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Background: AMPK
 AMP-activated protein kinase (AMPK): 

regulation of cell’s energy metabolism
− Role in diabetes & obesity 

 Structure: 3 subunits, several isoforms
− 1 catalytic (α1/2), 2 regulatory (β1/2,γ1-γ3)
− Homolog to yeast SNF1-complex, also in 

many other species (e.g. SnRK1 in plants)

 Regulates (if active; Hardie 2007)
− Glucose uptake, glycolysis, fatty acid 

oxidation, mitochondrial biogenesis ↗
− Fatty acid, glycogen, protein synthesis ↘

 Regulated by (Carling 2004, Xiao et al. 2007)
− LKB1 (main upstream kinase), CaMKKβ
− Binding of AMP and ATP

Mathematical Model
 Mass-action model

− only 1 parameter per reaction, as opposed
to Michaelis-Menten or full enzyme kinetics

 No experimental data
− Only in-vitro values for KdT and KdM
− Unknown actual concentrations

 [ATP] > [AMP] > [AMPK] (all forms together)
− [AMPK]+[AMPK*] probably very low

 System underdetermined
− “Reality-consistent” behaviour achieved 

with many different parameter sets
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Exploring the Parameter Space
 Hypothesis: evolutionary advantage by 

optimising energy-regulating system for
− fast response to signal (changes in [AMP])
− high upregulation of total AMPK activity
− low persistent effort to keep some AMPK 

phosphorylated (otherwise: waste of energy)
 No fitting to experimental data possible
 Instead: fit to presumed system behaviour
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 3 binding sites for AMP
− 1 non-exchangeable, 2 also bind ATP

 AMPK* with bound AMP 2-5 times as 
active as AMPK* with bound ATP

 Doubling of [AMP] => doubling of AMPK 
activity (AAMPK*)

 Thought model (Xiao et al. 2007):
− observed activity ratio (high/low AMP)

   … only if r is large (≫1)

AMPK Regulation in Detail
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 Parameter reduction (now: 14)
− same dis-/association rates (10 parameters)
− same (de-)phosphorylation rates (11)

 kdP(M) left independent
− both (7 parameters)

 Choose system parameters (randomly) 
and determine steady state

 Double [AMP], find new steady state 
and compare to old one with respect to

 Upregulation factor
 Response time
 Phosphorylation turnover at steady state

3. Generate optimised parameter sets
• Genetic algorithm with variable weights 

of the criteria, emphasis on upregulation

Analyses and Results
 1000 optimised parameter sets analysed
 Optimisation aspects (upreg., response 

time, phosphorylations) independent
− not correlated, but not conflicting either

 Sensitivity analysis & correlation coeff.
− No aspect sensitive to any single parameter

− Many robust parameter sets, some less so
− No significant correlation between any pair 

of parameters, no pairwise sensitivities
 Principal component analysis (full model)

− First component comprises many param.s
− 13th component consists mostly of KdM-1

*

− Last component consists mostly of kdP(M)
 Unsystematic parameter reduction

i.e. run new optimisations with same settings
− Models exhibit worse behaviour, e.g. max. 

upregulation with 14/11/10/7 parameters: 
2.0/1.8/1.6/1.3, respectively (rounded)

 Systematic parameter reduction
i.e. assign either value or mean from original 
optimised parameter sets to new parameter 
covering several old ones
− Models fit expected behaviour better, e.g. 

max. upregulation 2.0/1.8/2.4/2.4
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Conclusion
 System analysis possible even without 

detailed knowledge of behaviour
 Model properties:

− System is robust w.r.t. parameter changes
− Many local optima in parameter space 

(optimisation tricky)
 System properties:

− Upregulation factor ≥2 possible, but only 
with extreme (i.e. unrealistic) parameters

− kdP(M)≈0 in most good parameter sets 
(i.e. strong evidence for inhibited dephos-
phorylation of AMPK* when AMP is bound)

 Not all 14 parameters necessary to 
describe expected system behaviour
− e.g. no loss of generality when AMP/ATP 

binding independent of phosphorylations
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