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1. Learning Objectives

[J The expectation operator is a generic concept to summarise infor-
mation in an underlying universe of discourse.

O Averaging information leads to probability measures and statistics.

[ Aggregating information leads to fuzzy measures and possibility
measures in particular.

O Matching data to with a model, requires a criterion for how well
the data are fitted.

[ The least-squares criterion provides optimal parameter estimates
for linear models.

[0 A geometric (vector) representation of the regression problem shows
that the optimal solution implies orthogonality.
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O

The Fourier series is an example for function approximation using
the orthogonality principle.

The least-squares principle does not require a statistical framework
to make sense.

Maximum likelihood estimation is a statistical framework for pa-
rameter estimation.

Stochastic processes are a probabilistic framework to study time-
series.

The Kalman-Bucy filter is a good example how a probabilistic
framework, orthogonality and the expectation operator can be
used to develop a new concept to model data.
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2. The Expectation Operator

The expectation operator is a generic tool for the extraction of in-
formation. The expectation of any function h with respect to some
function g is defined as

Elh()] = /Y h(y) - g(y) dy . (1)

The expectation operator may be used in two ways to summarise
information:

> averaging data to obtain a single reliable measure in the presence
of randomness.

> aggregating information to obtain a consensus between similar
pieces of information.
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2.1. Example: The Probability of an Event

An event, is represented by subset A C Y. Formally an event A is
defined by its characteristic function ¢ :

1 ifyeA,
CA(Z/)—{O ifyd A

The expectation of the characteristic function ¢ specifying subset A,
then defines the probability of event A :

“+00
E[Ca]l = / Caly) p(y) dy where

— 00

=/mw@
A
= Pr(A) .
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2.2. Example: The Probability of a Fuzzy Event

A fuzzy event is represented by a fuzzy set A = {(y, 1a(y))}, defined
by its membership function :

pa: Y — [Oa 1]
y — pa(y)
The probability of the fuzzy event A is then defined as the expectation
of pa :

Eliia] = / 4aly) dPr

+oo
= / pa(y) p(y) dy (2)

— 00

= Pr(A4) .

Equation (2) evaluates the degree with which space Y has the fuzzy
property A.
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2.3. Example: Mean Value and Standard Deviation

Considering values in Y as the outcome of a random wvariable y, a
measure of central tendency is defined by

Ely] :/Yy-p(y) dy
=n. (3)

7 is called the mean value of random variable y.

From (3), the dispersion of data in Y, around 7, is quantified by
the variance

El(y —n)"] = /Y (y—m*-ply) dy
=07 . (4)
The square root of (4) is called standard deviation.

<4< | d 2 | » Back View



Section 2: The Expectation Operator 10

2.4. Example: Covariance and Correlation

From (4), considering two random variables x and y we define the
covariance between the two variables as

Oxy = E[(x =) (y —ny)] -

If oxy = 0, then x and y are said to be ‘independent’. A bounded

measure of this is the correlation coefficient :
. Ox
Pxy = —2— where —1<p<1. (5)
Ox - Oy

A probabilistic model does not refer to a set of sampled data. How
do we estimate the statistics introduced above...?
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2.5. Descriptive Statistics

Given a finite set of data, M = {m; = z,}, j =1,... ,d, we may for
example use the following estimators of (3) and (4) :
1 &
== (6)
j=1
1
. 2
) 7)
j=1
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3. The Least Squares Criterion
The most commonly used criterion to quantify the quality of the

model fitting the data is called least-squared criterion.

Let
. T
X = [21,22. .., 2]
be the regression vector over some domain
X=X1x--xX,)CR",

called the regressor space.

The aim is then to identify the static dependence
y=f(x)

of a dependent or response variable, y € Y C R, called the regressand
on the independent variables x, called regressors.
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13

The aim of the identification algorithm is to construct a function
f(x;0), from a finite set of data M = {m;}, such that y ~ f(x;0).

system

<4<

| d 2
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X
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3.1. Example: Autoregressive Dynamic Systems

Considering input-output models, using an auto-regressive model struc-
ture, the system is described by a finite number of past inputs and
outputs :

x = [y(k), ..., y(k —ny +1),uk),... ,ulk—n,+1)]" .

Linear parametric regression, using the least-squares criterion, pro-
vides solutions for linear functions f(-) as discussed in conventional
system identification [3].

Note that y and x may not be related to time at all. On the other

hand, y may depend only on time, y = f(¢), or y is dependent on
some variables which themselves vary in time.
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3.2. General Regression Model
The problem is to find a function of the regressors
f(x;0),
called regression function, such that the difference,
L(y, f(x:0))

called loss becomes small so that y = f(x;0) is a good prediction of
y. A common loss function for regression is the squared error (L) :

L(y, f(x;0)) = (y — f(x;0))" . 8)
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3.3. The Probabilistic Perspective

If y and x are described within a stochastic framework, one would
minimise the expected value of the loss, called the risk functional [1] :

BlL) = / L(y. /(x:0)) p(x. ) dxdy . (9)

In this case the function f that minimises (8) is the conditional ex-
pectation of y given x1,x2,... , %, :

f(x;0) = Ely|x; 0]

.. as the regression of y on x.
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3.4. Linear Parametric Regression

In linear parametric regression, y is fit to a linear combination of x :

f(x;0) = 6121 + 020 + -+ + 0,2, (10)
with vector 6 = [01,04, ... ,QT]T; written in vector notation,
f(x;0)=x"6 .
Since only a finite set of sampled data M = {m;} is available with
m; =[] (1)
= [majy. e ympyry) € R,
and [mq;,. .. ,mTj}T = x; € R". The variance in (8) is replaced by

the sample variance

1 d 2
EZ(yj—f(Xj)) :
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In the linear case (10), we therefore minimise the variance of the
residuals :

&I’—‘

d
}: (12)

instead of (8). In (12),
y—y=e (13)

is called the prediction error which we aim to minimise.

A suitable 6 to choose is the minimising argument of (12) :
6 = arg min - Z , (14)

called the least squares estimate.
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3.5. Derivation of the Solution

Since the loss (12) is a quadratic function of 6, it can be minimised
analytically. The necessary condition for the minimum of (14) is, that
all derivatives with respect to the parameters 6 vanish :

LA b, — 4;)=0
e _ 1 (01 + -+ Oz, —y)=
o6, " g
L ST -
< =2% xy-(Ohx1+ -+ 0w —y;)=0
06, ~ " g
~92 d
?;;e :22337"(91x1+"'+erl‘r—yj):0
T i=1
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These conditions can be rewritten in the form of so-called normal

equations :
Olle-x1+~--0d2x1~xd22yj-x1
Olzxg-x1+---0d2x2~xd22yj-a:1

91Z$d'$1+-'~9d2$d'$dzzyj'331
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That is, we find that all 8 that satisfy

d d

1 PO |

p g xjxf 0= P g X;Yj (15)
j=1 j=1

yield a global minimum of (14). If the matrix on the left is invertible,

we have
-1

14
= ZXJ g ijyj . (16)
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Section 3: The Least Squares Criterion

23

Rewritten in matrix notation, we define the following d x 1 vector

and d X r matrix

Y1 X1T

Y2 X2T
Y =|. X=| .

Yd XdT

The normal equations take the form
[X"X] 6 =X"Y
and the estimate

6= [X"X]"'XTY

(17)

(18)

(19)

where [X7X] !XT is known as the Moore-Penrose pseudoinverse and
(19) thus gives the solution to the overdetermined (d > r) system of

linear equations

Y = X6 .

<4< | d 2 | »
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To ensure that X7 X is invertible, one needs to choose inputs to the
system so that it is “sufficiently excited”. If data are to be weighted,
we introduce the weighting matrix

w1 0
W = (21)
0 Wy
and write for (16) and (19),
6 = [X"WX] 'X"WY (22)

-1
d d
_ R . TR
= WiX;X; WX -
Jj=1 Jj=1

Note that the least-square fitting makes sense without a proba-
bilistic formulation.
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3.6. Probabilistic Noise Model

In a stochastic framework, the sequence of regressors (x(k)) is as-
sumed deterministic, and the output of the system is a random vari-
able that takes on real values. The output may therefore be inter-
preted as the sum of a deterministic function and a random error
with zero mean, leading to the time-series model

ylk+1) = f(x(k); 0) +¢e(k)

where e(k) is assumed to be a sequence of independent, identically
distributed random wvariables with zero mean such that there exists a
population random variable y for which

Ely;] = f(x;)

and for the residuals e;, Ele;] = 0. Hence the deterministic function
is the mean of the output conditional probability

f(x) = / y p(ylx) dy . (23)

<4< | d 2 | » Back View
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4. The Geometrical Approach

The unknown nonlinear function y = f(x) represents a (non)linear hyper-
surface in the product space X x Y C R"*!, called regression surface. Let
us consider three data points m; = (—4,0), mz = (1, 3), ms = (3,6) with
a regression line fitted through the data.




Section 4: The Geometrical Approach 27

The model in vector-matrix notation, Y = X0 + E, where E =
Y — Y denotes the residuals, is defined by

1 —4 0 €1
Y=|1 1 ~[1}+ €2
1 3 2 es

The fitted regression line is a vector denoted y. The columns of X
are sequences of sampled values from 1 and x5 and are therefore also
vectors, denoted by x; and xs,

y:él'xl+é2'x2

or
Y1 R 1 R —4
yo| =601 |1 + 02 1 (24)
Y3 1 3
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observation 3

residuval é =y — y

observation 2

observation 1
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Orthogonal projection y’ of y onto x :

any other projection of y onto x.
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If the regressors are orthogonal, as in figure 1, and we denote by
v1, y5 the perpendicular projections of y onto x; and x5, we have

y =y +vs

Comparing this with (24), we can find simple formulas for §; and
0.

For only two vectors y and x, the perpendicular (orthogonal) pro-
jection of y onto x is a scalar multiple of x :

y =a-x (25)

with the problem to determine a such that the inner product (y — a -

x) -x = 0 is zero, i.e the angle between the two vectors is 90°. Hence,

Yy X
X-X

(26)
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Substituting (26) into (25), the projection y’ of y onto x is
y = (u) X . (27)
X X

From (27), inserted into y* =y} + y%, the optimal fit is given as
X X
y/:(y 1>.x1+<y 2>~X2. (28)
X1 X1 X2 - X2
Comparing (28) with (24), we obtain the parameter estimates as

g, = Y X (29)

X; X5

<4< | d 2 | » Back View
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4.1. Example: Regression Line (Straight Line Fit)
Consider the linear parametric model (10) simplified to

y = 01x1 + 022

With 1 = 1, we write « for x5 and use the subscripts for indices of
measured values of x. We have the following matrices :

o[ e[ E

and for the normal equations (18) and the parameter estimate (19) :
d S o] _ Sy
S S (6] T Dy

oL [ZSCQEQ—ZJTZM/}
A 22— (Na)* | dXmy—2x)y

<4< | d 2 | » Back View
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Considering the two variables y and «, (30) defines a straight line
fit through the scatter plot of data for y and x. The slope of the line
is determined by parameter 6 :

b, = dY wy—3 3y

Ay a? - (X )’
The result suggests that the regression line, (30) describes also in
some way the correlation between the two variables z and y. Then

there should be a relationship to the correlation coefficient (5) defined
earlier.

(31)

In a scatter diagram, (see figure 2), the ‘cloud’ of data is char-
acterised by the estimates of mean values and standard deviation of
both variables. More specifically we can draw the o-line through the
point of averages (7, 7),) with a slope defined by &,/5.
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In figure 2 the o-line and least square fit of the regression line,
together with 95% confidence intervals', are shown for the following
set of data [2] :

x || 300 | 351 | 355 | 421 | 422 | 434 | 448 | 471 | 490 | 528

Y 2 2.7 12721269 298|309 |27 | 32294 3.73

The point of averages is found at (), 7,) = (422,2.876), 62 = 65.95,
62 = 0.42, and 6, = 0.56,0, = 0.0055.

LA 95% confidence interval means that we are confident of finding the values
in the interval +20 around the regression line. That is, a 95% confidence level
means we expect the values to be in the interval 95% of the time.
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Replacing the covariance and standard deviations of x and y by
their estimators

Oy =

d Ll
; (xj —is)”  where 1, = - z::

we obtain the following estimate for the correlation coefficient :
poy = i@ =)y —iy) 2. xy — dijaily
WY @) @ ) S @ -0 - i)
_ Xawy—d[GXe-g¥y]  dYay-YaYy
\/Z (z —z) \/Zy )’ d\/E (z —a) \/Zy iy)?

The numerator already matches the one in (31) and we find that if
we multiply p,, by 6,/64, the slope of the o-line,...

IS
<
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..we find the slope of the regression line coinciding with 6 :
. oy dXxy—> x>y ﬁ' Z(?J‘ﬁy)Q
px,y'&—z— A \2 A2'1 A2

Y - i) -, S @ -
_dywy—Ylayy  dYlwy—3ayy
S A @ —)’ Al 2P A
_dyay—Yxyy dyazy—3xdy

Ay’ —dnz 4y a?— (L)
=0, .

If py, is exactly +1 or —1 we obtain, as a special case, the linear
relation y = Oyx + 6.

Note, however, variables that are functionally related among each

other are correlated but not conversely: if the correlation coefficient
is near +1 or —1 we may suspect the existence of a law but this is all.
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5. Maximum Likelihood Estimation

Let M = {(x;,y,)}, denoted {m,}, be a set of d sampled data pairs;
the m; modelled as outcomes of independent random variables. In
the maximum likelihood framework due to R.A Fisher, it is assumed
that the data observed a drawn from a distribution with distribution
or density

p(M]6)
parametrised by
0=1[6,....6,]" .

The key idea in ML estimation is to determine the parameter(s) 6
for which the probability of observing the outcome M is as high as
possible.
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The function
e(e;mtha"' 7md) :p(M‘e) (32)

is called likelihood function. The ML estimate of the parameter(s) is
that value of parameters which maximises the likelihood function :

Oy, = arg max LO6; M) . (33)

Since we maximise £, not the actual value of the function at that
point, it is common to ignore constants in the likelihood function that
do not depend upon the parameter(s).
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In many applications it is more convenient to consider the loga-
rithm of the likelihood function, called the log-likelihood function :

L(O;M) =1n £(6;M) . (34)

Since the logarithm is monotonically increasing, maximising the log-

likelihood is equivalent to maximising the likelihood.

If the function £ is continuous differentiable, a necessary (but not
sufficient) condition to maximise the (log) likelihood is for the gradient
to vanish at the value 0 that is the ML value :

ng(e = aML ‘ M) = Vg In £(0 = 0ML | M) =0 (35)

where

T
N A
061" 00, 00,
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5.1. Example: ML-Estimates for the Normal Distribution

The training data M = {m; = z;} are assumed to derive from the
normal distribution
1 _@—m?

xr;n,0) = ———=¢€ 202
p(z;n,0) P
The likelihood function takes the form

£(0; M) = p(x1) - p(x2) - - - p(a)

1 1<
:ﬁexp —2—2

Hence, the log-likelihood function is

L(6; M) = Pr(M]|n,o?)

d
d d 1
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We maximise the log-likelihood function by taking the partial
derivatives, and equating them with zero

oL 1<

877:;5 (zj—n) =0 (36)
oL 1 &

907 = 202 2—2 "=0. (37)

From (36) and (37) we obtain the ML-estimates as

&\H

i
-

&.I*—‘

<4< | d 2 | » Back View



Section 5: Maximum Likelihood Estimation 42

5.2. The EM-Algorithm

For more complicated likelihood functions numerical methods
are required for an iterative optimisation.

A well established example is the Ezxpectation Maximisation
(EM) algorithm, introduced by A. Dempster.

The EM algorithm consists of two major steps:

> an ezxpectation step, followed by a

> mazimisation step.

The expectation is with respect to the unknown underlying vari-
ables, using the current estimate of the parameters and condi-
tioned upon the observations.

The maximisation step then provides a new estimate of the pa-
rameters. These two step are iterated until convergence.
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Set loop counter [ = 0; choose the termination tolerance § > 0 and initialise
parameter(s) 0(9).
Repeat for 1 =1,2,... :

Step 1: E-Step: Estimate unobserved information using 0(=1 The unobserved
pdf is

p(x;0) ,

where 6 € © is the set of parameters of the density. Because we do not
have the information of x to maximise In p(m; ), we instead maximise the
expectation of Inp(x; 0) given the data M and our current estimate of 6 :

E[lnp(x; 8)|m, 8] = Q(8]6M) .

Step 2: M-Step: Compute the ML-estimate of parameter(s) o+ using informa-
tion estimated from the E-step :
o0+ — arg max Qo16M) .
Analytically, the ML-estimate is obtained by taking the derivative of In p(x; 0)
with respect to @, equating it to zero, and solving for 6.

Until HeU) - 9<H>H <.
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6. Summary

U The expectation operator is a generic tool not restricted to prob-
ability theory.

O (Descriptive) Statistics # Probability Theory.

[l The least squares criterion makes sense without a probabilistic
framework.

[0 For a linear parametric regression model, we obtain a simple
solution from the least squares criterion.

[ In the geometric approach, the optimal least squares estimate
corresponds to orthogonal vectors.
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[0 The Fourier series is an important example for orthogonal func-
tions and the least squares criterion.

0 The EM-algorithm is an important tool for maximum likelihood
estimation if the distribution of the data is a mixture of density
functions.

[ A stochastic process is a sequence of random variables.

[J The Kalman-Bucy filter is a good example how a probabilistic
framework, orthogonality and the expectation operator can be
used to develop a new concept to model data.
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Figure 1: Vector representation
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of least-squares regression.
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300 350 400 « 450 500 550

Figure 2: Regression line (solid), o-line (dotted), 95% confidence interval
(dashed).
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