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Abstract

Microarray technology is becoming an essential tool in functional genomics. The
possibility of monitoring the expression level of thousands of genes simultaneously,
as the response to a particular biological condition, gives to the biologists the chance
to widen the aims of their experiments and opens a door to the understanding of
cellular transcription processes. In order to extract valuable information from the
big amount of data that microarrays experiments generate, suitable and powerful
statistical and computational methods are required. An example of the effort of
statisticians and computer scientists is the release of the first Bioconductor software
and the increasing number of functions for microarray data analysis implemented in
several programming languages (e.g. R, MATLAB, Java) by different research teams
all around the world.

In this paper, we describe a Graphical Users Interface (GUI) written in MAT-
LAB to deal with the normalization of microarray data. In our opinion, not enough
importance has been given yet either to the assessment of the effect of the nor-
malization on the data or to the study of the most suitable normalization methods
according to the experimental design. To aim these objectives, a great variety of
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normalization methods were implemented in the interface here described, allowing
the user to visualize the data before and after every step of the normalization pro-
cess. Our interface suggests an example of what should be done using also other
softwares such as R.

The features implemented in this interface were validated using data sets from
microarray experiments carried out for Mycobacterium tuberculosis by the Bacterial
Microarray Group St.George’s Hospital, Medical School in London and for Strepto-
myces coelicolour by the Streptomyces group at UMIST.

1 Introduction

Two color microarrays measure the relative abundance of messenger RNA (mRNA)
of thousands of genes in two different samples. To obtain an estimator of the mRNA
abundance, the two pools of mRNA from the cell populations to be studied are
reverse transcribed to complementary DNA (¢cDNA) and labelled using two different
fluorescent dyes (usually cyanine dyes Cy3 and Cy5), as described in Eisen and
Brown (1999) and Schulze and Downward (2001). The two pools are then combined
and applied to the microarray itself, where products of the polymerase chain reaction
(PCR) generated from ¢cDNA libraries or clone collections were printed as spots at
defined locations. Labelled cDNA or genomic DNA (gDNA) in the pools hybridize
to complementary sequences on the array and unhybridized DNA is washed off.
The slide is then scanned using two different wavelengths and the intensity of the
same spot in both channels is compared. This results in a measurement of the ratio
of transcript levels for each gene represented on the array.

The statistical analysis starts with the scanning file itself. Different location
parameters for the distribution of the pixels in a particular spot are given (e.g.,
mean, median, mode) and the most suitable one to explain the intensity value of
a given spot in both channels should be chosen. The scan file gives the location
parameters for both channels foreground intensities (Cy3 and Cy5) and for their
background. The background intensity measures the intensity of the mRNA that
binds to the slide even if there is no material spotted. Using all this information the
next step is to filter those spots with bad quality that should not be used for further
analysis. Yet, before proper analysis of the data their need to be normalized in order
to remove the non-biological variation introduced by the experimental process and
to enable the comparison of the intensity values within and across slides. However,
these correction methods might introduce additional noise or could even falsely
transform the data if the assumptions they made are not carefully observed. The
GUI here described can help in the detection of over-fitting or additional noise
introduced.

There are many different methods to normalize microarray data. Some sta-
tistical and algebraic methods such as ANOVA (described in Kerr and Churchill
(2001); Kerr, Martin, and Churchill (2000)) and SVD (see Alter, Brown, and Bot-
stein (2000)) can be applied to normalize the data. These methods aim to remove
the non-biological variation in one single step. However, they can be considered by
biologists as “black-boxes”. In consequence, it can be of a greater interest the use
of a sequential method, allowing the user to choose different options at different
stages of the normalization process, according to the particularities of the experi-
ment. The interface here described normalizes the data in this way. Table 1 is an
example of the very general sequential method implemented in our toolbox MADE
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Table 1: General approach to the sequential process. All the options
were implemented in our toolbox in order to enable the user to choose
the most suitable one according to its experimental design.

NORMALIZATION IN MADE (MicroArray Data Explorer)

Effects corrected

Options

Background effect

1. Background subtraction

2. No subtraction

Spatial effect

i

pi_gi

Dye effect | Using all genes

1. Global constant

2. Linear regression

3. LOWESS function

4. LOWESS for print-tips

Quality control elements

1.Dye-swap normalization

2.Use of spotted controls

Array effect: Across replicates normalization

Average experimental replicates (slides/spots)

Array effect: Across samples normalization

1. Against all arrays
2. Against arrays in J

Transformation of the data

1.log, () transformation
2. /e transformation
3. lin-log, transformation

4. arsinh(e) transformation

(MicroArray Data Explorer).
The paper is organized as follows: Firstly,

and correct every of those effects.

the motivation for normalization
of microarray data is explained and the main sources of variability in microarray
data are defined. These sources of variability can be introducing in the data bi-
ological variability but also random and systematic errors. The main sources of
non-biological variation are the background effect, the dye effect and the array ef-
fect. The paper describes then the different features that allow the user to visualize

2 Normalization of microarray data

A proper understanding of the intrinsical errors in a measurement requires a suitable
mathematical approach. Errors in a measurement can be of two types: systematic

or random.
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e Systematic error or inaccuracy is a fixed positive or negative error that is the
same if the measurement is repeated (systematic error).

e Random error or imprecision is a random positive or negative error that varies
every time the measurement is made.

In the microarray production process, many systematic and random errors are intro-
duced. These errors are masking the biological variation in which we are interested.
Normalization is the process of removing all this non-biological variation. As de-
scribed in Section 1, microarrays are tools used to estimate the amount of mRNA
for a gene across different conditions. For such an estimation, we rely on two inten-
sity values per spot, one for every channel. In a very simple approach, according to
Kepler, Crosby, and Morgan (2002), every intensity value can be modelled as:

I=N-A+error

where A is the abundance of mRNA for the gene in the given sample. N is the
normalization factor that corrects all systematic errors and error summarizes the
random error. The objective of the normalization process is to make I a reliable
estimator of A. For that it is essential to estimate N and error. According to Kerr
and Churchill (2001) and Kerr et al. (2000), there are four main sources of variation
in microarray data. Some of them introduce non-biological variability (contributing
to N and error) and should be removed in order to understand the real biological
variation. The four main sources of variation are:

e Dye effect. The different incorporation properties of the dyes and their differ-
ent physical characteristics make this the most important source of systematic
error in two-color microarrays.

e Array effect. The difference in the overall intensity across different arrays can
be due to real biological variation from one condition to another or just to
some experimental noise.

e Gene effect. The different expression level of a particular gene in a particular
array can be due to the biological variability of the gene or to some noise.

e Sample effect. If the overall intensity of the hybridized samples is different, it
can be due to some experimental error or to real biological activity.

Besides these four factors the background effect must be also considered. Some
part of the probe will attach to the slide even when there is not spotted
material, contributing to the foreground intensity. Some efforts are being
done to provide a reliable estimator for the background intensity, as shown in
Kooperberg, Fazzio, J.J., and Tsukiyama (2002).

The increasing number of methods described to correct all the systematic and
random bias mostly summarized in the four effects previously described (see Yang,
Dudoit, Lin, Peng, Ngai, and Speed (2002)) may lead to confusion in the analysis
of microarray data. Which method should I use? Should I use all of them? These
are typical questions when facing the normalization of a data set. With the aim
of helping to answer these questions, we implemented an interface in MATLAB®
(Mathworks Inc.)



Proceedings of DSC 2003 )

3 A normalization interface implemented in MAT-
LAB®

We chose MATLAB to analyze the data from our microarray experiments due, among
other reasons, to the variety of representation features that this software provides.
However, MATLAB has many limitations in terms of memory and speed and many
important statistical tests are not implemented in its library. For example, it is
limited in the functions for multivariate analysis of variance, which is becoming an
increasingly important tool for the normalization and analysis of microarray data.
For all those purposes, programs based on R, such as Bioconductor, or functions
written in Java or C4++ can be more appropriated. In this direction, the Jackson
Laboratory Churchill (2002) has implemented a number of functions in MATLAB
with C+4 core functions, improving the efficiency of functions such as LOWESS
by Cleveland (1979) and implementing factorial designs that were not written as
default MATLAB functions. Some ideas about the implementation of GUI interfaces
in R has been presented in Unwin (2001).

One of the main problems in the normalization of microarray data is the or-
ganization of all the information. The MATLAB interface described in this paper
summarizes the different steps that must be performed in the normalization of mi-
croarray data, allowing the user to visualize different plots in order to decide at
every stage which is the most suitable option among all those available. A compro-
mise between particularity and generalization must be taken in the normalization
process. For this reason, although the methods must be as general as possible to
allow its application to all kind of data sets, it is essential to visualize the data to
define particularities associated with it.

With our interface, we tried to offer a wide sample of methods to correct the
effects previously defined. Among them, all the gene specific errors (e.g. short
PCR products) and the spatial noise affect both channels in the same amount.
Consequently, these sources of noise are mainly removed just by taking the ratio
of both channels. The new version of the GUI will include a spatial normalization
based in the method by Colantuoni, Henry, Zeger, and Pevsner (2002). Hence, the
interface has three main blocks to correct the background, dye and array effects.
For every of them the interface enables:

1. Visualization of different plots for the pre-corrected data in order to choose the
most suitable normalization method.

2. A variety of effect-correction options to be chosen.

3. Visualization of the corrected data in order to asses the effect of the method
that was chosen.

The data will follow the flow shown in Table 1. Those steps are sequential, although
not all are compulsory. In the interface, every block appears when the data has been
corrected for the previous effect.

4 Background correction

Most of the published literature recommends the subtraction of the background
intensity from the foreground intensity of every spot. The background intensity is
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defined as the intensity of the probe that attaches to the array, even when there is
no cDNA available, contributing this intensity to the foreground intensity. However,
the chemical properties of the array surface are still not completely known. This
makes difficult to determine which is the contribution of the background intensity to
the measured foreground intensity. The later will be the estimator of the abundance
of mRNA for a particular gene in a particular sample.

In order to choose a suitable background correction, the interface allows the
visualization of different features:

e Scatter plots. There are three different types of scatter plots that can be used
for the analysis.

— Background against foreground intensities. This plot can help to decide
whether the background intensity is additive to the foreground intensity.
However, since the background intensities are usually much lower than
the foreground intensities, this scatter plot often suggests a linear rela-
tionship due just to the small effect that the background subtraction has
in the foreground intensities.

— Scatter plot of the background of both channels
— Scatter plot of the foreground of both channels.

The last two will give some clues to clarify if the relationship in both, fore-
ground and background, is similar. We could then extend conclusions from
the background to the foreground and vice-versa.

e 3D plots and contour plots. These plots are useful to study the distribution of
the background and foreground intensities across the array and to determine
areas where the background intensity is extremely high. As shown in Figure
1 these plots gave us the chance to detect some of the gene effects. Areas
around the controls shown a lower overall intensity than the rest of the array.
This was due to shorter PCR products than in the rest of the array. Thanks
to the possibility of plotting the contour plot of the ratio, we realized how this
effect was cancelled.

All these visualization tools help to take a decision about the most suitable back-
ground correction to perform in the data set. The interface allows both possibilities:
subtraction of the background or not. After choosing one of both possibilities, the
scatter plots and contour plots of the corrected data set can be visualized. This
can be useful to check the effect of the background correction in the data. For our
data set, background subtraction appeared to pass the noise from the background
to the foreground, increasing the noise in the experiment instead of reducing it. It is
shown also in Huber, von Heydebreck, Siiltmann, Poustka, and Vingron (2002) how
the background subtraction would increase the variability of the data using the log,
transformation while this variability is not so great if the background is not sub-
tracted. Although background subtraction is currently the most popular approach,
we are investigating new methods to use the information about the background
intensities to correct the foreground intensities.
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Figure 1: Contour plots for the foreground intensity of green and red
channels in a particular microarray. The level curves give an idea of
the distribution of the intensities according to its location in the array.

5 Dye correction

After background correction, systematic errors must be corrected. The most im-
portant of all of them is the one introduced by the different properties of both
fluorescent dyes labelling the two RNA pools. We have detected four properties
that are different for both dyes. The most important of them is the lower incor-
poration rate of Cy5, but also the quantum yield, the photobleatching and the
quenching properties are different. All these differences distort the real intensity
values of both channels so they must be balanced. However, we must be careful at
this stage. The most popular dye correction methods are based on the idea that
the majority of the genes are equally expressed in both channels. But this is not
going to be the case of all experiments. For this reason, two different approaches
were implemented in our interface. Using the terms defined in Kepler et al. (2002),
the correction of the dye effect -as well known as within-array normalization- can
be performed:

e using the whole data set to normalize the data (see Figure 2), as well known
as self-consistency.

e using the quality control elements provided in the experiment. This in-
cludes the dye-swap normalization proposed by Luu, Yang, Dudoit, and Speed
(2001), the use of spotted controls or the use of a reference channel (see Figure
3).

As seen in Figure 2 and Figure 3, both approaches can be selected in our interface.
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5.1 Dye-effect correction by self-consistency

Assuming that most of the genes are going to be equally expressed in both channels,
an expression £ is estimated to force the overall intensity of both channels to be the
same. Both channels intensities would be then related according to the expression:

R=¢-G,

where R = red and G = green. The estimation of this expression ¢ is going to
result in different methods to correct the different properties of the dyes. Four of
them can be selected in our interface:

Global normalization In this case, we assume that the systematical bias due to
the different properties of the dyes is affecting all spotted genes in the array in
the same amount. A constant k relating both channels is estimated. If most
of the genes are expected to be equally expressed, then a good representative
value of the distribution of the ratios is:

R;

k = med; —

i Gi
and £ = k. For experiments for which a high percentage of genes is differen-
tially expressed comparing both channels, the use of the first or third quartiles
are more suitable options. The three choices are implemented in our interface.

Linear regression normalization In Quackenbush (2001) a regression line is fit-
ted to the scatter plot (G,R). Under the assumption that most of the genes
should be equally expressed for both channels, the regression line should have
a slope one. Hence,

R:m-G+n—>E—£:G.
m m
From that follows & ~ m, where m is the slope of the regression line fitted to
the scatter plot and n is the intercept with the ordinate. The linear regression
approach assumes that the error term has constant variance for all observa-
tions, i.e. is homocedastic. Hence, the residuals should be plotted against the
independent variable G' to detect possible patterns which would suggest the
unsuitability of the model fitted to the data.

LOWESS normalization As suggested in Luu et al. (2001) and Yang et al.
(2002), looking at the (A,M) plot implemented in our interface it can be
detected if the distribution of the log ratios depends on the intensity. In this
case, it is not appropriated to correct every spot in the same amount as the
global method does. At the same time, the linear regression method is very
sensitive to outliers, so a more robust alternative is required. For these rea-
sons the use of a LOWESS function to correct the dye bias is becoming more
important in the normalization of microarray data. (A,M) scatter plot will
show:

A; = = - (logy S; + logy R;),

N —

Si
M; = log, B
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The LOWESS function ¢(A;) : I — R can be calculated from this plot, where
the set of indexes I denotes all genes spotted on the array. The fitting of the
LOWESS function c¢(A) from the (A,M) scatterplot leads to:

M = log, <g) >~ ¢(A) = € =k(A) =2¢4,

To estimate this function in MATLAB takes extremely long, but we can im-
prove its efficiency using a C++ function implemented by the Jackson’s lab-
oratory (see Churchill (2002)). LOWESS is computationally efficient also in
R.

LOWESS for different print tips During the spotting process, the spots lo-
cated in the same “grid” are printed by the same print tip. Yang et al.
(2002) suggest that different LOWESS functions should be fitted for the dif-
ferent print tip subgroups. In our interface we have implemented the scatter
plots that show the genes ordered like they were spotted in the slide to de-
tect print tip effects. The function to correct these effects if necessary is also
implemented in the GUI. However, we would expect this effect to cancel with
the ratios in two color-microarrays.

Regardless to the method used to estimate &, any of them corrects the data so,
R ~J R Y
5:1:>M:10g25:0

For this reason, to look at the scatter plots, boxplots and kernel fitted functions
before and after the correction is essential.

It should not be forgotten that the interface also allows the visualization of
different probability plots before and after the dye correction. This feature is im-
portant in the study of the distribution of both channels intensities and this must
be considered if we want to use ANOVA or any other probabilistic framework for
further analysis of the data.

5.2 Dye-effect correction using the quality elements provided
in the experiment

In general, there are many experiments for which the assumption of most genes
equally regulated cannot be known “a priori” or for which a very different number
of genes is expected to be differentially expressed in both channels. In those case
we would rely on the quality control elements to normalize the data. We have
implemented two methods:

Dye-swap normalization It was first described in Luu et al. (2001). Given two
arrays for which the same material was labelled with a different dye each time,
for every spotted gene i the following expressions are considered

Mi = 1Og2 (%) )

R;
M/ = log, <a> .
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Figure 2: View of the interface after background correction and choos-
ing the option to correct the dye effect using all the genes. We can see
how all the methods outlined in Table 1 to correct the dye effect using
the self-consistency approach are implemented in the interface.

From these two equations, we obtain

R;
M; = log, a. =

R!
M =log, ( = | =

10g2 -
4
Ti

1 .
089 s;

log, il + logy ki = log, il + ¢,
r; %
—log, % +log, ki = —log, % + ¢

where r; stands for the intensity of the gene i in sample r and s; for the same
value in sample s. The target is to estimate logy(2£) from M;, M/. Hence, it

S
T

=18
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follows that

M; — ¢; = log, (ﬁ) .
T

—M] + ¢, = log, (ﬁ) :

3

For this expression, ¢; and ¢, depend on the properties of the dyes. Because
they are not suppose to change significatively from one array to another it can
be considered ¢; ~ ¢} (see Sanchez-Cabo, Cho, Butcher, Hinds, Trajanoski,
and Wolkenhauer (2003) for explanation). Adding both equations,

Si 1 Si
M; — M] ~ 2 -log, <Z> = — - (M; — M]) ~ log, <Z>
Ti 2 T
The main advantage of the dye-swap normalization is that transforms the
data preserving the characteristics of every singular gene. Note that the com-
putational cost for the implementation of this method is very low.

Using the controls If controls covering the whole intensity range are available,
we can normalize our data using them. For controls for which the expression
level in both channels is expected to be the same, a non-linear function can be
fitted to the (A,M) plot of the controls and used to correct the entire data set.
However, because the number of controls available per slide is usually not very
large, we do not recommend to fit a LOWESS function but a more general
method such as Levenberg-Marquardt (Marquardt (1963)). The model used
will be in most of the cases a quadratic function.

6 Replicate handling

Besides the systematical error introduced in every measurement, there is an error
corresponding to the random error and that cannot be perfectly estimated. The
only way to reduce the intrinsical variability of a given measurement is replicating
measurements. In our interface, we first consider a feature that tests the quality of
the replicates. It is called curtain plot because it appears as a curtain (see Figure 4).
Different correlation measurements are allowed (Standard, Pearson and Spearman).
The last of them calculates the correlation in terms of the shape of gene profiles.
A percentage of the genes which profiles are correlated for the different replicates
is calculated. After the dye correction, the effect can be checked as well in the
replicates. Besides the curtain plot described before, hierarchical clustering on the
replicates can be visualized.

The replicates must be used to obtain a most reliable measurement of every
particular ratio. A representative value of the intensity ratio of both channels for
a given spot must be taken. We choose the mean. Before taking the average, the
interface allows the possibility to normalize across replicates. If the overall ratio
expression level is expected to be one, the different replicates can be brought to a
common reference scale dividing the different replicates for a representative value
of the replicates data set, which is going to be the median:

qi
med;(q;)
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Figure 3: Interface showing the options to correct the dye-effect using
the quality control elements. The different options to transform the
data are as well shown.

where med; is the median of the normalized ratios g; across the different replicates.
In our interface this is called across replicates normalization and contributes to
reduce the experimental error that can come from inconsistent experimental condi-
tions from array to array (see Figures 2, 3).

As important as getting a unique value that will be considered as the ratio of the
expression level of a particular gene in both channels, is giving an estimator of how
reliable this value is. For this reason we calculate as well the standard error and we
use it to show in the time series plot the reliability of this value as an estimator of
the log ratio.

Two different t-test are available: Equation (1) shows the formula for reference
designs (Kerr and Churchill (2001)) for which the interest is in expression level
between biological conditions.

xicl - xicz

ticre, = —m——= (1)

=18
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Figure 4: “Curtain” plot: The correlation coefficient for the different
replicates of all the genes in the microarray are represented. It can
be seen how good the quality of the replicates is. The uncorrelated
replicate is the fourth, for which the dyes were swapped.

where
Ny Ny
—_— 1 . 1 1 Ri]‘ d
Tic; = —7’L E Tij = —TL E 0go —G , al
Cc1 j=1 C1 j=1 ]
Neq
1
2 = 2
Sien = 7 Y (@ij — Tiey)*.
Ne, =

Equation (2) shows the formula for loop designs (Kerr and Churchill (2001)) for
which the expression level of the gene is estimated using the log ratio of the intensity
of the two hybridized samples.

T
ticre, = _Treice , (2)

where

Uz Uz
o _ 15y, (B 1
Licie2 = $i01C2j - 0go , an
G
nr S nr . ’iCQ
j=1 j=1

J
n
1 r
2 - - E . . T 2
Sicres — (x’LClCzJ - xwlcz) :
N, — 1 4 *
]:

After taking the average and calculating the standard error and t-test using the
available replicates per biological condition, we still need a common reference to
compare the log ratio across different biological condition. For this reason normal-
ization across samples is still required. We correct the data according to:

t;

G = medj (t])
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where med; is the median of the gene expression level across the different arrays.
An alternative is: ;

_ i

- medy(t;)

where med; is the median of the gene expression level across a fixed set of arrays.
It is important to remark that across replicates normalization and across samples
normalization are not compulsory and are just appropriated if the overall expression
from one array to another is expected to be similar. Otherwise, we would be falsely
correcting the data.

The last thing previous to proper analysis of the data (e.g. clustering, time series
analysis or Principal Components)! is the transformation that should be chosen.
The log, transformation is the most popular but may not be the most suitable one,
due to the extreme difference between small values. For this reason a log-linear
transformation or the arcsinh transformation recommended in Huber et al. (2002)
can be more appropriated. All of them are implemented in our toolbox (see Figure
3).

7 Conclusions

This paper describes a GUI for the normalization of microarray data. This interface
is a good example of efficient organization of one of the approaches to normalize
microarray data: the sequential method. In this paper it was demonstrated the
necessity of visualizing different features of the data in order to choose among
different options at every stage of the sequential normalization process. Every of
those steps are described in this paper. Furthermore, it is needed to test how the
data changes after every different correction to avoid over-fitting or transformations
that don’t preserve the biological meaning of the data. The GUI for normalization
allows this comparison to the user. In summary, this GUI is an example to encourage
the implementation of “user friendly” environments in powerful software packages
such as R. Just a few feature were included in the paper. For further information
and files search http://www.sbi.uni-rostock.de
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