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Abstract

The text is organised as follows. In the first part, there are six main propositions, preceded by a
definition. Referring mainly to the philosophy of Arthur Schopenhauer, the first proposition provides
the foundation for a phenomenological perspective of science and describes the certainty of uncer-
tainty in any scientific enquiry; following the bad news, the second proposition recovers objective
knowledge within the realm of the world of experience. The third proposition formalises the scien-
tific method in form of Robert Rosen’s modelling relation and introduces a system theory based on
sets and relations. Proposition four describes entailment structures that are a basic tool of science.
Proposition five describes Schopenhauer’s ‘differentiation’ as the basic mode of operation for human
minds and the last proposition draws some conclusions from differentiation. I briefly mention some
personal conclusions on the consequences of the approach and provide examples for the conceptual
framework presented. The examples are used to introduce a novel fuzzy relational model of gene-
expression and function. The approach follows directly from the considerations in the main part of
the text and is intended as a step towards a system theory of genomics. Merging Rosen’s modelling
relation and factor space theory, the paper establishes formal relationships of the approach to rough
set theory, which has been successful in data mining applications, and evidence theory used in un-
certainty modelling.
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1 Introduction

The world as experienced is representation and as such accessible to science. The world is presented
to ordinary perceptual or sensual experience and is described in terms of individual material objects
(e.g. the DNA molecule) and abstract objects or concepts (e.g. genes, gene function) which can
be investigated scientifically. Our ‘experience’ is realised through observation and measurement in
a scientific experiment and to make a priori discoveries, i.e. predictions about the nature of this
world of objects, we must renounce the attempt to know what they are in themselves. Objects
are representations for the subject and we can have knowledge of empirical objects using the a priori
forms of space, time, and causality. In the present text we carry this philosophical position over into a
conceptual framework and working methodology for genomics. Studying genetic systems, we therefore
avoid ontological questions and instead provide a phenomenological model of gene expression, their
function and interactions.

2 Phenomenal Constructions...

DEFINITION 1: The world of experience is Kants world of the phenomena - the empirical world
(Wirklichkeit). A phenomenon is a collection of related percepts suggesting causal entailment.

PROPOSITION 1: If there is something that is grasped, then there is something that grasps it
and everything that is said, is said by someone.

Proposition 1.1: The world as we experience it, is dependent on the nature of our apparatus
for experience, with the consequence that things as they appear to us, are not the same as
they are in themselves. Experience divides into two aspects: perception and conception.

Definition 1.1: Perception is tied to the phenomenal world - the world of cognisable
objects (sensory impressions or percepts), which we observe and measure, and with
which science deals. Perception is the process of discerning (to distinguish, to differen-
tiate). To organise percepts is a primary function of the mind ; it means to establish
relations between them (cf. Definition 4.3). An example of perception is understanding
(Verstand), the capacity for preconceptual, intuitive knowledge.

Definition 1.2: Conception is part of the world of concepts (ideas) in which we establish
a modelling relation (cf. Proposition 3) between the self1 (mind) and its ambience (the
experienced, context, observed. Cf. Definition 3). Conception is the comprehension of
phenomena. An example of conception is reason (Vernunft), the capacity to form and
employ concepts based on the prior intuitive grasp of things.

Proposition 1.2: The world as we know it is our interpretation of the observable facts in
the light of theories that we ourselves invent/construct. Within a theory, every argument
has to have an absolute minimum of one premise and one rule of inference (e.g a relation
representing IF A, THEN B) before it begins, and therefore begins to be an argument at
all.

Proposition 1.3: Every argument has to rest on at least two undemonstrated assumptions,
since no argument can establish either the truth of its own premise or the validity of the
rules by which itself proceeds.

Proposition 1.4: Popper: Theories are formulated as to correspond in some useful way to the
phenomenal world, whatever that may mean. The quest for precision is analogues to the
quest for certainty and both – precision and certainty are impossible to attain.

Proposition 1.5: Uncertainty (the lack or absence of certainty) creates alternatives and
hence choice. Wittgenstein: What we cannot speak about, we must remain silent about.
What we cannot think, we cannot think, therefore we also cannot say what we cannot
think.

DEFINITION 2: The world of things (objects) as they are in themselves is Kant’s noumena
(Realität). Though we can have knowledge about the noumena, we can never have knowledge
of it.

PROPOSITION 2: Kant, Schopenhauer: Reality is hidden but transcendentally real. The world
of objects is representation, conditioned by the experiencing self (his mind), but has transcen-

1Here we identify ‘the self’ with a human being’s mind and intellect (understanding, reason), as opposed to his or her
body. The self exists in a subject-object relation to its ambience (Proposition 1), describing the world as representation.
Another aspect of the self, not discussed here, amounts to what Schopenhauer designates as will.
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dental reality. The trancendental ideal (noumena) and the empirical real (phenomena) are
complementary. Whatever is noumenal must be undifferentiated.

Proposition 2.1: Science deals with concepts to interpret aspects of the phenomenal world.
Science does not describe an independent reality; it does not deal with the things what they
are in themselves, but with phenomena through objects and relations defined among them.
In other words, the aim of science, mathematics and philosophy is the study of natural-
and formal systems (cf. Proposition 3).

Definition 2.1: An idea or concept is defined by

i) its extension - the aggregate of objects relevant to the concept.

ii) its intension - the collection of factors and their attributes describing it.

The two most important concepts by which our experience is made intelligible to us
are space and time, constructed to describe causal entailment (Definition 4) in the
world of experience.

Definition 2.2: An object can be a physical (material) object or mass but also an abstract
mathematical object or a concept. A multiple of objects defines a set . An object is
never the thing-in-itself, but something the cognising (perceiving and conceiving) self
(mind) has constructed by discerning it from its context.

Definition 2.3: We refer to a perceptible or cognisable quality of a natural system as
a factor (or observable). A factor2 is described by the mapping f : U → X from
a set of objects U to factor-space X. While U denotes the hypothesis-space in
which we define or infer statements about a phenomena in question, X is also referred
to as the observation-space or state-space in which measurements or observations are
represented. Only events in X are directly perceptible to us. A factor induces relations
on the set of objects and between the set of objects and the set of states. Factors serve
as the vehicle through which interactions between natural systems (e.g the sensory
apparatus of the self and its ambience) occur, and which are subsequently responsible
for perceptible changes arising from interactions (cf. Proposition 6).

Definition 2.4: Attributes establish the relationship between the phenomena considered
and its context; they capture semantic information . Attributes are represented by
the mappings

i) Ã : U → L from the set of objects U to a space L. This mapping is called the
extension of a concept in U .

ii) f(Ã) : X → L from the set of states into L. This mapping is called the represen-
tation extension of a concept in X. For L being the unit interval [0, 1], these two
mappings are referred to as fuzzy sets3.

Proposition 2.2: Objective knowledge of causal entailment (cf. Definition 4), is attainable
within the realm of the phenomenal world. What is given to us in direct experience are
the representations of sense (through perception) and of thought (through conception).
The world of experience cannot exist independently of experience. Experience is objective
but what is denied, is the validity of inferences from what we experience to what we do not
experience. Scientific knowledge is common sense knowledge made more critically self-aware
and raised to a level of generality.

DEFINITION 3: A system is a set of objects and relations defined on them. Formally, we define
a system by the pair (U, R) where U is a set of certain things, i.e. objects u, and R is a
relation defined on U or the Cartesian product U × U , in which case we have R ⊂ U × U . The
relation(s) R role is usually to order, structure or partition elements in U . Systems do not exist
independent of the mind but they are a formal representation of aspects of the phenomenal
world. A formal system represents the interior world of the self while a natural system is
an element of the outer or exterior world of the ambience (context), a set of phenomena in
the world of experience. As such it embodies a mental construct (i.e. a relation established by
the mind between percepts) serving as a hypothesis or model pertaining to the organisation of
the phenomenal world.

2The notation f : U → X is read as “a mapping f from space U to X”. An element of U , denoted u ∈ U , as an argument
to f maps to the value f(u) in X; denoted u �→ f(u).

3For a ‘non-fuzzy’ or ‘crisp’ set A, the degree of membership A(u) can only take two values, zero or one, denoted
A : U → {0, 1}. Varying degrees of membership between zero and one, u ∈ [0, 1], can be used to model different kinds of
uncertainty (ambiguity, fuzziness, vagueness,...) and should allow us to integrate qualitative, context-dependent knowledge
into the otherwise quantitative model.
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Figure 1: Rosen’s modelling relation between a natural system and a formal system.

PROPOSITION 3: Rosen: In order to understand (explain), one establishes a modelling rela-
tion between a natural system N and a formal system F . If the modelling relation brings
both systems into congruence by suitable modes of encoding (measurement, observation) and
decoding (prediction), it describes a natural law . In this case, F is a model of N , or N is a
realisation of F . Modelling, the process of establishing a modelling relation, bringing the two
entailment structures into congruence, is a creative mental act, it is an art .

Proposition 3.1: A model is the basis for reasoning . Reasoning is the process of turning
facts into knowledge. Knowledge is the result of understanding (explanation, experience)
and is represented by law-like relations. A law (or principle) can only describe what a
natural system is like, not what it is.

Definition 3.1: A fact is a context-independent measure extracted from data (e.g. mea-
sures of variability or central tendency). A descriptive or fact explanation (e.g pat-
tern) is the use of a theory and data to induce a singular factual statement. A law-like
explanation (e.g rules) uses a theory, subsidiary assumptions (statements, axioms)
and data to infer a law.

Definition 3.2: Data are instances of states, i.e. evaluations of objects using factors. Data
are context-dependent as is knowledge. The process of collecting data is referred to as
measurement . The estimation of parameters of a formal model from data, is referred
to as system identification .

DEFINITION 4: By separating the observed aspect of the phenomenal world from the formal
model and the self observing it, the following two kinds of objects and entailment are funda-
mental:

i) Objects in natural systems are referred to as components. The realisation of relations in
a natural system is referred to as causal entailment (causality).

ii) Objects in formal systems are referred to as propositions. The evaluation of relations in
formal systems is referred to as formal entailment (inference).

PROPOSITION 4: To ask “why u?” is to ask “what entails u?”. To understand entailment
is the sole function of the understanding and its only power. Conversely, all entailment and
consequently the whole of reality, is only for the understanding, through the understanding,
in the understanding. Understanding, through inference, is the subjective correlate of causal
entailment.

Proposition 4.1: Entailment exist only between objects in the phenomenal world. The suc-
cession of events or phenomena is not arbitrary; there are relations manifest in the world
of phenomena and these relations, at least in part, can be grasped by the human mind.

Definition 4.1: The concept of linkage between factors represents causal entailment in
natural systems. The linkage between any two factors is a relation determined by
comparison of the partitioning (equivalence relations) induced by the two factors.

Definition 4.2: For a factor f : U → X, in a formal system, object u ∈ U entails f(u).
Asking “why f(u)?” is answered “because u” and “because f”. The former corresponds
to Aristotle’s material cause of ‘effect’ f(u), while the latter refers to the efficient
cause of f(u).
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Proposition 4.2: For entailment to exist, an act of differentiation is required. Each time we
refer to anything (whether a percept or concept), we are specifying criteria of distinction,
discerning an object from its context .

Proposition 4.3: Discerning an object, we implicitly recognise organisation.

Definition 4.3: Organisation is defined by relations that must be in place in order for
something to exist (to be there, to be an object).

Definition 4.4: System theory is the study of organisation per se. It defines formal sys-
tems by means of mathematical relations (equality, elementhood, subsethood, greater
than, smaller than, ...) and set comparisons (union, intersection, and complement).

Proposition 4.4: For anything to be different from anything else, objects, sets and concepts
have to be presupposed.

Proposition 4.5: Causality manifests itself only through changes in states, called state -
transitions, leading to sequences of states, entailing an effect that is again a state. The
change of a particular state is called an event .

DEFINITION 5: Anything that is observed is subject to change as for anything that was there,
it has changed (is different) through differentiation.

PROPOSITION 5: Discerning is an interaction that brings forth an object. Knowing is do-
ing (discerning); doing is understanding (experiencing). Knowledge arises from the plurality
and separate existence of beings (objects); knowledge arises from and through individuation
(differentiation).

Proposition 5.1: Discerning, implies change, reveals diversity and complexity but also imposes
order.

Proposition 5.2: Although differences may exist (through differentiation), knowledge of it
and of uncertainty leaves a choice to the nature of entailment.

Proposition 5.3: Although knowledge originates with experience, it does not all arise out of
experience. Apart from understanding through observation or contemplation alone, the
observation of change through manipulation is a means to gaining knowledge.

Definition 5.3: Creating a new perturbated system which can be compared with the orig-
inal, the discrepancy between behaviours determines its function while discrepancies
between system structures determine its components.

Proposition 5.4: There is no such thing as knowledge of knowing since this would require
that the self separated itself from knowing and yet knew that knowing.

DEFINITION 6: Learning is the process of gaining knowledge through experience (perception and
conception). There are two modes of pursuing knowledge: contemplation and manipulation .

PROPOSITION 6: Living is learning; learning is experiencing; experiencing is discerning; discern-
ing is an (inter)action; an interaction brings forth a change (difference). The interaction between
a natural system and our sensory apparatus generates percepts from a change or modification
within it. The sensory apparatus itself is a natural system, and we can say that the interaction
of any two natural systems causes some change which we can represent by means of factors.
Changes make the world comprehensible.

Proposition 6.1: Differentiation is the essence of life, as we perceive and decide it.

Proposition 6.2: The pursuit of knowledge provides a choice between contemplation and ma-
nipulation.

Proposition 6.3: Tolerance is the appreciation of diversity through contemplation. Morality
derives from the knowledge that, since the noumena is undifferentiated, differences are only
transcendentally real.

3 Conclusions and Comments

The previous section outlined the basis for a system-theoretic epistemology integrating aspects of
Arthur Schopenhauer’s philosophy [3], Robert Rosen’s system theory [4, 5] and Peizhuang Wang’s
factor-space theory [8, 2]. With the work of Immanuel Kant, metaphysics was discovered in the
subject. Kant identified the concepts of space, time and causality as a priori and therefore conditional
for experience. He also showed that these apply only to experience and may not be used to found a
metaphysical system. Our mind organises the elements of experience to the principle of causality, but
in contrast to Davide Hume, who derived causality from experience, Kant showed that we approach
the world around us with the principle of causality already being there. With Kant, the subject
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therefore becomes central to reasoning and understanding. The subject guarantees the unity of the
outer world, the knowledge of my being is the basis for the re-presentation of the world we experience.
With the creation of a domain in which pure reason allows for certainty and truth, we also create
the noumena as something which is forever unaccessible. Kants ‘things as they are in themselves’,
the noumena, we ourselves create by the knowledge of the phenomena. While others, namely Fichte,
Schelling, Hegel and Marx, tried to fill the gap of uncertainty created by Kant, Schopenhauer accepted
the presented limitations, refined the boundaries and clarified our knowledge about the noumena. For
everything that becomes part of our experience, we are ‘forced’ to ask for causes and entailment.

According the type of objects we deal with, Schopenhauer describes in his dissertation ‘On the
Fourfold Root of Sufficient Reason’ [7] the different ways by which we establish such entailment
relations. Schopenhauer asserts that the everyday world is made up of objects of four classes; the
first class consisting of material objects, such as the chromosomes in the genome; the second class
consisting of concepts and combinations of concepts, such as gene function or hypotheses regarding
gene expression; the third class consisting of time and space; and the fourth class consisting of
particular human wills. These objects are interconnected in a number of ways, allowing questions to
be asked and answered; there is always a reason. Material objects are subject to change, and of any
change the question “Why does it occur?” can be asked. Concepts combined in appropriate ways
constitute judgements or statements which can be questioned by asking “Why is it true?”. Third,
time and space are represented by mathematical objects for which we can ask “Why does it possess its
characteristic properties?”. Again, there is always a reason - a ‘sufficient reason’. The four forms of the
principle of sufficient reason are that every change in a material object has a cause; the truth of every
true judgement rests upon something other than itself (cf. Proposition 1.2 and 1.3); all mathematical
properties are grounded in other mathematical properties; every action has a motive. Objects of the
four classes comprise therefore those, being subject to change (first class), those bearing truth (second
class), those possessing mathematical properties (third class), and those of the fourth class giving
rise to actions under the influence of motives. In science, formal systems are used to model natural
systems; to establish concepts; to describe relations between percepts; and to make predictions.
Science is the description (comprehension) of the phenomenal world. The ‘natural sciences’, physics,
chemistry and biology are based on comparisons (using sets – union, intersection, and complement)
for the purpose of reasoning (classification based on transitive laws). Mathematics is concerned with
the construction of formal systems using abstract sets and formal relations. Philosophy studies the
consequences and foundations of science and mathematics. Relating natural systems with formal
ones, we aim to make inferences in the latter to make predictions about the former.

Ultimate or philosophical explanations are not to be looked for in science4 (Proposition 1.2)5

because the applicability of science is confined to the phenomenal world (Proposition 2.1). Our
experience is made intelligible to us in terms of space, time, and causality; for only then it is possible
to talk of there being more than one anything, or of anything being different from anything else.
Differentiation, discerning and individuation are at the root of experience and therefore science. The
possibility of plurality (Schopenhauers principium individuationis) is necessarily conditioned by time
and space. If the mathematical structures we employ to encode natural systems, are not in themselves
the reality of the natural world, they are the only key we possess to that reality. The essence of the
modelling relation (Figure 1) is that we have to explain the correspondence between natural systems
and the mathematical representation. There are many examples of the remarkable correspondence
between mathematical models and the behaviour of the natural world, but is must be admitted that
no one of these is final. The modelling relation, here used as a conceptual device to clarify the
relationship between natural systems and mathematical structures created for understanding such
systems, is in fact a model of the scientific method; providing an intriguing subject for further study
and contemplation. (See for example [5]).

Knowledge is, of its nature, dualistic: there is something that is grasped and something else that
grasps it. The whole world of objects is representation, conditioned by the subject (the self or observer,
an object himself); it has transcendental reality (Proposition 1 and 2). All knowledge takes the
subject-object form, but only in the world of phenomena can subject and object be differentiated
(Definition 1.1). According to Schopenhauer, and in contrast to Kant, the world we perceive is not
just indirectly constructed by conception (Definition 1.2) and concepts (Proposition 2.1) we use to

4Or as Henri Poincaré suggested, the aim of science is not things in themselves but the relations between things;
outside these relations there is no reality knowable. Schopenhauer’s ‘principle of sufficient reason’ explains connections and
combinations of phenomena, not the phenomena themselves.

5In the words of Ludwig Wittgenstein (Tractatus Logico-Philosophicus): “The sense of the world must lie outside the
world... What we cannot speak about we must remain silent about... What can be described can happen too, and what is
excluded by the laws of causality cannot be described.”
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describe them but already directly by the sensory apparatus. Perception (Definition 1.1) is intellectual
in the sense that objects are created by the intellect; it is not a matter of bare sensations. According
to Schopenhauer the world of perceptible objects is the creation of the faculties of sensibility and
understanding. Our intellect is presented with sensations or sensory data, upon which it imposes
the concepts of time, space and causality. We could say that perception (Definition 1.1) provides
the letters or words, by which the mind forms the words and sentences, respectively. Although
independent reality is something which human knowledge can approach only asymptotically, never to
grasp or make direct and immediate contact with, there exists objective knowledge in the realm of the
phenomenal world. We may not describe the things as they are in themselves, the objects however
have empirical reality. Kant’s transcendental idealism ensures empirical realism, while ignorance to
the distinction between the things in themselves and the appearances (transcendental realism) results
in scepticism about the knowability of objects (empirical idealism). A common error is to mistake
the gap between the phenomena and noumena with a lack of objective knowledge in the phenomenal
world or to fill the apparent gap between the phenomena and noumena with some form of relativism,
subjectivism, pessimism or religious belief instead of asking further questions. Following Poppers
‘critical rationalism’, we ought to combine an empiricists view of reality (empiricists ontology) with
a rationalist view of knowledge (rationalist epistemology).

The scientific method, relying on the concepts of space and time, investigates objects (whether
physical or abstract) and establishes relations between them (Proposition 3). In order to understand
or know a natural law (principle), i.e. to establish the existence of the modelling relation (Figure
1) between a natural and formal system, two further concepts regularity and repeatability play an
essential role. Regularity is associated with the existence of relations while repeatability is the basis
of comparisons. In simple terms, we may require the repetition of an experiment in order to establish
regularity through comparison. To decide upon regularity or chance, we need repeatability; Chance
and randomness are defined by irregularities – the absence of relations. See also Figure 2.

b
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b

b

b

b

b

b b b

b b b

b b b

bc bc bc

bc bc bc

bc bc bc

Figure 2: Repeatability, comparison, modelling and the uncertainty in fitting a model to
data.

The notion of existence causes further problems as one may ask whether we mean “does not
exist in principle” or whether we mean “is not accessible, observable, not knowable” without refined
means of observation or measurement. A chance mechanism induces randomness, a form of uncer-
tainty which makes certain events or states unpredictable. Whether with refined measurements and
tools, by “zooming in”, we could identify such relations, say on a “microscopic” level, introduces
the notion of scale or scaleability. To allow reasoning in the presence of uncertainty, we may accept
the notion of randomness or chance as “undetermined through observation” and therefore view as
if the process is by chance. Regarding Proposition 1.1 the question of whether an ideal organism,
with perfect sensory apparatus, could know the noumena is irrelevant because it does not exist as
an object of the phenomena. Complexity is commonly associated with the inability to discriminate
the fundamental constituents of the system or to describe their interrelations in a concise way. Like
randomness, we therefore take the concept of complexity as closely related to that of understanding,
to express uncertainty in understanding and reasoning rather than as a property of the system or data
themselves. From our definitions and propositions above, understanding implies the existence of an
object-subject relation, i.e. we assume the presence of a subject having the task of studying a natural
system (objects, relations), usually by means of model predictions. Complexity is therefore related
to both, the subject and the objects. The success of modern science is the success of the experimen-
tal method. The aim of modelling, whether using formal mathematical models or for instance the
biologists expert knowledge and intuition, is to infer a natural law or fundamental principle which
should yield non-ambiguous predictions. Whenever substantial disagreement is found between theory
and experiment, this attributed either to side-effects of the measurement process or to incomplete
knowledge of the state of the system. In the latter case, using a reductionist approach, we would seek
to refine our measurements, i.e. improving accuracy or adding variables (factors) to measure.
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Figure 3: Scaling in modelling.

The concepts of space, time and causal entailment in science are formalised by mathematical
objects such as sets, order and equivalence relations (cf. Definition 2.1 and 2.2). If we denote an
object by u, we write u ∈ U to state that u is an element of the set U . Before objects can be
thought, a set in which these objects can be elements of must exist, not necessarily as an object
itself but as a concept. If a set is empty, what remains is an empty set, denoted ∅. In order to
apply a mathematical set, say for example U = {5, 3, 1, 2, 4}, in a real-world context, the set is
usually furnished with an ordering relation because only then we are able to make comparisons in
reference to U . Then U = {1, 2, 3, 4, 5}, as an ordered sequence, may be used to count for example
events. On the other hands the comparison itself can structure the elements in U into equivalence
classes, e.g. {2, 4} and {1, 3, 5}, where elements share properties, are equivalent in a defined sense
and would therefore not be distinguishable in measurement or observation. The set, endowed with a
relation, or relations, defines a system. Representing a natural system by means of a formal system
(cf. Definition 3), we encode it using factors f which map an object u into a point in the observation
or factor space X. We here use the term space to denote the fact that X should be endowed with
some (mathematical) structure allowing us to compare and order its elements, for example to define
distances between points in X; leading to what is called a topological space.

Since sets of objects and relations play a central role in modelling natural systems, we should
have a closer look at their definition. A set U is a collection of objects, called the elements of U . If
u is an element of U , we write u ∈ U and denote the set by U = {u}. Suppose two elements, first
u1 ∈ U1, followed by u2 ∈ U2, are chosen; then this choice denoted by the pair (u1, u2), is called an
ordered pair. The set of all such ordered pairs is called the Cartesian product of U1 and U2,

U1 × U2 =
{
(u1, u2) for which u1 ∈ U1, and u2 ∈ U2

}
.

If furnished with some mathematical structure, a set is also referred to as a space. Any subset R of
U1 ×U2 defines a relation between the elements of U1 and the elements of U2. A relation is therefore
a set of ordered pairs, denoted

R = {(u1, u2) ∈ U1 × U2 for which R(u1, u2) holds true} .

Since by R an element in U1 is associated with one or more elements in U2, R establishes a multi-valued
correspondence :

R : U1 × U2 → {0, 1}
(u1, u2) �→ R(u1, u2) .

An important family of relations are equivalence relations, denoted E(·, ·). The equality relation,
=, is an example. Equivalence relations are required to be reflexive, E(u, u) holds for all u ∈ U and
symmetric E(u, u′) implies that E(u′, u) holds equally true for all u, u′ ∈ U . The most important
property of equivalence relations however is transitivity : if E(u1, u2) holds, and E(u2, u3) holds,
then E(u1, u3) holds true as well. If u1 equals or is similar to u2 and u2 equals or is similar to
u3, then u1 also equals or is similar to u3. Transitivity therefore provides a basic mechanism for
reasoning; given two pieces of information (about u1 and u2, as well as u2 and u3) we can infer a
third relation (between u1 and u3). If E is an equivalence relation on a set U , and if u′ ∈ U is any
element of U , then we can form a subset of U defined

[u′]E =
{
u : E(u′, u) holds

}
.

Where the symbol ‘ : ’ is a short form of “for which” and if E(u′, u) holds true, we write E(u′, u) = 1
and E(u′, u) = 0 if it doesn’t. The set [u′]E is called equivalence class. In figures 13 and 14 the
areas described by factors are equivalence classes, representing sets of objects that have identical
properties or which are not discernable by factor f . The set of equivalence classes of U under an
equivalence relation E is called quotient set of U , denoted U/E.
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U/Eg

Figure 4: Example of two totally unlinked factors f and g. They grey area on the left is
the equivalence class [u]f generated by f on U .

Considering any two ways of encoding a system, or alternatively changing (exciting, pertubat-
ing) one system to make two observations, we use the factors f and g to describe the modes of
encoding/observation, the study of the linkage between the two factors f and g provides a basis for
reasoning, i.e. will allows us to infer or validate entailment relations in the natural system under
consideration. Let us suppose we are given two factors f, g ∈ F such that for each u ∈ U we have
two ‘coordinates’, f(u) in U/Ef and g(u) in U/Eg, as independent descriptions of the same concept.
We shall discuss three cases for which two factors are ‘unlinked’, ‘linked’ and ‘partially linked’. First
consider the illustration in Figure 4 defining two factors f and g which partition U in different ways.
The concept of linkage (Definition 4.1) between factors f and g becomes plausible by assuming a
given [u]f in U/Ef and subsequently to discuss which g-equivalence classes intersect with [u]f . From
Figure 4, we find that factor g splits the classes of Ef such that g can distinguish between objects,
undistinguishable via f . We say that the greater the extend of the splitting of [u]f by g, the more
unlinked g is to f at [u]f . We find that

• The whole of U/Eg, i.e. both g-classes intersect with [u]f : g is said to be unlinked to f at [u]f .

• g is unlinked to f at each [u]f ; every Ef -class intersects every Eg-class and conversely : g is
said to be totally unlinked to f .

Having fixed some value x in f(U), g(u) is not arbitrary in g(U); the coordinates f(u), g(u) of an
object u ∈ U are not independently variable in U/Ef , U/Eg, respectively.

U/Eg = U/Ef

u
g = f

[u]g = [u]f

g

U/Eg

[u]g

[u]f
f

u

U/Ef

Figure 5: Two examples of two totally linked factors f and g such that Ef refines Eg.

Figure 5 illustrates the second extreme: total linkage. We make the following observations :

• Only a single g-class intersects with [u]f : g is said to be linked to f at [u]f .

• Since g is linked to f at each [u]f ; every class of Ef intersects exactly one class of Eg, namely
the one which contains it : g is said to be totally linked to f .

If g and f are totally linked, Ef is said to refine Eg, g does not split the classes of Ef and no new
information is obtained from an additional factor g. The coordinates f(u) and g(u) are independently
variable in U/Ef , U/Eg respectively. That is, having fixed some value x in f(U) we may find an
object in U such that f(u) = x and g(u) is arbitrary in g(U).

In general, let Ef , Eg be equivalence relations on a set U . Ef is said to be a refinement of Eg if
Ef (u, u′) implies Eg(u, u′). In terms of equivalence class, this means that every Ef -equivalence class
is a subset of some Eg-equivalence class or in other words, Ef refining Eg means that elements of the
partition from Eg are further partitioned by Ef and blocks of the Eg partition can be obtained from
the set-theoretic union from Ef -blocks. If Ef is a refinement of Eg, then there is a unique mapping

Ψ: U/Ef → U/Eg (1)

[u]f �→ Ψ([u]f ) = [u]g

9



which makes the following diagram commute :

U

U/Ef U/Eg

ρEf ρEg

Ψ

Thus the value of g on an object u in U is completely determined by the value of f on that object
through the relation g(u) = Ψ(f(u)). That is, g is a function of f . Next, let f, g : U → {0, 1} be
defined such that its value is equal to one if u is on the right of the line which partitions U and zero
otherwise. We then have the situation depicted on the right in Figure 6 where find that :

• For u1, only one g-class intersects with [u]f but not all of U/Eg. That is, g is linked to f at
[u]f .

• For u2, both g-classes intersect with [u]f and hence g is unlinked to f at [u]f .

We also note that the linkage relationship between f and g is not symmetric; i.e. the linkage of g to
f at [u]f can be different from the linkage of f to g. An important fact is, that if g is linked to f at
u, we can determine information about g(u) via f , providing a means for prediction.

U/Eg = U/Ef

u f
g

[u]f

[u]g

u1

f(u) = 0
g(u) = 0

f

u2

f(u) = 1
g(u) = 0

g

f(u) = 1
g(u) = 1

Figure 6: Two examples for partial linkage between factors.

Looking at another illustration of linkage. From Figure 7, we have the following equivalence
classes for f and g from which we find that f and g are totally unlinked.

[u1]f = {u1, u2} [u1]g = {u1, u3} U/Ef =
{{u1, u2}, {u3, u4}

}
[u2]f = {u1, u2} [u2]g = {u2, u4} U/Eg =

{{u1, u3}, {u2, u4}
}

[u3]f = {u3, u4} [u3]g = {u1, u3}
[u4]f = {u3, u4} [u4]g = {u2, u4} U/Efg =

{{u1}, {u2}, {u3}, {u4}
}

u1

u2

u3

u4

x1

x2

x3

x4

f

u1

u2

u3

u4

x1

x2

x3

x4

g

Figure 7: Example of two totally unlinked factors f and g.

In Figure 8, we find an example for total linkage. The equivalence classes and quotient sets are
as follows.

[u1]f = {u1, u2} [u1]g = {u1} U/Ef =
{{u4}, {u3}, {u1, u2}

}
[u2]f = {u1, u2} [u2]g = {u2} U/Eg =

{{u3, u4}, {u2}, {u1}
}

[u3]f = {u3} [u3]g = {u3, u4}
[u4]f = {u4} [u4]g = {u3, u4} U/Efg =

{{u1}, {u2}, {u3}, {u4}
}

Finally we look at an example for partial linkage, illustrated in Figure 9. The equivalence classes
and quotient sets are :

[u1]f = {u1, u2} [u1]g = {u1} U/Ef =
{{u1, u2}, {u3, u4}

}
[u2]f = {u1, u2} [u2]g = {u2, u3} U/Eg =

{{u1}, {u2, u3}, {u4}
}

[u3]f = {u3, u4} [u3]g = {u2, u3}
[u4]f = {u3, u4} [u4]g = {u4} U/Efg =

{{u1}, {u2}, {u3}, {u4}
}
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u1

u2

u3

u4

x1

x2

x3

x4

f

u1

u2

u3

u4

x1

x2

x3

x4

g

Figure 8: Example of two totally linked factors f and g.

With respect to the linkage of g to f we find that for all u in U , g is partially linked to f at [u]f since
it intersects with more than one g-class but not all of U/Eg. The linkage of f to g at [u]g is however
different :

• Linkage at [u1]g : Intersects with a single f -class.

• Unlinked at [u2]g and [u3]g : Intersections with all of U/Ef .

• Linkage at [u4]g.

u1

u2

u3

u4

x1

x2

x3

x4

f

u1

u2

u3

u4

x1

x2

x3

x4

g

Figure 9: Example of partial linkage between f and g.

For a subset A of U , representing a concept6, we can define two subsets of U/Ef , the inner
reduction7

E∗(A) = {[u]f : [u]f ⊆ A} (2)

and outer reduction

E∗(A) = {[u]f : [u]f ∩ A = ∅} . (3)

A

[u1]f

[u3]f

[u2]f

[u4]f
[u6]f

[u5]f

Figure 10: Inner and outer reductions.

As illustrated in Figure 10, if we take A to be the grey shaded subset of U , then

E∗(A) = {[u3]f},
E∗(A) = {[u1]f , [u2]f , [u3]f , [u4]f} .

6See Definition 2.4 and note that a fuzzy set Ã subsumes the case of crisp sets, i.e. sets where objects u are either a
member of A or not, A : U → {0, 1}, A(u) �→ {0, 1}.

7The concepts of inner and outer reduction are due to Shafer: A Mathematical Theory of Evidence, Princeton University
Press, 1976. A comprehensive discussion of evidence theory, its relation to possibility theory and the implementation in
knowledge-based systems was provided by Kruse and Schwecke: Uncertainty and Vagueness in Knowledge-Based Systems,
Springer Verlag 1991.
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With the factor f being our only way of practically describing a concept in terms of measurements,
we can only observe the quotient set (coarsening) U/Ef of U w.r.t Ef . Note also that an equivalence
class [u]f consists of those elements u′ of U for which f(u) = f(u′) and f(u), f(u′) ∈ X(f). With
E∗ and E∗ we have a way to discuss the approximation of a (crisp) subset A in U . The set A on the
other hand was initially used to represent a concept (cf. Definition 2.4) so that for example, A(u)
denotes the relevance of the objects u in U for the given context or concept investigated. In the
theory of rough sets due to Pawlak8, E∗(A) (resp. E∗(A)) are called upper (lower) approximation
of A by Ef . E∗(A) ⊆ E∗(A) and whenever E∗(A) = E∗(A), A ⊂ U cannot be perfectly described
because of the indiscernibility of objects in U . The pair (U, Ef ) is called an approximation space.
In the approximation of A, the set difference E∗(A)− E∗(A), defined by E∗(A) ∩ (

E∗(A)
)c

is called
boundary region. For the example depicted in Figure 10 we have

E∗(A)− E∗(A) =
{
[u1]f , [u2]f , [u3]f , [u4]f

} ∩ {
[u1]f , [u2]f , [u4]f , [u5]f , [u6]f

}
=

{
[u1]f , [u2]f , [u4]f

}
A rough set membership function of A is then defined ∀u ∈ U by the mapping

Ar(u) =
#

(
[u]f ∩ A

)
#

(
[u]f

) (4)

where #(·) denotes the number of elements in a set, assuming a finite set U . We find that

Ar(u) =



1 if u ∈ E∗(A)

0 if u ∈ U − E∗(A)

0 ≤ Ar(u) ≤ 1 if u ∈ E∗(A)− E∗(A) .

The membership function Ar(u) describes the degree of possibility9 of u belonging to A in U . The
accuracy of approximation of A by a rough set can be calculated by

A(A) =
#

(
[u]f ∈ E∗(A)

)
#

(
[u]f ∈ E∗(A)

) =
#

(
[u]f ⊂ A

)
#

(
[u]f ∩ A = ∅) (5)

with #
(
[u]f ∈ E∗(A)

)
being non-empty such that 0 ≤ A(A) ≤ 1. The concept of linkage between

two factors and a measure of accuracy like (5) are very important for formal modelling as only if
we have achieved a synthesis with experimental data and with the elimination of information about
variables (factors) that are irrelevant for a “sufficient” description of the phenomena, we achieve real
understanding. If these elements are not given in a conceptual framework, the model will fail to
‘explain’ the phenomena and at best suggests that observed events have a reason.

With the certainty of uncertainty, any formal model ought to be precise about uncertainty. We
however need to be careful about the meaning of uncertainty. Data may appear to follow a probability
law (randomness) or measurements are inaccurate (imprecision). Modelling qualitative concepts,
fuzziness and vagueness (the difficulty of making sharp or precise distinctions) can be represented
using fuzzy sets. Ambiguity on the other hand refers to the evidence we have in associating an
object with a certain class. Considering the limitation of observable information through the factors
available, we can use (5). Glenn Shafers evidence theory , building on earlier work by Arthur
Dempster, provide a mechanism to introduce confidence measures into our model without major
difficulties. In evidence theory, U is referred to as a frame of discernment ; a set of alternatives
perceived as distinct answers to a question. Let P(U) denote the set of subsets of U (the power

set). Whereas the degrees of membership Ã(u) are specifying the relevance of u to concept C, partial
evidence in terms of probabilities is modelled in evidence theory by considering a mass distribution
(probability assignment) m : P(U) → [0, 1] where m(∅) = 0 and

∑
A : A⊆U m(A) = 1. These are in

fact axioms defining a probability measure. m(A) is understood as a measure of belief committed to
A. If m(A) is not known exactly but partial evidence exists for subsets B of U , the following two

8See for example Z. Pawlak: Rough Sets in International Journal of Computing and Information Sciences, Vol. 11, No. 5,
1982, pp. 341–356. Rough Set Theory has found a number of applications in Data Mining.

9The relationships between rough set theory, possibility theory and fuzzy sets is further discussed in D. Dubois and H.
Prade: Rough Fuzzy Sets and Fuzzy Rough Sets, International Journal of General Systems, Vol. 17, pp. 191–209.
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real-valued functions describe the belief and plausibility of A, respectively10 :

Bel : P(U) → [0, 1]

A �→ Bel(A)
.
=

∑
B : B⊆A

m(B) .

and

Pl : P(U) → [0, 1]

A �→ Pl(A)
.
=

∑
B : B∩A �=∅

m(B) .

Our previous discussion of linkage is now considered a comparison of two frames of discernment. One
frame can then be obtained from another by refinement and what has been the discussion about
additional factors is in evidence theory the study of frames that are different but compatible. A
frame being compatible means that it does not provide contradictory information but instead refines
in some way the description of the concept of concern. What follows is a mathematical representation
of how one frame of discernment U ′ is obtained from another frame of discernment U by splitting
(refining) some or all of the elements of U . Following closely Shafer’s description we introduce the
mapping Γ which for each u ∈ U , defines a subset Γ({u}) of U ′. The sets Γ({u}) are required to be
non-empty, Γ({u}) = ∅, and together form a partition, that is, the sets Γ({u}) are disjoint, non-empty
and their union form U ′. The mapping

Γ: P(U) → P(U ′)

A �→ Γ(A) =
⋃

u∈A

Γ({u})

is called a refining and U ′ is said to be the refinement of U . See also equation (1). Equivalently, U
may be seen as the coarsening of U ′ as illustrated in Figure 11. In terms of two factors, f and g, we
then have

Γ({u}) = Γ
(
[u]f

)
= [u]g .

U ′

Γ({u1})

Γ({u3})

Γ({u2})

Γ({u4})
Γ({u6})

Γ({u5})

Figure 11: A coarsening U = {u1, . . . , u6} of frame U ′.

A frame of discernment, U , is understood as a set of alternative propositions perceived as distinct
conclusions to a hypothesis. If the refinement Γ exists, U and U ′ are said to be compatible. The
concept of refinement is a tool to compare two frames. On the other hand, coarsening is equivalent
to clustering elements by building a partition on U . Therefore considering only one factor f , U/Ef

is a coarsening of U , and U is a refinement of U/Ef . Then for [u]f ∈ U/Ef , Γ([u]f ) defines a subset
of U and for any B ⊂ U/Ef ,

Γ(B) =
⋃

[u]f∈B

Γ
(
[u]f

)
.

10For the sake of simplicity we here refer to crisp sets. The generalisation of belief functions to deal with fuzzy sets Ã
was for example described by J. Yen: Generalising Dempster-Shafer Theory to Fuzzy Sets. IEEE Transactions SMC 20
(3), 1990, pp. 559–570.
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In the context of comparing two compatible frames, associated with a refinement Γ: P(U) → P(U ′),
Shafer also defines for a subset A of U the following two sets, called inner and outer reduction
respectively (compare with (2) and (3)) :

R∗ = {u ∈ U : Γ({u}) ⊂ A},
R∗ = {u ∈ U : Γ({u}) ∩ A = ∅} .

Finally, to discover cause-effect relationships among two factors f and g we consider the quotient
set U/Eg of U w.r.t Eg. The lower approximation of the equivalence class [u]g ∈ U/Eg in terms of
equivalence classes generated by Ef , is the set

E∗([u]g) =
{
[u]f : [u]f ⊆ [u]g

}
. (6)

Then a measure for the linkage between factors f and g is given by

L(f, g) =
#

(∪{E∗([u]g) : [u]g ∈ U/Eg}
)

#(U)
. (7)

The measure 0 ≤ L(f, g) ≤ 1 describes the dependency of g on f such that for L(f, g) = 0, f and
g are considered to be independent. A value close to 1 suggests causal entailment between f and g.
With the concept of linkage and the introduction of uncertainty measures we should be in a good
position to build predictive models, with known uncertainty and is useful in deciding which variables
should be measured and why.

The present text describes how we experience and learn (understand, gather knowledge etc). The
basic principle of experience and therefore any scientific investigation, is differentiation (cf. Propo-
sition 4.2 and 5). All there is, is that which the subject brings forth in his or her distinctions. We
do not distinguish what is, but what we distinguish is. We may say, that the process of discerning
therefore also creates or identifies diversity and alternatives; hence creating a choice, a choice to act
upon the knowledge or experience. It is this point at which human behaviour defines the meaning
of tolerance and morality (Proposition 6.3). Although recognition of diversity for some implies an
appreciation of it, this is unfortunately not the case for a large proportion of the human species who
take the principle of experience as the basis for separating and discriminating against other species.
There are two ways in which we can act upon diversity, to appreciate it or to use it in a way which
may, in the worst case, lead to racism, capitalism and speciesism11. We may refer to these two ways
to respond as ‘contemplation’ and ‘manipulation’ (Definition 6). Charles Darwin and Albert Einstein
are probably the best examples of how observation and contemplation alone can create knowledge.
In molecular biology, as in engineering, the design of experiments in which we manipulate, i.e. per-
tubate or change a system to study its properties is a central task (cf. Proposition 5.3 and Definition
5.3). As described in Proposition 6, change through interaction is a ‘natural’ aspect of experience
and learning, which should not, cannot be restricted. The link to human behaviour and ethics only
arises if we consider the use of the knowledge we gained. The text summarised a system theoretic
epistemology in the spirit of Arthur Schopenhauer. According to Schopenhauer we do what we want
but we do it necessarily. This may lead to a rather pessimistic conclusion on the consequences of the
described principles by which we operate, observe and manipulate the world around us. I hope to
show that through the understanding, of the understanding we may have a choice, for the denial of
Schopenhauer’s will12.

The aim of this research is twofold. With regard to philosophy, the objective is to develop a
‘constructivist’ systems-science perspective based on Schopenhauer’s philosophy but allowing for an
‘existentialist’ outlook on (human) behaviour. For the system theory, born out of the philosophical
framework, the objective is to find a representation of molecular systems which is general and quite
independent of their physical or chemical constitution [9]. The motivation for such fuzzy relational
biology is further outlined in the examples below.

11The effect of the principle of experience on society is well demonstrated by the use and meaning of the words ‘dis-
crimination’ and ‘exploitation’. Discriminating is making a distinction, to differentiate – a fundamental principle of life as
described above, but also synonymous for a lack of appreciation of diversity. In fact, discrimination is a form of intolerance
towards other beings. Likewise the word ‘exploitation’ comes from Latin explicare or ‘explicate’ – to make clear. Common
use of the word is however to describe intolerance, say towards the environment.

12Schopenhauer himself hinted at the possibility of a disposal of wants by grasping the illusory nature of the phenomenal
world, and hence its nothingness, in order to gain some appreciation of the nature of the noumenal.
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4 Examples: Towards a System Theory of Genomics

Genomics is the field of biological research taking us from the DNA sequence of a gene to the structure
of the product for which it codes (usually a protein) to the activity of that protein and its function
within a cell, the tissue and, ultimatively, the organism. The two central questions are:

� “What do genes do?”

� “How do genes interact?”

From the basic principles of DNA replication, transcription, and translation, there are principally two
levels at which we can measure gene expression13, i.e. the biochemical reactions controlled by one
or more genes :

DNA

replication

RNA

transcription

Protein
translation

For a comprehensive study of gene expression, information from the RNA-transcriptome level would
have to be combined with data from the protein level. The part of a protein-coding gene that is
translated into protein is called open-reading frame, short ORF. Other regions of the DNA control
(promote and terminate) the start of the activity levels of a gene and although certain regions of the
DNA can be identified as belonging to a gene, it is increasingly appreciated that a gene is not easily
defined as a physical entity. We hereafter therefore consider a gene or its expression as a concept
which is characterised by various factors.

GENOME

chromosome

gene

transcribed region

ORF

non-transcribed region

regulatory segment

promoter terminator

Figure 12: The structure of genomic information.

Microarray technology provides us with gene expression measurements on the transcriptome level.
A typical experiment can provide measurements of the expression level of thousands of genes over
a number of experimental conditions or over time. As defined previously, system theory is a family
of methodologies for the analysis of organisation and behaviour through mathematical modelling. A
typical system theoretic approach to the two questions is to

� Cluster genes with known biological function according to similarity in pattern of gene expres-
sion.

� Classify genes with unknown function according to their similarity to the prototypes obtained
from the clustering.

� Identify the parameters of a gene-network (dynamic) model using the cluster prototypes ob-
tained previously.

The challenges for a system theoretic approach are:

� Very large number of variables (thousands of genes).

13Gene expression is the process by which a gene’s coded information is converted into the structures present and operating
in the cell. Expressed genes include those that are transcribed into mRNA and then translated into protein and those that
are transcribed into RNA but not translated into protein (e.g., transfer and ribosomal RNAs).
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� Very small number of measurements (say between 8 and 18)

− repeated experiments usually not available.

− data often unreliable, missing, noisy or imprecise.

� Data are collected from a dynamic process under “closed-loop control”.

� The processes usually are non-linear and time-variant.

� Data fusion of transcriptome and proteome data is non-trivial.

The first two items lead to the so called dimensionality problem. To this date, the majority of
bioinformatics techniques have been concerned with the assembly, storage, and retrieval of biological
information, with data analyses concentrated on sequence comparison and structure prediction. The
move to functional genomics demands that both sequence and experimental data are analysed in
ways that permit the generation of novel perspectives on gene and/or protein action and interaction.
An approach to this problem is the construction of proper formal mathematical, parametric models
that are identified from the data.

What follows are four examples to illustrate the philosophical and mathematical framework de-
veloped so far. The first example is to illustrate the role of factors in perception and conception, the
second example introduces Newtonian mechanics as the root of what has become the paradigm of
mechanisms in general. The success of these models in some areas of science and technology has also
led to their application in biotechnological processes (Example II). However, a further extension of
these ideas to molecular systems and gene interactions has not been successful. Although bioinfor-
maticians use descriptive statistics to extract pattern from data, formal mathematical models have
so far played no role in the creation of biological knowledge in modern molecular biology. Example
IV therefore suggests a phenomenological model which follows directly from the considerations in the
first section. The aim is to formulate a mathematical, conceptual framework to represent a genome,
genes and gene expression. Given a model of gene interactions, data with unknown function can be
matched with the model for inference. Due to the complexity of the processes and the experiments,
mathematical models of gene interactions identified from expression data are required to have ex-
ceptional generalisation properties and are required to cope with considerable levels of uncertainty.
We shall describe biological knowledge in terms of objects, concepts and rules (i.e. relations). This is
based on the view that organisms are organised natural systems and organisation inherently involves
function. We view system theory as the study of organisation per se and the aim of our system
theoretic approach is to provide a relational description of a molecular or genomic system which can
be matched with observations (data).

4.1 Example I : “Learning is Discerning”

In Figure 13, on the left, a space is depicted for which the objects are not discerned. Dividing the
space as shown in the diagram on the right hand side, observing its objects, implies discerning those
objects on the left from those on the right.

Figure 13: In the space depicted on the left, the objects are not discerned while on the right
the observation by means of some factor introduces a change, discerning objects on the left
from those on the right.

Instead of a vertical line we may have observed the objects in a different way, introducing a different
factor (Figure 14, on the left). In mathematical terms, the mind imposes an equivalence relation that
holds true for all elements indistinguishable within an equivalence class. We can then discuss the
difference between the two modes of observation, i.e. the linkage between factors (cf. Definition 4.1).
The linkage between or comparison of factors therefore provides us with a means of reasoning and
learning about the system (the set of objects relations defined upon them). We should however note
that the explanation of the observation process itself required discerning. By drawing the box on the
left in Figure 13 we had to discern the objects within it from those outside it.
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f1

f2

Figure 14: Left: A change to the system will change the observation through the factor or
equivalently, different means of observing by different factors provide distinct observations.
Both ways, we can reason about the system by means of factors and the equivalence relations
induced. Right: The explanation itself requires us to discern the objects within the box from
those outside, leading to an infinite regress if we are to discuss ‘the part’ and ‘the whole’.

The limits or accuracy of the experiments are therefore reflected in the indiscernability of objects.
Perception and conception, the primary processes of discerning objects, subsequently induce equiv-
alence class, i.e. groups of objects which are not discernable in a particular context or experiment.
The uncertainty is then due to the principal limitations of our sensory apparatus but also the way
and means by which we observe a system, take measurements and extract information from data.
Formulating the modelling process using the mathematical constructs of equivalence relations, pro-
vides us with a convenient methodology to study the accuracy of models and helps in experimental
design by providing a basis for decisions to which variables should be measured and why. We will
not just build formal models from data but will also be able to compare them formally.

4.2 Example II : Dynamical Systems

The arguments leading to and following Proposition 3 described modelling as a central part of learning
through experience. As humans, so do other organisms use models (as an abstraction) for explanation
or prediction. Organisms in general are therefore able to change their present behaviour in accordance
with the model’s prediction; the behaviour of biological systems is anticipatory . As pointed out by
Rosen, a formal system using a model based on differential equations only, is not able to describe
such anticipatory or model-predictive behaviour. Using systems of differential equations, the rate of
change of a factor at any instant is expressed as a function of the values of other factors but cannot
depend upon future states. Such systems are reactive. Modelling dynamic systems with differential
equations can often be expressed by a set of first-order equations :

dfi

dt
= φi

(
f1, . . . , fr

)
, i = 1, . . . , r (8)

where the rate of change of factor (observable, state-variable) fi depends only on the present state
defined by factors fi. A simple example for (8) is a physical object u with mass m moving along a
line under the action of a constant force denoted by F . Using Newton’s law,

F = m · dv

dt
and v =

dx

dt
,

where x denotes the displacement and v the velocity of the mass. For a particular system, a formal
model can be defined by

dx

dt
= v

dv

dt
= − θ

m
· x

where θ denotes a parameter specific to the natural system under consideration. Here the formal
system uses two state-variables (factors) denoted by x and v, f1

.
= x and f2

.
= v. The manifold

of all possible states of the system, referred to as the state-space is illustrated in Figure 15. The
physical principle described here is a conditional statement of the form

IF mass=m, force=F , THEN position=x and velocity=v.

Conceptual ‘closure’ of the system amounts to the assumption of constancy of the externally imposed
force F . The model is deterministic in that the object’s state at time t is fully determined from the
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X(f2)

X(f1)

f1(u, t)

f2(u, t)

Figure 15: The state-space (factor-space) of a simple dynamical system modelled by two
state-variables (factors).

initial conditions (of it position and velocity) and therefore permitting prediction of future states by
integrating the set of differential equations.

A solution to equation (8) is an explicit expression of each factor fi as a function of time, fi(·, t).
A particular solution, defined by initial conditions, corresponds to a curve in the state-space, called
trajectory , and describes the evolution of the system over time. The passage of time implies the
concepts “before” and “after”, stated formally by the transitive law t1 < t2 and t2 < t3 implies
t1 < t3 for the binary relation <.

Note that differential equations may be used to model a specific form of causal entailment in
natural systems, the equations by themselves however do not state that changes are produced by
anything, but only that they are either accompanied or followed by certain other changes. Considering
df/dt = φ(t) or equivalently df = φ(t) ·dt, it merely asserts that the change df undergone during the
time interval dt equals φ(t) ·dt. The notion of causality is not a syntactic problem but a semantic one;
it has to do with the interpretation rather than with the formulation of theories or formal systems.

4.3 Example III : Metabolic Systems

The reactive paradigm of dynamic systems models using differential equations, described in the
previous example, has also been applied to biotechnological processes and systems of genes interacting.
For (autocatalytic) biochemical reactions of an (aerobic) biological process a substrate S is turned
into a biomass x by consuming oxygen O. The process is characterised by the specific biomass growth
rate, depending on the consumption rates of the substrate and oxygen:

S + O −→ P .

The biochemical principle described here takes the form of a conditional statement

IF substrate=S, oxygen=O, THEN biomass=X.

With three state-variables f1-substrate concentration, f2-biomass concentration and f3-oxygen con-
centration we can define a set of differential equations in the form of equation (8). These equations
are usually non-linear, and the inability to solve them forces us to make various assumptions and
simplifications. For specific biotechnological processes, investigated in metabolic engineering, these
assumptions are often valid but nevertheless limit our ability to understand more complex systems
of gene interactions investigated in the field of genomics.

Gene interactions can be represented by their effect on the synthesis rate of gene products. Study-
ing gene interactions or gene-networks, concentrations of gene products are therefore chosen as the
state-variables. The change of concentrations of proteins over time (the left part of equation 8) is
governed by direct regulation of protein synthesis from a given gene by the gene products of other
genes (including autoregulation as a special case); transport of molecules between cell nuclei; and
decay of protein concentrations.

The problem is that perturbations to cells have multi-gene, multi-transcript, multi-protein re-
sponse but for the theory to remain tractable, one usually has to assume a single gene’s product
having a significant effect on the biochemical network. The reductionist strategy to analyse more
complex systems has therefore been first to divide the system into simpler parts, analyse them with
the basic dynamical system representation of equation (8), then reconstruct the parts into a whole
in order to make predictions. It is however increasingly appreciated that the divide and conquer
approach fails short of making precise and yet significant or relevant statements about the system’s
behaviour as its complexity increases. A detailed characterisation of the underlying biochemical or
biophysical mechanisms alone does not guarantee a deeper understanding of the reconstructed system.
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4.4 Example IV : Genetic Systems

As the focus in genomics is shifting from molecular characterisation to understanding functional ac-
tivity, system theory is going to play an increasingly important role in providing biologists with better
tools to extract information from data, as well as supporting new ways of thinking to characterise
molecular systems in a general way, and quite independently of their physical and chemical consti-
tution. The previous example of metabolic systems suggested that for more complex systems with
a large number of objects, we require an approach that can integrate knowledge about the objects
without physical or chemical interactions between individual genes being described in detail. What
follows is an outline of such an approach. A more detailed exposition can be found in [9].

Our formal model describes a genome as a collection of genes. This set is equipped with a
mathematical structure for logical inference. To allow reasoning in the presence of uncertainty, we
need to formalise the concept of a gene and facts associated with it. Relationships between concepts
and factors are expressed in terms of rules. Genes are functional entities which cannot easily be
defined physically. That is, genes are not simply a structural entity or DNA subsequence of the
genome and studying one or few genes, we therefore view a gene as a concept characterised by various
factors. Alternatively, instead of investigating a particular family of genes, investigating for instance
gene function using microarray data, a gene is considered to be an object. Considering a time-series of
n samples obtained from a microarray experiment, we can represent the observation of an individual
signal (gene u ∈ U) as a point in the n-dimensional observation-space X(f). Points that form a
cluster have similar expression profiles and are subsequently postulated to have related biological
function. Here the factor f denotes measurements on the transcriptome level. For a more complete
picture of gene expression additional factors, for instance describing measurements on the proteome
level, are introduced. As shown in [9], the factor-space approach extends naturally to several factors.
A phenomena investigated refers to a specific biological concept C which we aim to characterise with
the factors defined in Definition 2.3 (cf. Proposition 2.1). The extension of concept C in U is then

the fuzzy mapping Ã :

Ã : U → [0, 1]

u �→ Ã(u) ,

where Ã(u) is the degree of relevance of u with respect to C or Ã. When Ã(u) = 1, u definitely accords

with C, and for Ã(u) = 0, u does not belong to Ã (a fuzzy attribute of C, i.e. the function/expression
of a gene in a specific context).

time

expression level

b

b

b

b

b

b

b

b

observation-space

f(u)

Figure 16: From time-series to observation-space representation.

Clustering the points in the observation space X(f), using partitional techniques such as the
fuzzy-c-means algorithm, we are grouping genes (represented by measurements, i.e points f(u) in X)

in order to infer the mapping Ã in U . Note that what we observe is a fuzzy set B̃ on X(f) (partition

of X) and it is necessary to establish a relation between the ‘model’ Ã on U and the experimental

evidence B̃ in X(f). The situation is similar to stochastic modelling and using descriptive statistics
to approximate or estimate the model (parameters) from data. The fuzzy relational framework is
intended to be a theoretical construct to complement experimental biology. The biological principle
described is a conditional statement of the form

IF f(u) is B̃, THEN C is Ã .

Let us have a closer look at the formal system described here. In Definition 2.3, a factor is defined
as a mapping from a set of abstract objects U ∈ U to space X. Here u denotes a gene, defined
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as a conceptual entity which exists apart from any specific encoding; it is that part of the natural
system we wish to encode. Generalising the notion of a state in Example II, u is an abstract state
of the natural system under consideration. Factor f evaluates the genes u in an experiment, leading
to a numerical representation x ∈ X(f). We note that any specific act of observation, experiment,
is therefore at the same time an act of abstraction; theory and experiment are complementary and
should not, cannot be separated.

If we are to summarise our formal representation of a gene expression, gene function and regulation,
let the formal system (U, C, F ) denote the description frame where C ∈ C denotes a concept and
f ∈ F describes its function or characterisation in terms of observable objects u ∈ U . These three
ingredients compose our formal model which is then built from data in the following way. An object u
is either measured or verbally characterised with respect to a certain factor f . Note that a gene can
be an object or concept, depending on what is being investigated. Studying a larger set of genes in a
microarray experiment, we can identify U with the set of genes and a subset Ã of U , is to model the
phenomena under consideration. As we will not have direct or certain knowledge of the concept C,
represented through Ã, measurements in X(f) will provide us with observations. These observations

lead to distributions or mappings defined on X. Whereas Ã is referred to as the extension of C in
U , we call B̃ the representation extension of concept C in X(f). If we are to devise a formal model
which is validated with experimental data, the central task is to describe the relationship between
the two spaces X(f) and U or B̃ and Ã respectively. The situation is similar to the estimation or
approximation of concepts in probability theory by means of descriptive statistics. The modelling
process is summarised in Figure 17.

Description Frame (U, C, F )

Modelled Phenomenon
Extension of C in U :

Ã : U → [0, 1].

Concept C ∈ C

Observations
Representation Extension of C in X(f):

B̃ : X(f)→ [0, 1].

Factor f ∈ F

Measurements
f(u) ∈ X(f).

Object u ∈ U

Figure 17: The formal representation of a genome in terms of genes, factors and objects.
The path following the framed boxes describes the key elements of the proposed concep-
tual framework, whereas the associated ‘backward’ path describes the working methodology
representing gene expression and gene function from data.

.

In our scenario, illustrated in Figure 16, factor f : U → X(f) is a mapping from the set U of
abstract states into an element of X(f) which here is a point in the plane R × R of real numbers.
Given any mapping between sets, the mapping f induces an equivalence relation Ef on its domain,
by saying that Ef (u1, u2) holds if and only if f(u2) = f(u2). Therefore to say that the two genes u1

and u2 are related means that both produce the same ‘effect’ (observation) in our experiment.
If we form the quotient set U/Ef , we find that it is in one-one correspondence with the set of

all possible values f can assume. This set, called spectrum, is denoted f(U). If x is a point in
f(U) ⊂ X(f) we associate with x the entire equivalence class f−1(x). This means in effect that
we can discuss the properties of our model (determined by an appropriate choice of factors f), in
terms of the equivalence classes on U . We have thus a means of comparing models or validating
them with data. This important advance to the current practise of bioinformatics as we currently
lack conceptual frameworks that allow a formal analysis to which variables should be measured and
why. The related issue of how causal entailment can be identified from the linkage between between
factors is further discussed in [10].

Applying clustering algorithms to the points in the observation space, we identify an (fuzzy)
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equivalence class Ã in U as a cluster of points in X(f). Genes in U are grouped according to their
similarity in expression profiles and hence allow us to predict their biological function. If we are to
decide upon the similarity of two gene expression profiles by using the inequality ‖f(u1)−f(u2)‖ ≤ ε
in the observation space, the inequality describes a subset (relation) Rε ⊂ U × U ,

Rε = {(u1, u2) ∈ U × U : ‖f(u1)− f(u2)‖ ≤ ε} .

This relation is not an equivalence relation, i.e. it is not a transitive relation. We can define a mapping
Ẽε such that Ẽε(u1, u2) is greater than 1−ε if and only if u1 and u2 are indistinguishable with respect
to the tolerance ε :

(u1, u2) ∈ Rε if and only if Ẽε(u1, u2) ≥ 1− ε ,

where

Ẽε : U × U → [0, 1]

(u1, u2) �→ 1− inf{ε ∈ [0, 1] : (u1, u2) ∈ Rε}
with ε ∈ [0, 1] and if there is no ε for which the relation holds, we define inf ∅ .

= 1. Ẽε is then

a fuzzy equivalence relation , also referred to as a similarity relation. The value Ẽε(u1, u2) =
1−min{|f(u1)−f(u2)|, 1} describes the degree to which two objects u1 and u2 have similar observable
consequences and transitivity of this relation14 implies that if u1 and u2 are similar and u2 and u3

are similar in their values in X, then u1 is similar to u3.
Fuzzy clustering algorithms return a matrix that specifies the degrees of membership of any u in

the clusters (equivalence classes). We have seen, that the comparison of two real numbers with respect
to an error bound ε induces fuzzy equivalence relations (a fuzzy set) and therefore suggests a fuzzy
relational framework. There are however other reasons in support of a fuzzy mathematical approach.
In many cases the evidence we have that a gene belongs to a cluster will be a matter of degree and
w.r.t. functional classes genes may belong to more than one class during an experiment. Considering
fuzzy sets, relations and mappings therefore seems an appropriate approach. In Definition 4.2, fuzzy
sets were introduced to represent the evidence we have for a hypothesis concerning a concept. The
semantics of this construct may be related to uncertainty due to randomness but also vagueness,
fuzziness and ambiguity. The fuzzy set serves as an ‘interface’ between the abstract model and
experimental data; between a part (a component) and the whole (its context). The inevitability of
uncertainty expressed in Propositions 1.2 to 1.5 and illustrated through the discussion above, suggest
a fuzzy logic of scientific discovery.

By writing f(u), the impression is that f is fixed and u is variable. However, the role of the
argument and the mapping are formally interchangeable; we can keep u fixed and change the ex-
perimental setup. In which case, u becomes a mapping, whose arguments are themselves mappings:
ū(f) = f(u). The question “why f(u)?” can now be answered by “because u” or “because ū”
(cf. Proposition 4, Definition 4.2). Using fuzzy relations, the obtained formal system allows us to
model causal entailment in natural systems (here gene regulatory networks).

Using the concepts discussed in the second example, in molecular biology, we may be able to model
the interactions and relationships between say five genes with accuracy but we find it impossible to
infer from this submodel the behaviour and function of the larger system in which it is embedded. In
linguistics, we may be able to identify individual words of a poem, their origin, use and interpretation,
but we find it rather difficult to understand the meaning of a the whole poem from knowledge of its
parts. In mathematics, we can follow and check individual steps of a proof, establishing validity and
truth of its parts, but do not necessarily understand the proof as a whole. These examples illustrate
the curse of reductionism . To proclaim holism as an alternative seems natural but unfortunately
there seem hardly any formal holistic approaches that would overcome the problems of reductionism.
Meanwhile integrative approaches, combining techniques and integrating the context in which the
reasoning takes place seems a reasonable pragmatic step forward. Here we have tried to outline a
fuzzy relational biology , not to model a biological phenomena ‘as it is’ but rather ‘as we observe it’.
Instead of modelling the physical structure or flow of energy using for example differential equations
or thermodynamics, we strive to capture the organisation and information of observable biological
phenomena (cf. [10]) through relations. Using the words of Klir [1], it is increasingly recognised that
studying the ways in which things can be, or can become, organised is equally meaningful and may,
under some circumstances, be even more significant than studying the things themselves. This is
of course the aim of system science, which I expect to play an increasingly important role in the
interdisciplinary research problems in the life sciences.

14Note that the condition ε ∈ [0, 1] can be generalised by introducing a scaling factor s > 0, Ẽε(u1, u2) = 1 − min{|s ·
f(u1)− s · f(u2)|, 1}.
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DATA, the particular
[descriptive statistics]

MODEL, the general
[probability theory]

PREDICTION, decision
[working methdology]

LAW, principle
[conceptual framework]

induction

deduction

Figure 18: The modelling process of a scientific investigation illustrating the difference of a
conceptual framework and a working methodology. The square brackets refer to the example
in the text.

To this point, we have discussed ‘practical problems’ but only ‘in theory’. The aim of this paper
is to outline a conceptual framework for the study of gene-expression, gene-interactions and gene
function. The relationship between such a conceptual framework and a working methodology can
be explained by looking at the two complementary fields of statistics and probability theory. Using
descriptive statistics, sample means, sample variances, histograms and relative frequencies, we extract
information from data. On the other hand, a quantitative model based on random variables and
probabilities, represents general relationships, going beyond the specific data set we may have, and is
used to represent relationships which eventually describe natural laws or principles within a theory
that captures the context of our scientific enquiry. In this respect statistics and probability theory,
a sample mean and a mean, a unrelated. However, to justify a theory, model or principle, it should
be possible to identify the model (its parameters) from experimental data. Only if both modelling
pathways, the inductive step (system parameter identification) and the deductive step (model based
predictions) are working to our satisfaction, the conceptual framework has explanatory value. A large
part of statistics and probability theory is therefore devoted to the estimation and approximation
of probabilistic concepts using statistics. Knowledge about the bias, variability and convergence of
estimates makes us feel more confident in our conclusions. See Figure 18 for an illustration.

So why did we initially consider fundamental philosophical questions, when we are interested
in genomics, a particular field of the biological sciences? It seems that many questions arising in
philosophy have an analog in the sciences. The discussion of ‘things as they are in themselves’ (Kants
world of phenomena) and the world of experience, of observable phenomena, is reflected in the
modelling relation, i.e. in the process by which we model a natural system using formal mathematical
objects. In the philosophy of science, the problem of induction has been of particular importance.
There seems now general consensus that the problem has no positive solution and that there is
no single theory by whose means particular explanations could be conclusively shown to be true. In
particular Karl Popper, tried to ensure that science, regardless of this apparent uncertainty, is put on a
rational footing. Theories and hence models are worthwhile in that their comparison in applications,
the verification with experimental data can generate new knowledge with an objective epistemic
status. The philosophical problem of induction is in fact demonstrated by the problem of system
identification, i.e. the estimation of model parameters from a finite set of data (the inductive aspect)
and the use of the obtained model in forecasting (the deductive step). The philosophical position
that scientific theories, extended beyond experimental data, cannot be verified in the sense of being
logically entailed by them, suggests that we have have to pay particular attention to the representation
of uncertainty in data, in models and in modelling. A philosophical investigation therefore gives us
a bottom-up conceptual framework, providing reassurance, confidence and guidance in conduction
scientific experiments and developing formal theories, models. Poppers view that unrefuted but
corroborated hypotheses enjoy some special epistemic advantage, independent of anybody’s attitude
towards them, is confirmed by the common experience that we learn most from those models that
failed.

In the present text, we begun with some philosophical considerations, leading us to the modelling
relation and a factor-space approach to model natural systems. Why a conceptual framework of
genomics, when the field has progressed so far without any use of mathematical modelling? Because
many problems in this field are conceptual rather than empirical. This does not mean that an
empirical validation of the formal system is not necessary, quite the contrary, experimental testing of
hypotheses is vital. The formal system is meant to be part of a way of thinking about gene expression,
gene function and gene interactions. With the concepts of factors and their linkage, we have build
into the formal system mechanisms to evaluate the accuracy and validity of a model. Considerations
for the implementation in a computer, suggested difficulties in comparing the evaluation of objects,
f(u1) = f(u2), using real numbers. This apparent complication lead to equivalence classes of objects
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which are indistinguishable with respect to factor f . The reformulation of the factor space approach
in terms of equivalence relations however provided us with the basis of a formal link to rough set
theory, successfully used in data mining applications, and evidence theory, providing us with a means
to consider probabilistic uncertainty. We have yet to demonstrate the application of the conceptual
framework to experimental data and currently analyse gene-expression profiles obtained from yeast
microarrays. As described in this section, we transform the time-series into a point in the observation
space by fitting a parametric model to the expression profiles. Genes with a similar profile will
cluster in the observation space. The clusters subsequently partition the observation space (here the

parameter space) as here represented by the fuzzy set Ã and B̃ respectively. This application and
the mathematical details of factor-space theory [10], complementing this text, are in preparation for
publication.
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