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Abstract: RNA silencing is a recently discovered mechanism
for posttranscriptional regulation of gene expression.
Precisely, in RNA interference, RNAi, endogenous expressed
or exogenously induced small RNAs promote and modulate
the cleavage of complementary messenger RNA involved in
the synthesis of targeted proteins. In this paper we
investigated the role of time delay and protein regulation in
through RNA

interference. Towards this end, we used and modified a

the posttranslational protein regulation
simple model accounting for RNAi and used qualitative
bifurcation analysis, sensitivity analysis and predictive
simulations to analyze it. Our results suggest that some
like Dicer-mediated mRNA

degradation or non specific mRNA degradation, play an

processes in the system,
important role in the modulation of RNA silencing, whereas
silencing seems virtually independent of modulation in other
processes.

Keywords: Andronov-Hopf bifurcation, delay differential
equations, RNA silencing, sensitivity analysis.

1. Introduction

In a panorama of increasing complexity in the regulation of
biochemical systems, a new control mechanism is the
posttranscriptional regulation of gene expression regulation
through RNA silencing [22]. RNA silencing accounts for the
downregulation (or full suppression) of a given gene through
the introduction of a complementary (antisense) RNA, which
blocks the final steps of the protein expression process.
Interesting enough, RNA silencing is not a unique (perfectly
defined) mechanism, but a family of them. The best known
among them is RNA interference (RNAi), in which either
(miRNA, [23]) or
exogenously promoted small interfering RNA (siRNA, [11])

endogenous expressed microRNAs

promote and modulate the degradation of complementary

messenger RNA involved in the synthesis of targeted
proteins.

The basics of RNA silencing through small RNAs are
depicted in Figure 1. The process has high specificity, in a
way a specific small RNA, FDSgws, forms the RNA-induced
silencing complex, RISC, together with some endonucleases
called argonaut proteins [23]. This highly organized complex
is capable of recognizing the target messenger RNA, mRNA,
by hybridization (establishing the complex mRNA/RISC) and
inducing its endonucleolytic cleavage together with other
proteins like Dicer. In animals, 21- to 22- length nucleotides
miRNA targets RISC to mRNA with partial sequence
complementarity [20]. The RISC-mRNA interaction results
in translational repression that may be accompanied by
mRNA destruction. The precise factors that determine the
extent to which normal mRNA decay versus translational
repression contributes to the net silencing are not yet well
understood [21].

In recent times some mathematical models accounting for
RNA silencing dynamics have been proposed. C. Bergstrom
et al. derived a simple model accounting for RNAi and tested
several hypotheses to find the precise model structure
accounting for the phenomenon as described in the biological
literature [7]. Arciero et al. integrated in a unique ODE
model a description accounting for tumour growth, the
immunological response and a rough description of potential
treatments based on the use of siRNA [8]. Raab and
Stephanopoulos investigated basic features of RNAi, such as
RNA dose level or RNA complex exposure time, and
developed a model intending to explore alternative gene
silencing protocols [9]. Groenenboom et al. proposed and
analyzed additional mechanisms associated to the basic
RNAIi processes and used these extensions to investigate
dynamical differences between various types of silencing
phenomena [10]. Finally, Bartlett and Davis used non-
invasive bioluminescent data and a mathematical modelling


mailto:julio.vera@informatik.uni-rostock.de

to investigate the effects of target-specific and treatment-
specific parameters on siRNA-mediated gene silencing [6].

In our work, we started from the model proposed in [7] and
modified it to include the potential effect of time delays
associated to gene expression. Furthermore, we used
sensitivity analysis and predictive simulations to investigate
the effect of modulation in critical processes involved in

RNAI.

2. Material and methods

In order to perform our analysis, we used the strategy
presented in [26], based on previous experiences suggested
by [24], [25]. The strategy we proposed is composed by the
following sequence of steps: a) a mathematical modelling
containing the essential dynamical features of the system is
set up; b) bifurcation analysis is used to investigate the role
of time-delay in the dynamics of the system; c) the
sensitivities of the selected model outcomes with respect to
changes in the model parameters are computed and the
parameters are ranked according to their sensitivity; and d)
according with the previous steps, we select the critical
parameters in the model and investigate the qualitative
behaviour of the system when the values of these parameters
are modified using systematic predictive simulations. We
think that the strategy proposed permits to point out the
critical processes in the model able to modulate its biological
features. In the context of biomedical research, these critical
processes can be considered potential new drug targets.
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Fig.1. Schematic diagram of the basic RNA silencing model
according to [7]. Processes included in the model appear in
black while grey arrows indicating ultimate input and output
signal of the system.

3. Results

3.1 Model of RNA silencing with two delays

In this work we used and expanded the model proposed in
[7]. Figure 1 shows a schematic outline of the model. A
certain small RNA fragment, FDSgna, (D in the model) binds
to specific endonucleases called argonaut proteins,
establishing the RNA-induced silencing complex, RISC (R).
This complex recognizes the target messenger RNA, mRNA
(M), hybridizes it (establishing the complex mRNA/RISC, C)
and induces its endonucleolytic cleavage together with the
protein Dicer. Several of the fragments resulting from the
cleavage are integrated in new RNA-induced silencing
complex, in a way there is close loop and signal gets
amplification every cycle. In previous works[1], we
investigated the bifurcation behaviour of the system under
the assumption that there is a delay in the critical step of the
silencing process, where the delay function C(z- T) accounts
for the triggering process of mRNA binding to form the
RISC-mRNA complex at the moment (- T). Here, we
assumed that this effect occurs in different times for the
multiplication of small RNA fragment (7,) and for the
effective break down of the mRNA/RISC complex (7,),
obtaining a system with two delays in the form:
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dr

where D, R, C, M are the already defined state variables and
a, b, dc, dy, dr, g, h and n are the kinetic rate constants.
According to [7], the original set of model parameters defines
a scenario where a) the value of D cannot reach zero level,
not admissible from a biological perspective; and b) it is not
dependent on the initial dSRNA dose. In order to surmount
these problems, our strategy was to re-estimate the values of
the model parameters using the SBToolbox [27] in a way the
model satisfies the expected biological behaviour described
in [7]. Model parameters and data fitting figures are included
in the Appendix.



Bifurcation analysis. Hence, system (1) has two steady

states: the trivial @ =C=R=0,M = % E and

=8¢ r=Scc=_" _deR,M:(ngdc)dR
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where € :[8(”‘1)‘dc] We investigated the bifurcation
structure of the system using time delays I, or T, as

bifurcation parameters. First, we obtain the characteristic
equation for the linearization of system (1) near the

equilibrium E@a >0,C>0,R>0,M > OE and consider a

small  perturbation about the equilibrium level

D=D+x,R=R+y,C=C+z,M =M+w.

these into the differential equations in system (1), we have

Substituting
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with the characteristic equation:
X KX +K X +K X =
‘ 3

CHLX AT+ CHTX +T Y +Tx +T,
The new defined coefficients a;, K; and 7; are defined in the
Appendix. The presence of two different delays in (1)
becomes a direct approach to investigate of the sign of the
real parts of eigenvalues unfeasible [4]. Thus, we used an
alternative strategy, consisting of determining the stability of
steady state when one delay is equal to zero similar as [13,
14] and deriving additional theorems to investigate the case
of two delays.
Case T, =0 and 7, >0, Firstly, we assume that the finite
time delay 7, of degeneration is longer than the time of
regeneration of RISC-mRNA complex setting T, =0 in (3).
The characteristic equation becomes:
X' +KX +KX+K,x-T, =

T T X +Tx+T)

“
where K;=K;-Ts. If €7 =1-x1, (linear approximation,
when 7, <1), then equation (4) becomes:
hx. )= X'+ px* +ax* +rx +s=0. ®)
By the Hopf bifurcation theorem and Routh-Hurwitz criteria
[19], an Andronov-Hopf bifurcation occurs at a value T, =17,
where:

=K1+T2T2_7-; >O,q:K2+7;T2_T2’S:_7-:‘+]-‘6 >0,
o o o
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where O =1+T7T, and the condition 7,7, #-1 is valid.

Evaluating h(Tb, X (Tb)) =0 at T, =T, we get the eigenvalues

. f r .
X, =ik =% |— . For the other two eigenvalues we have
p

two  possibilities:  X,, = —giAzi if A>0 and
s
X3.4 :_EiAz if Al <0, where Al :—p—ﬁ and
2 r 4
N = P —%(AZ > 0) . After additional derivations (see
r
Aooendi . ax(n)
ppendix), we obtained that the derivative pra always

positive when the following conditions are satisfied:

Pk >, pk<r,

q>2k> or |g<2k’

s, >qk’ s, >qk’

For a larger time delay T,, linear stability analysis is no
longer effective and we need to use another approach [3, 4,
13-16]. The stability of equilibrium state depends on the sign
of the real parts of the roots of (4). We let
X=m+in (m,n 0 R) , and rewrite (4) in terms of its real and
imaginary parts. To find the first bifurcation point we look
for purely imaginary roots X =*in, nJR _of (4), i.e. we set
m = 0 Then, we obtain:

n' —K2n2 =T = (—Tln3 +T3n)sin nt, +(—T2n2 +T4)cosnT2,
—K]n3 +Kyn= —T]n3 +T3n|cosnT, + T2n2 =T,|sinnt,,
)

Note that n = 0 can be a solution if T,=T,. If the first

bifurcation point is (n,(,) ; T,(,) ) , then the other bifurcation points

(”b’ Th)

squaring the two equations into system (7) and then adding

them, it follows that

n* +(K12 -2K, _T12)né +[K22 _T22 +2(TIT‘4 -KK, _T6)]n4 +
|G -m w2k L+ -1 41 =0,

satisfy n, T, :ngr,? +2vir, v=12,..,00, By

(®)
Since this is a quartic equation on n° and the left side is
positive for large values of n* and negative for n = 0 if and
only if T42 > T62, i.e. the equation (8) has at least one positive
real root. Moreover, to apply the Hopf bifurcation theorem,
according to [17], the following theorem in this situation
applies:



Theorem 1. Suppose that 1y, is the least positive simple root
of (8). Then,
m(T2)+in(T2) is differentiable with respect to T,
neighbourhoodof T, =1, .

To establish an Andronov-Hopf bifurcation at

in(Tb):in,, is a simple root of (4) and

in a

T,=T,, we need to show that the following transversality

dm

condition —,_|

ar #0 s satisfied. Hence, by denoting
2

=1,
H(x.1,)= X' +K X +K X" +
KX- Ty +Tx" +Tx +T,) ®

deriving with respect to T, and evaluating the real part of

this equation we obtain:

_reBx A mifang +3(K -2k, -T2} |

Kk =17 + 21 - KK ~T | + K2 =17+ 217, + K )
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where the new coefficients are defined in the Appendix. Let

dm]
dr
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0= n,f ; then, the equation (8) reduces to
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Deriving this equation with respect to the new variable 8 we

dg
obtain that Jr >0 where 7, is the least positive simple
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root of (8). In
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Hopf bifurcation theorem [18], we define the following:

that case,

and according to the
2

Theorem 2. If n, is the least positive root of (8), then an
Andronov-Hopf bifurcation occurs as T, passes through T,,.
(Corollary 2.1. When T<T,, then the steady state [ of
system (1) is locally asymptotically stable.)

This means that the non trivial steady-states of the system are
locally asymptotically stable for values of time delay 7,
smaller than the bifurcation point 7, of the system, whereas
sustained oscillations emerge when passing through 7, .

Case 7,,7, >0, In order to investigate the local stability of
the equilibrium state E of the system (1), we derived and
proved the following theorem accounting for the real parts of
characteristic roots of (3):

Theorem 3. If all roots of (4) are with negative real parts for
T, >0, then there exists a TIW(TZ) >0 such that all roots of
characteristic equation (3) have negative real parts at

1, <t(1,), ie. when T, D[O, le(rz)) .

The demonstration of this theorem is discussed in the
Appendix. Under this condition, we can enunciate the
following:

Corollary 3.1. If T," is defined as in Theorem 2, then for any

1, 000,7,), there exists a T, V(Tz) >0 such that the steady

state g of system (1) is locally asymptotically stable when
T, D[O, rf"’(TZ))_

Thus, this ensures that the non trivial steady-states of the
system will keep their locally asymptotically stable nature at
least for values of 7, smaller than the bifurcation point le v ,
whose value depend on the current value of 7,, whereas
sustained oscillations emerge when passing through ;" . Our
analysis suggests that the stability of the solution in terms of
oscillatory behaviour will depend on the interplay between
the values of 7, and 7,. In addition, numerical calculation
reveals that bifurcation points of the system occur for values
of of T, and 7, that are in principle non-feasible from a
biological perspective, which in turn ensures the stability of
the solutions in the feasible region for time delay (data not
shown).

3.2 Sensitivity analysis and predictive simulations

We calculated the local sensitivities of the state variables
with respect to the model parameters, whose corresponding
values are represented in a normalized scale [26] in Figure 2.
D, R, and C show an almost identical sensitivity pattern, in
which parameter a (Dicer-mediated FDgrna degradation) is
the most influential parameter together with n (ratio of
siRNA produced from each secondary FDgna molecule).
This last is in accordance with the results in [7], where
authors claimed that # is the critical parameter accounting for
RNAi amplification. The other parameters show a similar
sensitivity value. Interesting enough, sensitivity associated to
parameter dR (rate of RISC dissociation) is very small, which
suggests a reduced importance of changes in its value in the
modulation of the RNAi process. In case of M, our local
sensitivity analysis emphasizes the importance of the primal
parameters accounting for mRNA turnover, dM (normal, non
RNAi-mediated, mRNA degradation) and / (gene-mediated
mRNA synthesis), but it is unable to detect the effect that
modulation in the processes involved in RNA interference
has in the mRNA stability.
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Fig. 2. Local sensitivities of the state variables with respect to
the model parameters.

We furthermore, investigated the effect that modulation of
selected parameters has in the dynamics of RNA silencing.
Towards this end, we systematically modified the value of
selected pairs of parameters around their nominal values
(from 0.1 to 10 times the nominal value) and compute the
value of some variables accounting for RNA silencing
dynamics. We therefore define: a) silencing time, T, as the
time that the system takes to reach the silencing level for
mRNA (assumed here as the 15% of the initial concentration
of mRNA in our simulations); and b) silencing intensity, m,,
as the minimum (steady-state) concentration of the mRNA
for a given set of parameter values (see Figure 3 for further
explanations).
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Fig. 3. Definition of silencing dynamics (silencing time, T,

and silencing intensity, my) used in our analysis.

In case of the couple a (rate of dsSRNA degradation) and g
(rate of dsRNA synthesis from RISC-mRNA complex)
(Figure 4), our simulations show that silencing is not
both
downregulated; parameter values for which this occurs are

reachable ~ when parameters are  extremely

represented by a blank area in Figure 4 (Top), indicating that
the silencing time is infinite. Interestingly, the silencing time
for most of the other values is quite stable and ranges
between 1 and 4 hours, which suggests fast silencing. In
addition, when g exceeds a given value (= 0.8 of its initial
value), the silencing time remains almost constant and will
not change with the variation of a and g. In case of silencing
intensity (Figure 4 Bottom), we can distinguish two domains:
weak silencing (mRNA approx. 12%) for downregulation
and weak upregulation of g, and intense silencing
(mRNA<5%) for higher values. Interesting enough, silencing
intensity (once satisfied the threshold of 15%) seems

independent of the level of modulation for g.
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Fig. 4. Variation of silencing time (top), T,, and silencing
intensity (bottom), m; when the values of parameters a and g
are modified in the interval [0.1, 10] times of their nominal
value.

For a and dM (rate of non RNAi-mediated mRNA
degradation) (Figure 5), our simulations show that silencing
is not reachable when both parameters are extremely
downregulated, but also that extreme overexpression of a
of dsRNA degradation) is
compensate a loose in the rate of non RNAi-mediated mRNA

(enhancement enough to

degradation. In accordance with results in Figure 4, the



silencing time for most of the other values is quite stable and
ranges between 1 and 2 hours, which suggests an even faster
silencing. In this case the silencing intensity strongly depends
on the interplay between a and dM (Figure 5 Bottom).
Furthermore, we can distinguish a systematic increase in the
silencing intensity when the solutions leave the vicinity of the
silencing boundary. In addition, silencing intensity depends
strongly on the value of a, ranging from weak silencing
(mRNA approx. 14%) for downregulation to intense
silencing (mMRNA<5%) for overexpression.

When modulation of dM and dC (rate of mRNA/RISC
complex degradation) are considered (Figure 6), the
behaviour is somehow reverse. With extreme downregulation
of mRNA/RISC degradation and upregulation of mRNA non-
specific degradation the silencing is not reachable, but in all
the other cases the silencing time is independent of regulation
of these two parameters and stands in a value of 1 hour
(Figure 6 Top). In case of the silencing intensity, we can
distinguish two regions (Figure 6 Bottom): a) for strong
repression of non specific mRNA degradation the system
reaches an intense silencing, independent of regulation of in
the mRNA/RISC degradation
downregulation or upregulation, silencing intensity becomes
strongly dependent of the mRNA/RISC degradation rate,
ranging from weak (for dC downregulation) to intermediate

rate; and b) for low

silencing (for intense upregulation).

silencing time

1
a
silencing intensity

Fig. 5. Variation of silencing time (top), Ts, and silencing
intensity (bottom), m, when the values of parameters a and
dM are modified in the interval [0.1, 10] times of their
nominal value.

We furthermore investigated the effect of time delays T; and
T, in the dynamics of RNA silencing. In order to get
meaningful results, we constrained the interval of values for
both time delays to the one that seem biologically feasible
and perform predictive simulations computing the silencing
time and silencing intensity for couple of values of T, and T..
The system reaches effective silencing in all the simulated
cases, but displays a very irregular pattern with silencing
times in the interval 14-26 hours (data not shown). In case of
silencing intensity (Figure 7), increase in T, reduces silencing
intensity while increase in T, makes reverse. The lowest
silencing intensity is reached for long T, and short T, (MRNA
approx. 14%) and the highest for short T, and long T,
(mRNA approx. 10%). We noticed that outside the time
delay framework displayed, the system becomes in some
cases unstable and biologically unfeasible solutions appeared.

silencing time
10 e -

dc
silencing intensity

am

dc

Fig. 6. Variation of silencing time silencing time (top), Ts,
and silencing intensity(bottom), m; when the values of



parameters dM and dC are modified in the interval [0.1, 10]
times of their nominal value.

4. Discussion and Conclusions

In our work we investigated the role of time delay and
protein regulation in the posttranslational protein regulation
through RNA interference. Towards this end, we combined
qualitative bifurcation analysis, sensitivity analysis and
predictive simulations.

We modified the model proposed by [7] to include the
potential effect of time delays in the process accounting for
the triggering of mRNA binding to form the RISC-mRNA.
Our bifurcation analysis suggests that the stability of the
solutions in terms of oscillatory behaviour will depend on the
interplay between the time delay values of T, and T,.

In order to investigate the dynamics of RNA silencing, we
defined the variables silencing time (time to reach the
silencing level for mRNA) and silencing intensity (steady-
state concentration of mRNA for a given set of parameter
values). We found that modulation in Dicer-mediated FDggys
degradation, represented by the parameter a, plays an
important role in the modulation of RNA silencing; we
distinguished a weak silencing regime for downregulation
and weak upregulation of g, and intense silencing for higher
values. In addition, modulation of the non specific mRNA
degradation, dM, seems also a crucial process in a way the
system reaches intense silencing with strong repression of
mRNA
downregulation or upregulation in dM makes the system

non  specific degradation, = whereas  low
strongly dependent of other processes like mRNA/RISC
degradation. Interesting enough, silencing seems independent
of other model parameters and, for example, modulation of
dsRNA synthesis from RISC-mRNA complex, g, seems to
play a minor role in the regulation of the system. In future
works we want to integrate this module accounting for RNAi
into more complex, pathway specific, models describing the
interplay between gene activation, RNA interference, protein
expression and stress mediated regulation of the silencing

process.

silencing intensity

0.69

=" 0.35

0.22 0.43
T

Fig. 7. Variation of silencing intensity, m, when the values of
T, and T, are modified in the interval of biologically feasible
values.
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Appendix

Abstract

RNA silencing is a recently discovered mechanismposttranscriptional regulation of gene expression
Precisely, in RNA interference, RNAI, endogenougpressed or exogenously promoted small RNAs
promote and modulate the degradation of complemegnteessenger RNA involved in the synthesis of
targeted proteins. In this paper we investigatesl tble of time delay and protein regulation in the
posttranslational protein regulation through RNAerference. Towards this end, we used and moddied
simple model accounting for RNAi and used quali&tbifurcation analysis, sensitivity analysis and
predictive simulations to analyze it. Our resultggest that some processes in the system, likerDice
mediated Flgrna MRNA degradation or non specific mMRNA degradatiplay an important role in the

modulation of RNA silencing, whereas silencing seewirtually independent of modulation in other
processes.

Keywords: delay differentiakquations; RNA silencing; Andronov-Hopf bifurcatji@ensitivity analysis

Model calibration

Par ameter Calculated value' | Original value’
a 4 10
b 0.002 0.001
h 1000 1000
g 0.4 1
('Y 1 1
dr 0.1 0.1
dc 2 1
n 5 5

1. Values estimated using model calibration invlag discussed in the text.

2. Values used in Bergstrom et al. 2003.
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Original simulations (Bergstrom et al. 2003)
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Complete derivation used in our qualitative bifurcation analysis
In Nikolov and Petrov [6] we investigated the bdation behavior of a model of RNA silencing

with one time delay, where the delay functi@([—r) express the assumption that the net rate of
dsRNA degradation by Dicer and background proceswell as the net rate of dsRNA loss are
proportional, thus triggering the process of mMRNAdIng to form the RISC-mRNA complex at the
moment(t—r). In [6], in order to make the analytical investiga of time delay system easier, we
assume that the two times —of the regenerationdagdadation of the RISC-mRNA are equal. Of
course, the finite time, of regeneration can be different from that of degationr, [12, 22, 23].

Hence, we obtain a system with two delays in tlfo

dbD
o - ab+ gClt-r,),

R an.D -d;.R-b.RM,

& (4)
o PRM ~(g+d.)clt-1,),
M o h-d, M -bRM,

dt

where the state variabld3, R,C, M represent the concentrations of the dsRNA, RIBEC-
MRNA complex, and mRNA, respectively, at timeWith a,b,d.,d,,,d, g,h andn are noted
the kinetic rate constants. Hence, system (4) ha® tsteady states: the trivial
(D:C:ﬁz:o,l\h =% j and [D:%,fz:ic,c‘;= h_duls —(9+dc)de ,

M a dg g+d. b¢ b¢
wherec:[g(n—l)—dc]. Here we note that the original ODE system hasstmae fixed points

which are always stable.
Furthermore, we investigate the bifurcation suiest particularly the Andronov-Hopf
bifurcation- for system (4), using time delagsor 7, as bifurcation parameters. First, we obtain

the characteristic equation for the linearizatioi system (4) near the equilibrium

E[D >0,C>0,R>0,M >Oj, i.e. all are positive and the silencing reactiomtrols the level of

MRNA below its normal level. Next, we consider aafirperturbation about the equilibrium level,
i.,e. D=D+x, R=R+y,C=C+2z M =M+w. Substituting these into the differential equasion
system (4), we have

dx

— =—ax+gl ™z,

dt 0

dy _

= = anx-a,y —a,w-byw,

dt 5
iz )
E:asy_a4£_r2XZ+a2W+byVVa

dw

- == —_ —b i
it a;y — a;W—Dyw,



where a =d.,+bM, a,=bR, a,=bM, a,=g+d., a =d,+bR. The associated
characteristic equation of (5) has the followingno

XK HK Y +K y = [T“(TS)(+T6)+£‘TZX(T1)(3 +T,x° +T3)(+T4), (6)
where

K,=a+a +ag, K, =ala +a;)+aa 2,8, K, = a(a,a; ~a,a;),

T,=-a,T,=-Ka, T, = _a4[a(ai + as)+ aa; — aZaG]’ (7)

T, = aa4(a2a3 _a:l.a‘S)’ Ts =aa;ng, Tg = aaeng(a‘ﬁ B aZ)'
Because of the presence of two different delay@)jrthe analysis of the sign of the real parts of
eigenvalues is very complicated and a direct ambrazannot be considered [10]. Thus, in our

analysis we will use a method consisting of detanngj the stability of steady state when one delay
is equal to zero similar as [24, 25].

21.Thecase 7, =0 and 7, >0.

Hence, we assume that the finite time deatayf degeneration is longer than the time of
regeneration of RISC-mRNA complax,

Settingr, =0 in (6), the characteristic equation becomes

XK K2+ Ky =T, = T (TP + T 2 +Tox + T, ) (8)

where K;, =K, -T, . For small delayr, <1, we use linear stability analysis. Thus, let
(2 =1- x1,; then, the eigenvalue equation becomes

X' +pxP+axy’+ry+s=0. (9)
By the Hopf bifurcation theorem and Routh-Hurwitztaria [30], an Andronov-Hopf bifurcation
occurs at a value =7, where

D= K, +T,r,-T, >0, g= K,+T,7,-T, s T, +T >0,
K, +T,7,-T ° ° (10)
r =31 S-TZ 3’ I:pqr—spz—rZ:O,
where 0 =1+T,7, and the conditio,7, # -1 is valid. Let
h(x.7,)=x*+px* +ax’ +rx+s. (11)
Evaluatingh at 7, =7, yields
h(Tb’X(Tb)):X4+pX3+QX2+k2pX+k2(q_k2)’ (12)

wherek? =" The eigenvalues of (9) &t are
p

)(L2=iik=i\/z, (13)
Y



and the type of the other root pair depends onsifpe of the equality), :$_§' Herei is an
r

imaginary unit. IfA, >0, then

Xsza = _EpiAzi' (14)
2
where A% :%—%(Az >0); if A, <0, then
=-Pip 15
Xz 5=t (15)

where nowA, =,/-A, . Implicitly differentiating h(z,, x(z,)) yields

oh
— 3 2
- arah —_ p13)( +Q1i( +r1)(+521 ’ (16)
on 4x°+3pxy°+2q9x+k°p
ox

o |\
~||><

where

_Tzé_T1(K1_T1+T2T2) _Tsé_Tl(Kz _T2+T372)
1 52 ’ ql - 52

(17)
r = T45_T1(K31_T3 +T4T2) s = T1(T4 +T6).

1 52 ! 52

Evaluating the required derivatives bfat 7, , we obtain

d,(r,) _ 2k?N +2K|(s, — g,k? Jla - 2k?)+ pk>2(r, - p.k>2)]
e , (18)
dr L” + |

whereL =-2pk?, | = 2k(q—2k2)i , andN = (p1k2 —rl)(q—2k2)+ p(sl —qlkz). The real part of (18)
has the form

dx, (7, )) 2k*N
R LLbl = : 19
e( dr L2+1°2 (19)
and is always positive iN >0, i.e. if the following conditions are valid:
plk2 > r.l plk2 < r.1
q>2k* or |g<2k? (20)
s > gk’ s > gk’

It is well known that for a larger time delay, linear stability analysis is no longer effectiaed
we need to use another approach [8, 10, 24-27].stddality of equilibrium state depends on the
sign of the real parts of the roots of (8). We et m+in (m,nD R), and rewrite (9) in terms of its
real and imaginary parts as



m* +n* —6m°n® + Klm(m2 —3n2)+ Kz(m2 = n2)+ K,m-=T, =¢™" {Tl[m(m2 —3n2)cosn r,+
+ n(3m2 - nz)sinnrz] +T2[(m2 - nz)cosn r,+ 2mnsinnr2]+T3(mcosn r, +nsinnr, )+ T, cosnr,},
4mn(m2 - n2)+ Kl(3m2 - nz)n +2K,mn+Kyn=¢"" {Tl[n(Bm2 - nz)cosn T,+ m(3n2 -m? )sinnrz]+

+T2[2mncosnr2 (- mz)sinnr2]+T3(ncosnr2 —msinnr,)-T,sinnr,}.

(21)

To find the first bifurcation point we look for pely imaginary rootsy =+in, nOR, of (8), i.e. we
setm=0. Then, the above two equations reduce to

n*-K,n*-T, = (—T1n3 +T3n)sinnr2 + (—T2n2 +T4)cosnr2,

-K,n®+K, n= (—Tln3 +T3n)cosn r,+ (T2n2 —T4)Sinnr2, (22)
or another
COSNT, = (n“ -K,n? —TG)(TZn2 —T4)— (— K,n®+ K31n)(_T1n3 +T3n)
2 (T2n2 -T, )2 + (_T1n3 +T3n)2 ’ -
sinnz, = (_ Kyn® + Ksln)(Tzn2 —T4)+ (n“ -K,n? ‘Ts)(—T1n3 +T3n).

(r,n? -T,F + (-0 +Tn)f

Note thatn= Ocan be a solution of (23) T, =T;. If the first bifurcation point is(ng, rl‘)’) then the
other bifurcation point§n, , 7,) satisfyn,z, =n°rl +2vr, v=12,....0.

One can notice that i is a solution of (22) (or (23)), then s . Hence, in the following
we only investigate for positive solutiomsof (22), or (23) respectively. By squaring the two
equations into system (22) and then adding thefaolldws that

n®+(K, - 2K, T2 Jn® +|K2 -T2 + 2(T,T, - K,Ky, =T, )Jn* +

24
k2 -T2+ 2K, T, +T,T, )2 -T2 +T2 =0, (24)

Here, we note that this is a quartic equationmdrand that the left side is positive for large value
of n* and negative fon=0f and only if T/ >TZ, i.e Eq. (24) has at least one positive real root.
Moreover, to apply the Hopf bifurcation theorem¢acling to [28], the following theorem in this
situation applies:

Theorem 1. Suppose that n, isthe least positive simple root of (24). Then, in(rb) =in, isa
simple root of (8) and m(z,)+in(z,) is differentiable with respect to 7, in a neighborhood of
T,=T1,.

To establish Andronov-Hopf bifurcation af =7,, we need to show that the following

transversality condition(;jﬂ # 0 is satisfied.
T

2lr=r,

Hence, we if denote

H(X.7,) = x* + K + Kox? + Koy =0 (TP + T, 02 + Ty +T,), (25)
then



oH
dy __or,

dr, oH
ox

(26)

_ ~ x0T+ T X7+ Ty +T,)
Ax° +3K X2 + 2K, x + Koy + 1,0 (TP + T x 2 +Tox )+ T, - 0 (3T ¢ % + 2T, x +T,)

Evaluating the real part of this equatiornrat= 7, and settingy =in, yield

= R{d_)(j
_— dr,

dm

dr, i
_n2fang +3(K? - 2K, ~ T2 + 2K2 =172 + 2(TT, ~ K,Ky, =T, o2 + K2 = T2+ 2(T,T, +K,T, )}
LZ+17
(27)
where L, =-3K,n +K,, +7, (n;‘ -K,n? —T6)— (—3Tln§ +T3)cosnbr2 - 2T,n,sinn, 7, and

I, =4nd -2K,n, - rz(— K,n: + KSlnb)+ 2T,n, cosn,7, - (—3Tln§ +T3)sinnbr2.
Let #=n7; then, (28) reduces to

g(@) =6+ (Kl _2K2 _le)gg + |_K22 _T22 + 2(T1T3 - K1K31 —TG)IQZ +

28
k2 -T2+ 2K, T, +T,T,)Jo-T2 +T2. (28)

Then, forg'(8) we have
: dg
(2] == =
g ( )r2=Tb dé — (29)
=467 +3(K, — 2K, ~T2)0? + 2K 2 ~T2 + 2(T,T, — KKy, - T, )Jo + K2 = T2 + 2(K,T, +T,T,).

If n, is the least positive simple root of (24), then

a9 Lo (30)
dr, per

Hence,
d_m =R d_X = ngg'(ns)>0. (31)
dr,|, ., dr, | L+1}

According to the Hopf bifurcation theorem [29], define the following Theorem 2:

Theorem 2. If n, istheleast positive root of (24), then an Andronov-Hopf bifurcation occurs as 7,
passes through 7, .

Corollary 2.1. When 7, <7, , then the steady state E of system (4) islocally asymptotically stable.



2.2. The case 1,7, >0. We return to the study of (6) with,7, >0. In order to investigate the

local stability of the equilibrium statE of system (4), we first prove a result regarding sign of
the real parts of characteristic roots of (6) ia tlext Theorem.

Theorem 3. If all roots of (8) are with negative real partsfor 7, >0, thenthereexistsa 7' (r,) >0
such that all roots of characteristic equation (6) have negative real parts at 7, <77 (z,), i.e. when

r,0lo, (z,).

Proof. Similar to [7], let we assume that (8) has no sowith nonnegative real part when>0.
Therefore, characteristic equation (6) has no meith nonnegative real part when =0 and
r, >0. Regardr, as parameter, then (6) is analytic abguandr,. By Theorem 2.1 of [24], when
r, varies, then the sum of the multiplicity of zemfs(6) in the open right half plane can only
change if a zero appears on or crosses the imggaas. Because (6) (with, =0) has no root
with nonnegative real part, there exists"(r,)>0 such that all roots of (10) with < 7" (z,)
have negative real part.

Corollary 3.1. If 7} is defined as in Theorem 2, then for any 7,0[0,7,) , there exists a

bif

rP"(r,)>0 such that the steady state E of system (4) is locally asymptotically stable when
r,0jo, (z,)).
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