# A principal limitation of virtual cell simulations using differential equation models



### Motivation

The idea of building a virtual cell, i.e. the simulation of a comprehensive model of a biological cell, makes the implicit assumption that cells can be simulated.

However, the machine view of a cell or any natural system does not capture essential properties like selforganisation, which leads to certain formal requirements for virtual cell computations.

 $\Psi$  is now indeed unentailed. To avoid infinite regress, we would need to show that  $\Psi$  is entailed from within the system. The main idea here is that closure to efficient causation means that any element of a collection of things is also an image of some map.

### **Functional organization**

Our conceptual framework now encompasses a *multi*-

#### **Sketch of Proof.**

 $\Psi$  was introduced as a morphism that selects a cell function for each cellular process:

 $\Psi: H(\Gamma, \Omega) \qquad \Sigma, \quad \sigma \mapsto \psi.$ 

For any object  $\Sigma$  and map  $\tilde{\sigma}$ :  $\Sigma \Omega$   $\Gamma$  there is a unique map  $\lceil \sigma \rceil$ :  $\Sigma$   $H(\Omega, \Gamma)$  and the evaluation map  $e: H(\Omega, \Gamma \Omega) \quad \Gamma \text{ for which } e \circ [\sigma], \text{id}_{\Omega} = \tilde{\sigma}. \text{ Note that } \sigma \text{ is a}$ basic cellular process while  $\tilde{\sigma}$  describes a cellular process

# A formal model of the cell

Cells generate responses to stimuli. The series of processes and reactions involved is usually called *pathway*. More abstractly, it corresponds to a morphism (map):

> $\sigma$ :  $\Omega$  $\omega \mapsto \gamma = \sigma(\omega)$

U is a set of stimuli  $\Omega = \{\omega: I \}$  $\Gamma = \{\gamma : I \ Y\}$  is a set of responses

where  $I = \{t: t \ o\}$  is a time set and U and Y are arbitrary sets (signal value spaces).

*Basic cellular processes*, modeled by  $\sigma$ , depend on the state of the system and realize *cell functions*.

> $H(\Gamma, \Omega), \quad \gamma \mapsto \psi(\gamma) = \sigma$  $\psi$ :  $\Gamma$

 $H(\Gamma, \Omega)$  is the set of all biologically meaningful processes the cell can realize and thus a subset of  $\Gamma^{\Omega}$ , i.e. the set of all mophisms from  $\Omega$  to  $\Gamma$ .

#### **Causal entailment**

Since each morphism  $\sigma$  associates each stimulus  $\omega$  with



At this point, the map  $\Psi$  is still hypothetical. To show that in our abstract model it can be realized from within the system as a self-organizing process, we need to show that it is an image in some codomain within the formal system.

## The mathematical framework

A *category* in the mathematical sense is the notion of abstract structures and structure-preserving operations. It

taking place in a context. This results in the following commutative diagram:

Now the retraction of  $\sigma$ , i.e. the map  $\sigma : H(\Omega, \Gamma) \Sigma$  for which  $\sigma \circ \sigma = id_{\Sigma}$ , ensured that all maps  $\psi$  are entailed by at least one  $\sigma$   $H(\Omega,\Gamma)$ . Thus, it can take the role of the coordination map  $\Psi$ , which adds up to the following model of a cell governed by a self-organizing principle.



a response  $\gamma$ , the question "why  $\gamma$ " can be answered "because  $\omega$ " or "because  $\sigma$ ".

Aristotlean analysis makes a distinction between four different fashions of causality:

*Material cause*: raw matter of which something is made *Formal cause*: idea after which something is formed *Efficient cause*: external entity/force, source of change goal for which something exists Final cause:

In this case,  $\omega$  is the material and  $\sigma$  the efficient cause for  $\gamma$ . The efficient cause for  $\sigma$  is provided by the cell function map  $\psi$ .

 $\Omega \longrightarrow \Gamma \longrightarrow H(\Omega, \Gamma)$ 

Robert Rosen (1991) argued that there can be no "closed" path to efficient causation" in a mechanism (in the technological sense). The mapping  $\psi$  in our abstract cell model is now indeed unentailed (with respect to efficient causation). One could now introduce a coordination map  $\Psi$ 

> Ψ:  $H(\Gamma, \Omega)$  $H(\Gamma, H(\Gamma, \Omega)),$

which leads to the following graph of causal entailment.

consists of a class of objects, a class of morphisms between the objects and a composition operation.

A category is called *cartesian closed* if there exists the product  $\Sigma$   $\Omega$  of any two objects  $\Omega$ ,  $\Sigma$  and an exponential  $\Gamma^{\Omega}$ of any two objects  $\Gamma$ ,  $\Omega$  within the category. Then, a morphism acting on a product can be identified with a morphism acting on one of the factors,

$$\frac{\Sigma \times \Omega \xrightarrow{\tilde{\sigma}} \Gamma}{\Sigma \xrightarrow{\neg \sigma} H(\Omega, \Gamma)} \downarrow^{\tilde{\sigma}}$$

where  $\Sigma \quad (\Gamma^{\Omega})^{\Gamma}$ .

There is an *evaluation function*  $e: \Gamma^{\Omega} \Omega = \Gamma$  such that for each  $\tilde{\sigma}$  there is a unique  $\sigma : \Sigma$   $\Gamma^{\Omega}$  fulfilling  $e \circ [\sigma], id_{\Omega} = \tilde{\sigma}$  (see also Lawvere & Rosebrugh, 2003).

Cartesian closed categories comprise morphisms that act on morphisms, which in necessary to model intracellular processes that act on other processes. **Proposition.** 

A model of a living cell, closed to efficient causation, corresponds to a cartesian closed category, denoted Cell. To ensure closure to efficient causation it is sufficient that the parametrization  $\lceil \sigma \rceil$  of basic cellular processes in the exponential object  $\Gamma^{\Omega}$  has a retraction.

We have established a general abstract formal model of a cell that exists within a cartesian closed category and shares the property of closure to efficient causation with living system. The mathematical structure of  $\Omega$ ,  $\Gamma$ , or the state space in a state-space representation of dynamic systems determines whether a category is cartesian closed. The basis for nonlinear dynamic systems, encoded by differential equations, are manifolds and topological spaces, which are *not* cartesian closed.

Computer simulations based on differential equations, although able to mimic a cellular process, can therefore not capture self-organization of cell function, which is a, if not the, fundamental property of living systems.

#### References

Lawvere, F., Rosebrugh, R., 2003. Sets for Mathematics. Cambridge University Press.

Rosen, R., 1991. Life Itself. Columbia University Press.

Wolkenhauer, O., Hofmeyr, J.-H., 2006. An Abstract Cell Model that describes the Self-Organization of Cell Function in Living Systems. submitted to the Journal of Theoretical Biology.

#### Acknowledgements



Theorem.

Given the mathematical model **Cell** of a living (natural) cell, the coordination of cell functions  $\Psi$  is entailed from within the cell.

Arne Bittig's position is funded by AMPKIN, a project part of the EU's sixth framework programme (www.gmm.gu.se/AMPKIN/). Poster and conference participation were sponsored by *dIEM oSiRiS*, a post graduate programme funded by the *Deutsche Forschungsgemeinschaft* (DFG).



# Olaf Wolkenhauer<sup>1</sup>, Arne Bittig<sup>1</sup> and Jan-Hendrik S. Hofmeyr<sup>2</sup>

1 Systems Biology and Bioinformatics Group, University of Rostock, Germany www.sbi.uni-rostock.de

2 Department of Biochemistry, Stellenbosch University, South Africa