k=1

(
log2

(
Eij

Rij

))2
i = 1, . . . , 2467 j = 1, . . . , 18 (1)

With the normalization of (1), xij is positive when Eij ≥ Rij and we say the gene is induced
or “up-regulated”. When Eij ≤ Rij , xij is negative and it is said that the gene is repressed or
“down-regulated”. Here we assume that there are no missing values, that is, measurements have
been obtained for all points in the time course or missing values have been replaced by a suitable
method.

2 Signal Selection and Clustering

Virtually all clustering studies published to this date, using the time course data presented in
[ESBB98], have ignored the dynamic component of the microarray experiments. It is the principal
aim of this paper to suggest a dynamic systems approach to microarray time course data. Using
a distance or the correlation between groups of signals it is possible to identify genes with similar
shapes of expression profiles. This approach will however discount signals which are similar
although one is delayed with respect to the other or one has a stronger or weaker response, but
the same dynamic behavior. Figure 1 illustrates this point.

The method is summarized by the following steps. Each signal is modelled as an individual
time series by using a parametric technique such as ARIMA models. Signals with the same model
structure such as AR(2) or MA(1) can then be grouped. Inside each group, similar signals have
similar parameters and a clustering algorithm can be applied to identify patterns among the
parameters in each group. In this paper we do not go as far as clustering by model structures but
illustrate the idea by fitting a simple autoregressive model to the data and a then group genes as
nearest neighbors in the parameter space of the models.

In microarray experiments studying considering a large number of genes, as in whole genome
arrays, we often find that many genes do not show any response leading to noisy signals with no
deterministic component. In [NW01], we suggested a number of statistical tests which may be
used to select ‘informative’ signals and thereby to reduce the computational costs of the analysis.
This selection, however, does remain subjective and with relatively small sample sizes such tests
are inevitably unreliable.

To achieve the objective of the present paper, it is not necessary to select signals but to illus-
trate and visualize the idea, we wish to ‘clear’ the rather dense parameter space. For visualization
purposes, we therefore discard signals which have no trend nor any dependency among elements
of the sample. For this we use the ‘Runs Test’ [NW01] which assumes that such a signal oscillates
above and below the median with equal probability. The second criterion that we apply, is to
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define a relatively small threshold or interval around zero for the maximum of the absolute values
of the time series. Gene expression profiles with a weak signal, never exceeding the boundaries,
are discarded. The threshold used here is [−0.5, 0.5], leading to 1802 signals out of 2467 selected.

3 Dynamic Modelling of Microarray Experiments

In this section, each signal selected using the criteria described in the previous section, is described
by a parametric time series model. Because of small sample sizes only a simple autoregressive
(AR) model structure with a limited number of parameter is considered. An autoregressive model
of order p, denoted AR(p), defined by [BJ76]

xt = θ1xt−1 + θ2xt−2 + ...+ θpxt−p + et (2)

where e is the random variable describing the error or difference between the forecast and the
real value. In Box-Jenkins time series analysis the absence of a trend is an important condition
to obtain accurate models in forecasting especially for larger samples. Since we do not intend to
make forecasts and do not consider asymptotic properties which form the basis of Box-Jenkins
models, we do not remove the trend of signals.

One criterion used to examine whether a model is adequate or not, is the Portmanteau test.
The Pormanteau statistic Qh is calculated from the residual et produced by the model. It is
defined as

Qh = n(n+ 2)
h∑

i=1

ρ̂2(i)/(n − i) (3)

where ρ̂(i)is the sample correlation function of the residuals. Qh is approximately chi-squared
distributed with h − p degrees of freedom. h is a value smaller than n. The Portmanteau test
checks whether the hypotheses Ho “The model is adequate for the time series”, is verified or not.
We accept Ho when χ2

1−α(h − p) > Qh. The level of confidence of the test α used in this paper
is 0.05. We found that from the 1802 signals selected previously, 1617 signals are well modelled
by an AR(1) model, 1723 with an AR(2) model, 1780 with an AR(3) model and 1777 with an
AR(4) model. For the estimation of model parameters the Yule-Walker equations were used. We
refer to [BJ76] for further details regarding AR(p) time series modelling.

3.1 Studying the Parameters of the Models

Using the same model structure, the dynamic pattern of a gene response is represented by its
model parameters. The closer these parameters in the parameter space, the similar is the dynamic
pattern of the corresponding genes in an experiment. Here we use the Euclidean distance between
parameter vectors. In Figure 2 the distributions of parameters for the 1617 AR(1) models are
shown. We note that all parameters are inside the [−1, 1] interval which defines stationary
first order models. Without signal selection, as discussed previously, the number of models with
parameters around zero is significantly increasing. Parameter around zero suggest that the signals
in question are uncorrelated, providing evidence that mostly noisy signals were discarded. The
lower histogram in Fig. 2 illustrates the large number of noisy signals. While the tails of both
distributions are nearly identical in the vicinity of zero the selection process has had its effect.

For example, in Figure 3, the AR(1) model for gene 1613 has a parameter 0.37. Its nearest
neighbors in the parameters space show other expression profile 2208, 2225 and 867 with similar
frequency and amplitude. Although the signals appear unrelated (and may indeed biologically
unrelated or noise), they nevertheless share a similar dynamic response pattern. Following this
simple example, we now consider second order AR(2) models for a larger number of 1723 signals.
A second order model will allow for an intuitive visualization of signal dynamics. Figure 4,
shows the 1723 two-dimensional parameter vectors. The triangular region of the parameter space
denotes stationary models. The parabolic curve divides the parameter space into models with
real roots (upper region) and complex conjugate roots of the characteristic polynomial given by

ϕ(z) = z2 − θ1z − θ2 .

In Figure 5 on the left, we can see the 8, 12 and 16 nearest neighbors of gene 1274 (identified
by the Euclidean distance in the parametric space). In the same figure, the column on the
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Fig. 2: Histograms of AR(1) model parameters for which residuals passed the Por-
manteau test. Top: Signals selected using Runs Test and threshold. Bottom:
Without signal selection.
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Fig. 3: Four gene expression with similar dynamic responses.
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Fig. 4: Two-dimensional parametric space for the AR(2) models

right shows the nearest neighbors of the same gene identified using a correlation coefficient as in
[ESBB98]. The closer the correlation to −1 or 1, the more similar are two signals.

For eight nearest neighbors both methods identify very similar groups of genes. However, as
we increase the number of nearest neighbors, the signals that are added to the clusters using
the correlation coefficient are increasingly dissimilar to the rest. In contrast, genes selected in
the parameter space maintain a similar dynamic response. Studying gene networks, two genes
or groups of genes with similar dynamic pattern but shifted in time may suggest temporal or
causal interactions. Such genes or gene clusters could more easily be identified in the parameter
space than using for example a correlation coefficient or Euclidean distance in the r dimensional
space. In Figure 6 the AR(2) parameter space and the neighborhoods of gene 1274 (θ1 = 0.99,
θ2 = −0.52) using the two methods are shown. Although both clusters overlap for a number of
genes, clustering using the correlation coefficient obviously ignores a number of candidates which
have a much more similar dynamic response to the gene in question.

With the proposed approach, the identification of co-expressed and interacting genes can
proceed in two ways. Given a gene with known function or involvement in a particular process,
other genes with a similar dynamic response are readily identified in the parameter space. If,
on the other hand, we are to look for a specific temporal pattern we can search for genes in the
corresponding region of the parameter space. In other words, each region of the parameter space
corresponds to a known dynamic response, allowing an intuitive interpretation of the similarity
of gene expression profiles in the time domain. For example, for the used data set described
measurements were obtained from time courses during the cell division cycle after synchronization
by alpha factor arrest. For this process a cyclic pattern is expected and related genes will be
found in the lower right corner of the parameter space, as shown in Fig. 6. The basic structure
of the parameter space, associated dynamic patterns and related alternative representations are
discussed in the next section.

3.2 Discussion and Results

From previous sections it has become obvious that there exists no unique description of what is
meant by the similarity of gene expression profiles. Ideally, clustering algorithms and the distance
measure employed should reflect the biologists definition of co-expression. This will depend
on the type of experiment and the biological context. With a number of similarity measures
available, ‘hard’ clustering of genes into non-overlapping groups, for example using hierarchical
or hard-c-means clustering, may lead to misleading results. A ‘fuzzy’ clustering, either in the
data space of the matrix X or in the parameter space of an autoregressive model, would allow
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Fig. 5: Left: 8, 12 and 16 nearest neighbors of gene 1274 identified using the
Euclidean distance on the parameters of the AR(2) models: 1274, 1278, 1277, 471,
1281, 1276, 1275, 891, 452, 349, 1233, 1749, 180, 1747, 1280 and 2095. For the
signals on the right, a correlation coefficient is used to define the similarity. The
: 1274, 1281, 1277, 1276, 1280, 1279, 1278, 1275, 471, 111, 1982, 2379, 299, 1347,
1009 and 212.
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Fig. 6: The AR(2) parameter space, gene 1274 (θ1 = 0.99, θ2 = −0.52) and its
nearest neighbors. Solid points denote genes clustered in the parameter space while
circles denote genes clustered using a correlation coefficient.

for genes belonging to more than one group. Clustering in the parameter space would allow us
to define conditions on dynamic patterns in the time domain. On the other hand, using the
nearest neighbor approach we obtain a sequence of genes ordered according to the distance used
and with respect to a chosen gene. The nearest neighbor approach is particularly suited for an
interactive selection of related genes. As the number of nearest neighbors is increased the change
of expression profiles can be observed. For example, in Figure 5 on the right, different numbers
of nearest neighbors, based on the correlation of gene profiles, are shown. The analyst may then
cut off the number of nearest neighbors when (s)he decides that they do not sufficiently follow a
cyclical pattern anymore. Note how this method avoid a large quantity of computation time since
it is only necessary to calculate a single vector of distances between the original profiles while
hierarchical clustering would require the calculation of the complete distance matrix. Modelling
microarray time course data in the parameter space adds extra information in that the location
of the gene in the parameter space identifies it with a characteristic and known temporal pattern.

In many cases experiments are designed to identify genes related to particular processes. If
any gene in such functional class is known, the approach would instantly select genes with similar
or related responses rather than clustering the whole genome space which may be time consuming
and at present requires a fast computer with a large memory to store the distance matrix as used
for example in hierarchical clustering. Even if a reasonably fast computer would be available,
repeated experiments with a number of distances would be discouraging. The multiplicity of
choices for algorithms and distance measures suggests that one should be able to try a number
of alternative techniques in reasonable time. The proposed method would certainly allow such
experimentation with a minimal amount of computations.

If for any reason no gene is known, one may also ‘design’ an expression profile and proceed as
described above. If such signal has a cyclical element, we know that it would appear in the lower
right area of the triangle of Figure 4. Figure 7 illustrates this region of the parameter space using
a gene with parameters (1,−0.5) and its 15 nearest neighbors. Figures 8 and 9 demonstrate how
the dynamic pattern changes as we move away from the specified region of Figure 7. Note how
the cyclical pattern vanishes as we consider other regions. (Since we have used data describing
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the yeast cell cycle, some regions do not describe informative expression profiles.)
Figures 7, 8 and 9 include plots of the roots for the characteristic polynomial in the top-right

corner, the autocorrelation (ACF) and partial autocorrelation (PACF) functions of the nearest
neighbors. Nearest neighbors in the parameter space follow a specific pattern in the complex
plane. This suggests an alternative space for clustering genes. Yet another method is to cluster
genes using elements of the ACF or PACF. The dimension of the space in which to cluster
could for example be determined by values that reach a specified confidence level (plotted as a
dashed line). The autocorrelations chosen can then be compared using a metric. In Figure 10
we calculated the 15 nearest neighbors in the two-dimensional autocorrelation space, i.e., taking
the autocorrelations ρ1 and ρ2 of the PACF for gene profile 1274. This approach leads to very
similar results in the time domain. This method may be preferred to the parametric one since
the estimation of the parameters is not necessarily avoiding the uncertainty that the estimation
process includes in the analysis. In the same way we could use the ACF or a combination of
both.

4 Summary

The principal aim of this paper is to introduce dynamic modelling of microarray time course data.
The data set used was chosen to illustrate the underlying idea without referring to the biological
context of the data. A novel approach to identify similar gene expression profiles is presented.
Using parametric modelling, we define a distance between expression profiles that identifies genes
with similar dynamic responses opposed to distances among vectors. This approach provides an
intuitive interpretation of similarity in the time domain and allows fast clustering using nearest
neighbors. Although small sample sizes remain a major challenge in the analysis of microarray
time course experiments, the theory of time series analysis is well established with a vast collection
of reference literature available. The algorithms can easily be implemented but are also readily
available in most software packages. The proposed technique is suited for an interactive study of
genes with similar dynamic responses as for example required in the study of interactions in gene
networks.
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Fig. 7: The point (1,−0.5) in the parametric space with its 15 nearest neighbors
delimited by a circle; The roots of the characteristic polynomial of the models; the
autocorrelation (ACF) and partial autocorrelation functions (PACF); the 15 time
series corresponding to the nearest neighbors.
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Fig. 8: The point (0.5, 0) in the parametric space with its 15 nearest neighbors
delimited by a circle; The roots of the characteristic polynomial of the models; the
autocorrelation (ACF) and partial autocorrelation functions (PACF); the 15 time
series corresponding to the nearest neighbors.
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Fig. 9: The point (−0.25, 0.25) in the parametric space with its 15 nearest neighbors
delimited by a circle; The roots of the characteristic polynomial of the models; the
autocorrelation (ACF) and partial autocorrelation functions (PACF); the 15 time
series corresponding to the nearest neighbors.
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Fig. 10: Nearest neighbors in the two-dimensional autocorrelation space for gene
profile 1274: 1274, 1278, 1277, 471, 1281, 1276, 1275, 349, 111, 1280, 452, 891, 1982,
180 and 1749.
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