
1

Random Sets and Histograms
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Abstract

A probability density function verifies more de-
manding properties than a possibility measure.
Probabilistic models ensure a predictable asymp-
totic behaviour. This should not be taken to sug-
gest possibility theory should not be used. In
fact, a histogram is a possibility measure and it
is generally a better descriptor of a small sam-
ple of data than a probability density function
regardless of its asymptotic properties. A possi-
bility measure or also called fuzzy restriction is
also more flexible or adaptable to different prac-
tical problems whereas probability theory try to
generalize optimal methods applied to many dif-
ferent stochastic processes. Some people have
already exploited the connection between proba-
bility theory and possibility theory or fuzzy sets
to set up membership functions and to create
fuzzy sets models. In this paper, we show that
a histogram is the coverage function of a deter-
mined random set. This suggests other methods
to create more accurate or different featured his-
tograms by using random set theory. One ex-
ample of a histogram with overlapping classes is
provided.
Keywords: histogram, random sets, coverage

function, possibility measure.

I. Introduction

The definition of a random set does not differ much
from that of a random variable. While random variables
deal with stochastic point processes, random sets deal
with stochastic set processes, i.e., those with a set of el-
ements as the possible outcomes. Certainly, both have a
common definition if the set-outcomes are seen as single
elements of an appropriate space of discourse. Further to
this analogy, it is hard to find a parallel way to develop
random set theory as there exits for random variables
since a space formed by families of sets is more compli-
cated than a space formed by single points. For example,
the space power set of R

d, P(Rd) containing the set-

outcomes of a random set and R
d containing the point-

outcomes for a random variable. One of the first deep
studies about random sets based on topological spaces
can be found in [9] and posterior developments such as
convergence theorems in [10]. Some other authors have
used random set theory as a base to create possibility
measures and fuzzy sets models [6], [16], [17]. In these
references the authors set up membership functions by
using random sets. In [16], they apply this concept to
knowledge acquisition. Another field in which random
sets have become an useful tool is image processing [14],
[13], [15], [3]. In the first section we briefly review some
definitions related to random sets.

In this paper we introduce the idea that a histogram
constructed from a sample of data is the single point
coverage function of a determined random set. The his-
togram is a very common tool to visually summarise the
distribution of a sample of data. Most of the proba-
bilistic models built for stochastic point processes are
based on probability density functions estimated from
histograms by its normalisation to integrate to one.
Both, histograms and density functions, have the objec-
tive to resume the frequencies of observations. How to
build a histogram is then an important issue to take into
consideration. The shape of a histogram depends princi-
pally on the mesh dividing the space into classes or bins
which depends on the purpose for which the histogram
is built. For example, different classes are necessary for
a simple presentation of the data or for an estimator of
a probability density function [18].

Although probabilistic models provide very interest-
ing theoretical properties such as predictable asymptotic
behaviour, often it is preferable to work with a simple
and accurate histogram which is more manageable. The
idea that a histogram is the single point coverage of a
determined random set, opens the door to a wide range
of techniques used in random sets, fuzzy sets and pos-
sibility theories for the study of point processes as an
alternative to probability theory.

In the last section, an example of a histogram gener-
ated from a random set is shown. The most peculiar fea-
ture of the proposed histogram is the use of overlapped



classes generated by using some statistical properties of
clusters in data.

II. Random Sets and Coverage Functions

Although the following result can be generalised to a
range of topological spaces, we assume that R

d is the
space of the discourse. A random set X is a random ele-
ment belonging to a family F of subsets of R

d. Suppose
an experiment with possible outcomes belonging to F .
The definition of a random set follows the same philoso-
phy that for a random variable, which formal definition
is a (σΩ−σRd)-measurable mapping x : Ω → R

d. Where
(Ω, σΩ, PΩ) is a probability space which is the mathe-
matical description of the experiment and (Rd, σRd) is a
measurable space. The distribution or probability law
of a random variable is defined by Px = PΩ ◦ x−1. A
random variable is used to move the mathematical de-
scription of an experiment from its original probability
space into a well known measurable space. One of the
most commonly used σ-algebra of R

d is the Borel alge-
bra. Very often it occurs that the outcomes of the ex-
periment are real numbers and the measurable mapping
is then the identity since both measurable spaces are the
same. A random set X is a random variable which maps
the elements of the original probability space into ele-
ments of (F , σF ), where σF is an appropriate σ-algebra
ensuring that the random set is measurable. Thus the
probability space (F , σF , PX) is a probabilistic model of
X . Note that the probability measure PX has to deal
with families of subsets belonging to σF , i.e.

PX(A) = PΩ ◦X−1(A) = PΩ{ω : X(ω) ∈ A} ∀A ∈ σF

This is rather complicated to use. In [9], Matheron intro-
duced the Choquet capacity functional [2] of a random
set and proved that it determines the probability dis-
tribution of the random set. The capacity functional is
defined for sets (instead for families of sets). This makes
its use more convenient than the distribution of the ran-
dom set itself. Posterior developed random set theories
and applications, are based on capacity functionals (for
example in [10], [12]).

The single point coverage function of a random set X
is defined as a function cX : R

d → [0, 1] such that

c
X
(x) = PX(x ∈ X), ∀x ∈ R

d. (2)

Def. (2) defines a fuzzy restriction and is also called a
possibility measure [7]. Note that the coverage function
is equal to the expectation of the indicator function of
X , i.e. cX (x) = E[IX(x)]. The indicator function is
defined as

IX(x) =

{
1, x ∈ X

0, x otherwise

from which the following estimator of the coverage func-
tion (2) is calculated

ĉ(x) =
1
n

n∑
i=1

IXi (x), ∀x ∈ R
d (4)

for a sample of random sets X1, X2, ..., Xn given. From
(2), we can define a possibility distribution for subsets
of R

d :
C

X
(A) = sup

x∈A

{
c

X
(x)

} ∀A ⊆ R
d (5)

and its estimator

Ĉ(A) = sup
x∈A

{
ĉ(x)

} ∀A ⊆ R
d. (6)

In [16], the authors prove that ĉ(·) is unbiased and con-
sistent and they give several limit theorems justifying
the use of (4) as an estimator for the single point cov-
erage function (2) of the random set X . They also give
some results regarding its properties and they revise the
particular case where the random subsets are intervals of
R. The study of the extreme points of the random inter-
vals, which are their self random variables, is equivalent
to study the distribution of the random intervals. This
idea is also mentioned and discussed in [15]. A random
set whose location and shape depends on several param-
eters or random variables, is suitably modeled by means
of the distributions of these random variables.

III. Histograms: a Particular Case of
Coverage Function

A histogram summarizes graphically the distribution
of a set of data. Among other things a histogram shows
central tendency and variability, outliers, skewness, etc.
A histogram is obtained by splitting the range of the
data into classes or categories. The number of data
points from the data sample that fall into each class are
counted. The histogram is the plot of the classes against
the counts. Fig. 1-top is the histogram of a first order au-
toregressive process with square classes. Fig. 1-bottom
is the contour plot with the sample of data. The shape of
the histogram is strongly dependent on the choice of the
classes. Two histograms with different binwidth param-
eter may provide different visualisation of the sample of
data. A number of theoretically derived rules to con-
struct the classes have been proposed in [18]. Without
lost of generality let us suppose that the universe of dis-
course is R and a histogram f : R −→ R for a sample
of data x1, x2, ..., xn is given. First we define the family
of subsets X1, X2, ..., Xn of R formed with elements of
the set of classes {I1, I2, ..., Id} of closed intervals used
to build the histogram. Xi = Ij ⇐⇒ xi ∈ Ij , ∀i =
1, ..., n, ∀j = 1, ..., d. The sample of sets, thus gener-
ated, contains every Ij repeated as the number of data
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Fig. 1. Histogram of an AR(1) process with square classes (left)
and its contour plot with the sample of data (right).

points falling inside the interval Ij . Note that the size
of the sample of random sets Xi is equal to the size n
of the sample of data. It is clear that the estimator (4)
of the single point coverage of the random set X that
would generated X1, X2, ..., Xn is the histogram f(·) of
the original sample of data normalised to [0, 1]. The ran-
dom set X is a mapping such that X : R → I where I is
the family of closed intervals of R. The same result for
another topological structures based on different spaces
than R can be proved.

If we are using the histogram to model a probabil-
ity density function, the following normalization is com-
monly used: the cases in a class is divided by the sample
size times the class binwidth. This normalization verifies
the most important property of a density function: the
integral under the histogram is equal to one. Note that
a probability density function is also a possibility mea-
sure since it is a real function. In other words, density
functions are a particular cases of possibility measures
which also verifies some more demanding properties.

A histogram well built is an useful tool to visualise
and understand the randomness of a process. Above we
saw that the histogram is a particular case of coverage
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Fig. 2. First-order nonlinear autogregressive process.

function. Random set theory could then provide a wide
range of coverage functions to be used as histograms or
even as multivariate forecasting function in the same way
as marginal multivariate density functions are used [4].

IV. An Example of Coverage Function for
Forecasting

The process that generates the sample of data used in
the example is from the book [1] and has been used in
the paper [19]. The model was first described by Ikoma
and Hirota in 1993. It consists of a nonlinear AR(1)
dynamic system simulated by the function:

y(k + 1) = f
(
y(k)

)
+ ε(k),

f(t) =


2t − 2, 0.5 ≤ t,

−2t, −0.5 < t < 0.5,
2t + 2, t ≤ −0.5

where ε(k) ∼ N(0, σ2) with σ = 0.2, y(0) = 0.1. A
sample for k = 1, ..., 100 are plotted in Fig. 2.

The first half of the sample k = 1, ..., 51 will be used
for the generation of the histogram while the second half
k = 51, ..., 100 will be reserve for validation. The prod-
uct space is formed by an input variable y(k) and an
output variable y(k + 1), i.e. the data sample in the
state space are xk = [y(k), y(k + 1)]T ∈ R

2. In Fig. 3-
top, the 50 data training are plotted.

Let there be a random set X : Ω → F , where Ω =
{x1, x2, ..., xn, ...} and F the family of closed subsets of
R

2, defined such that

X(ω) = {z ∈ R
2 : (z − c)T Su

−1(z − c) ≤ a}
i.e. it maps a point ω or xi into an ellipsoid in R

2. c
and Su are the average and the sample covariance ma-
trix of the group of knn nearest neighbours of xi. a is
the minimum value for which all the nearest neighbours
fall inside of the ellipsoid. Talking in terms of normal-
ity distribution, the ellipsoid X(xi) is the 100% quantile



of the cluster of neighbours. Note that the parameters
c, Su and a are random variables since they depend on
the sample of data x1, ..., xn considered as a stochastic
process. For a formal definition of X , it is necessary
appropriate σ-algebras, σΩ and σF , for X to be measur-
able. How to build these special σ-algebras can be found
in [16], [8], [5], [9], [10]. From our sample of data train-
ing x1, ..., x50 we obtain a sample X1, ..., X50 of random
sets independent and identically distributed as X ,

Xi = {z ∈ Ξ : (z − ci)T Sui

−1(z − ci) ≤ ai}
Fig. 3-top, shows the sample of random sets or ellipses
and the sample of data training. Note how the sample of
random sets overlapped opposite to the commonly used
histogram where the classes are a hard partition of the
space. In Fig. 3-bottom the estimator of the single point
coverage function, calculated by (4), is plotted. If the
actual time is ko and the response of the system at this
time is y(ko), it is possible to make a forecast by using
the marginal coverage function which is a function such
that c

Xy(ko)
: R → [0, 1] defined by

c
Xy(ko)

(y) = c
X
([y, y(ko)]T ) ∀y ∈ R

Note that this holds independently of the dimension of
the state space. The estimator of this marginal coverage
function is given by

ĉy(ko)(y) = ĉ([y, y(ko)]T ) =

=
1
n

n∑
i=1

IXi ([y, y(ko)]T ) ∀y ∈ R (10)

and the marginal possibility distribution for subsets of
R

Ĉy(ko)(A) = sup
y∈A

{
ĉy(ko)(y)

} ∀A ⊆ R.

We predict the response of the system at the time
ko + 1 by investigating the distribution ĉy(ko)(·) which
represents the uncertainty of the model based on the
training data. It reflects the confidence of the outputs
more accurately and may in fact be more informative or
precise than a single number. Note that the marginal
coverage may have different shape for different input
data. Opposed to common model identification tech-
niques, such as regression, were the marginal functions
only differ in the location. Their mean is on the model
and all have the same spread or skewness, due to the as-
sumptions that hold about the distribution of the resid-
uals. Note in Fig. 4, the very different shape of the
marginal function for a squared histogram (left) and for
a elliptical one (right) for the same ko = 89. However, if
a single-valued forecast is required we can use the stan-
dard way to “defuzzify” a distribution, called “centre of
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Fig. 3. Histogram with elliptical overlapped classes (left) and its
contour plot with the training data (right).

gravity method” (COG) frequently employed in fuzzy
control [7] :

ŷ(ko + 1) =

∫
Y

y · ĉy(ko)(y) dy∫
Y

ĉy(ko)(y) dy

. (12)

In Fig. 4 the dashed lines are the forecast for ko +1 =
90 by using COG and the continue lines are the real data
points. Another way to obtain a single output value is
to choose the most possible point in the output space
given a input data, i.e., the point in R that maximizes
the marginal possibility measure (10) which is

ŷ(ko + 1) =
{

y ∈ R : ĉy(ko)(y) = Ĉy(ko)(R)
}

. (13)

If the maximum is achieved for all the points of an in-
terval of R, the mean of that interval is used as the pre-
dictor. Fig. 5 resumes the differences between a classical
squared histogram (left) and the proposed histogram in
this paper (right). The thicker line associated to the left
side of the frame, represents the number of data valida-
tion with null marginal distribution. For these data, the
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Fig. 4. Marginal coverage functions at ko = 89 (y(89) = −0.69)
for squared histogram (left) and elliptical histogram (right).
The dash line is the forecast for ko + 1 = 90, by using the
centre of gravity and the continuous line is the real value.

histograms are unable to provide a forecast. Note that
all the data training have not null marginal distributions.
The gray and black lines, associated to the right side of
the frame, are the mean squared error of the forecasts
for the data training and data validation respectively by
using the centre of gravity. Note that the data valida-
tion without forecast is not included in the MSE. For the
“square histogram”, the horizontal axis is the number of
classes in which the interval [−2, 2] has been divided.
For example, 20 means that the binwidth of the classes
used to build the histogram is (2 + (−2))/20 = 0.25.
Note when the number of classes increases, the binwidth
decreases. For the ellipsoidal histogram, the horizontal
axis represents the number of nearest neighbours used to
build the ellipses. There exist a clear difference between
both histograms. The “square histogram” has a higher
MSE for the data validation and it is more sensitive than
the elliptical histogram to the size of the classes. Small
changes in the binwidth imply a large variation in the
MSE and the number of missing forecasts. The explana-
tion of this effect is that for the ellipsoid model the uncer-
tainty of the system more accurately than the squares.
Note that the location and shape of the squares does
not depend directly on the data as opposed to the el-
lipses. Another advantage of this histogram is the easier
way it can be computed. While a hyperellisoid needs
only one inequation, independent of the dimension of
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Fig. 5. MSE and data validation no forecasted for both his-
tograms.

the space; a cuboid needs d×2d−1 inequations. However
when the histogram forms the basis for density function
estimation, the calculation of the integral for the inter-
section of some ellipses is rather complicated than for
non-overlapping regular polygons such as squares, trian-
gles, etc...

V. Conclusion

Classical histograms based on non-overlapping classes
are ideal to estimate probability density functions since
the integral of these polygons is not complicated to cal-
culate. When the aim is other than to build probabilistic
models, for example, to forecast through possibility mea-
sures, other histograms as the one presented are a better
alternative. The principal idea we exposed in this paper
is that a histogram is the single point coverage function
of a determined random set. The construction of a his-
togram carries implicitly within itself, the generation of a
sample of random sets. Consequently, many random set
concepts that are applied to set processes, can also be ap-
plied to point processes. For example, we can select the
adequate classes to construct a histogram depending on
the distribution of the sample of data. To adjust the size
of the classes we can use the expectation of the distance
between a future response and the actual sample of ran-
dom sets [11], thus we could ensure that our histogram
will be able to forecast next step. We can measure the



distance between two coverage functions [14], [3] of the
same process at different times, in order to understand
its evolution, convergence and stability. Future research
on the feasibility of applying random set theory to point
processes analysis will be carry out.
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