Errata

Page	Place	Current	Change to
ix	line 5	Cains	Cain
5	line 5	depending the type	depending on the type
6	line 6	a thus representation, a simplified	a simplified
7	last sentence	Our focus will here be	Our focus here will be
32	line 2	TelR	$\mathrm{Tet}\mathrm{R}$
36	Table 2.1, 3rd row	v	\hat{k}_{j}
37	M-code 2.1	X(i2.^G(i)	X(i2).^G(i)
39	2nd piece of code	Dxdt = @(t,x) S*v(x)';	Dxdt = @(t,x) S*v(x);
45	Example 2.13	$-x_{\mathrm{P}}$	$x_{ m P}$
48	2nd bulleted item	complex system intro	complex system into
64	line 6	These relationship	These relationships
68	2nd equation, 2nd line	$(n^{tot}p_u)$	$(n^{\mathrm{tot}}p_u)^n$
68	3rd equation and the following line	$p \over \lambda$	p_u
68	line preceding Equation 3.8	λ	μ
69	line 3	when you access to	when you have access to
72	last equation	$k_u \left(n^{tot} - n \right)$	$k_u \left(n^{\text{tot}} - n \right) \Delta t$
73	Section 3.5.2, line 8	$k_u n$	$k_u \left(n^{\mathrm{tot}} - n \right)$
73	Section 3.5.2, lines 15,18	$(k_w + k_u) n$	$\frac{k_w n + k_u \left(n^{\text{tot}} - n\right)}{k_w n}$
74	line 2	$k_w/(k_w+k_u)$	
			$\frac{\overline{k_w n + k_u \left(n^{\text{tot}} - n\right)}}{k_u \left(n^{\text{tot}} - n\right)}$
74	line 2	$k_u/(k_w+k_u)$	
104		,	$\overline{k_w n + k_u \left(n^{\text{tot}} - n\right)}$
124	Section 3.5.2, line 5	the two type	the two types
126	equation 5.15,5.17,5.19		where $\hat{k}_1 = k_1/\Omega$.
128	Network reduction	R_1 or R_4	R_2 or R_4
135	caption for Figure 5.4	$n^{tot} = 10$	$n^{\text{tot}} = 20$
135	caption for Figure 5.4	N(0) = 10	N(0) = 20
150	M-code 5. 3	$dW = \operatorname{sqrt}(dt) * \operatorname{randn}(r,1);$	move this line inside the loop
158	first equation	$1 - P_{\rm I}(t) + P_{\rm P}(t)$	$1 - (P_{\mathrm{I}}(t) + P_{\mathrm{P}}(t))$