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1. Introduction and Objectives

Clustering methods are popular screening tools for microarray data in order to identify subgroups of genes that share common regulatory elements, a common function
or a common cellular origin. But the most popular clustering algorithms, e.g. K-means, require a priori determination of the number of clusters. Results strongly depend
on this choice. Additionally, microarray data are inherently noisy and many measurements are missing, which results in the loss of a great amount of information with
most earlier methods. Therefore, we propose a probabilistic model in which the number of clusters and missing values are treated as random variables that can be
estimated from the available data using the Reversible Jump Markov Chain Montecarlo (RJMCMC) simulation scheme [1].
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Figure 2: RIMCMC-clusters generated by the five genes exhibiting the highest cell-
@ cycle regulated score in the different cell-cycle phases according to Spellman et al. [3]
(red solid line). The five “main genes” and their score are displayed in the table. The
by NA NA VA red broken line is the centroid of the cluster.
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Transcriptional profiling of adipogenesis [4]
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Figure 1: Sketch of the RIMCMC-clustering algorithm. The key is the estimation of the posterior
distribution of the indicator variable z_If the RIMCMC simulation scheme is used, the number of
clusters does not need to be specified in advance. Otherwise MCMC and EM algorithm [2] can be .
applied for estimation. —t—t————F+—
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The methodology described in brief in Section 2 was applied to two data P oo L

sets: Apublic data set performed to discover cell-cycle regulated genes in §°- i § o | D

the yeast S.Cerevisae [3] and the data from a microarray experiment 0 I O
carried out to discover new targets and transcription factors involved in

fime fime

adipogenesis [4].

Figure 3: Clusters generated by the genes known to be inducing adipogenesis (red

Yeast Cell Cycle regu|ated experiment [3] solid line), i.e. PPARy, C/EBPoa and SREBP1. Some other important genes are

highlighted in each cluster. CEBPo is expressed after two hours after induction, but
this time point was not covered in this experiment, hence it exhibits a flat profile.
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bayesian (MCMC, RUIMCMC) clustering algorithms. From the clusters of biologically — differentiation. However, it had not
related genes found by Spellman et. al [3] the table displays how many of them were been possible to study it with other
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4. Discussion and conclusions

Bayesian Statistics are specially suitable for inference from microarray data because, (1) a complex problem can easily be subdivided into managable units, which increases
flexibility but also allows more complex modelling, (2) they allow incorporation of a priori knowledge from other experiments, which often facilitates experimental design and
may allow for more economical decisions. The greater degree of flexibility that this approach offers had been already exploited in the discovery of gene and protein
networks,in the discovery of differentially expressed genes measured using microarrays and also, but less often, for clustering of gene expression profiles [5]. However, the
algorithm presented in this poster is the first one that considers all unknowns (i.e. centroid, cluster dispersion, number of clusters, missing values) as random variables which
posterior distribution can be estimated from the data. The clustering algorithm succesfully identified groups of similar genes without the need of determining the number of
clusters beforehand. The clusters found were biologically meaningful and genes previously discarded due to missing values were correctly assigned to clusters of genes
of biological affinity. The only drawback is the computational cost, what will be overcome with the advance of this field.
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