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Section 1: Learning Objectives 4

1. Learning Objectives

� The expectation operator is a generic concept to summarise infor-
mation in an underlying universe of discourse.

� Averaging information leads to probability measures and statistics.

� Aggregating information leads to fuzzy measures and possibility
measures in particular.

� Matching data to with a model, requires a criterion for how well
the data are fitted.

� The least-squares criterion provides optimal parameter estimates
for linear models.

� A geometric (vector) representation of the regression problem shows
that the optimal solution implies orthogonality.
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Section 1: Learning Objectives 5

� The Fourier series is an example for function approximation using
the orthogonality principle.

� The least-squares principle does not require a statistical framework
to make sense.

� Maximum likelihood estimation is a statistical framework for pa-
rameter estimation.

� Stochastic processes are a probabilistic framework to study time-
series.

� The Kalman-Bucy filter is a good example how a probabilistic
framework, orthogonality and the expectation operator can be
used to develop a new concept to model data.
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2. The Expectation Operator

The expectation operator is a generic tool for the extraction of in-
formation. The expectation of any function h with respect to some
function g is defined as

E[h(·)] .=
∫

Y

h(y) · g(y) dy . (1)

The expectation operator may be used in two ways to summarise
information:

� averaging data to obtain a single reliable measure in the presence
of randomness.

� aggregating information to obtain a consensus between similar
pieces of information.
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2.1. Example: The Probability of an Event

An event, is represented by subset A ⊂ Y . Formally an event A is
defined by its characteristic function ζ :

ζA(y) =

{
1 if y ∈ A ,

0 if y �∈ A ,

The expectation of the characteristic function ζ specifying subset A,
then defines the probability of event A :

E[ζA] =
∫ +∞

−∞
ζA(y) p(y) dy where

=
∫

A

p(y) dy

.= Pr(A) .
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2.2. Example: The Probability of a Fuzzy Event

A fuzzy event is represented by a fuzzy set A = {(y, µA(y))}, defined
by its membership function :

µA : Y → [0, 1]
y �→ µA(y)

The probability of the fuzzy event A is then defined as the expectation
of µA :

E[µA] =
∫
µA(y) dPr

=
∫ +∞

−∞
µA(y) p(y) dy (2)

.= Pr(A) .

Equation (2) evaluates the degree with which space Y has the fuzzy
property A.
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2.3. Example: Mean Value and Standard Deviation

Considering values in Y as the outcome of a random variable y, a
measure of central tendency is defined by

E[y] =
∫

Y

y · p(y) dy
.= η . (3)

η is called the mean value of random variable y.

From (3), the dispersion of data in Y , around η, is quantified by
the variance

E[(y − η)2] =
∫

Y

(y − η)2 · p(y) dy
.= σ2

y . (4)

The square root of (4) is called standard deviation.
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2.4. Example: Covariance and Correlation

From (4), considering two random variables x and y we define the
covariance between the two variables as

σx,y
.= E

[
(x− ηx)(y − ηy)

]
.

If σx,y = 0, then x and y are said to be ‘independent’. A bounded
measure of this is the correlation coefficient :

ρx,y
.=

σx,y

σx · σy
where − 1 ≤ ρ ≤ 1 . (5)

A probabilistic model does not refer to a set of sampled data. How
do we estimate the statistics introduced above...?
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2.5. Descriptive Statistics

Given a finite set of data, M = {mj
.= xj}, j = 1, . . . , d, we may for

example use the following estimators of (3) and (4) :

η̂ =
1
d

d∑
j=1

xj (6)

σ̂2 =
1
d

d∑
j=1

(xj − η̂)2 (7)

or the unbiased estimator

σ̂2 =
1

d− 1

d∑
j=1

(xj − η̂)2 .
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Section 3: The Least Squares Criterion 12

3. The Least Squares Criterion

The most commonly used criterion to quantify the quality of the
model fitting the data is called least-squared criterion.

Let

x .= [x1, x2 . . . , xr]
T

be the regression vector over some domain

X = (X1 × · · · ×Xr) ⊂ R
r ,

called the regressor space.

The aim is then to identify the static dependence

y = f(x)

of a dependent or response variable, y ∈ Y ⊂ R , called the regressand
on the independent variables x, called regressors.
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Section 3: The Least Squares Criterion 13

The aim of the identification algorithm is to construct a function
f(x;θ), from a finite set of data M = {mj}, such that y ≈ f(x;θ).

system

S

manifold

Ξ
codomain

Y

domain

X

dependent variable y

independent
variables x
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3.1. Example: Autoregressive Dynamic Systems

Considering input-output models, using an auto-regressivemodel struc-
ture, the system is described by a finite number of past inputs and
outputs :

x .= [y(k), . . . , y(k − ny + 1), u(k), . . . , u(k − nu + 1)]T .

Linear parametric regression, using the least-squares criterion, pro-
vides solutions for linear functions f(·) as discussed in conventional
system identification [3].

Note that y and x may not be related to time at all. On the other
hand, y may depend only on time, y = f(t), or y is dependent on
some variables which themselves vary in time.
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3.2. General Regression Model

The problem is to find a function of the regressors

f(x;θ) ,

called regression function, such that the difference,

L
(
y, f(x;θ)

)
called loss becomes small so that y = f(x;θ) is a good prediction of
y. A common loss function for regression is the squared error (L2) :

L
(
y, f(x;θ)

)
=

(
y − f(x;θ))2

. (8)
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3.3. The Probabilistic Perspective

If y and x are described within a stochastic framework, one would
minimise the expected value of the loss, called the risk functional [1] :

E[L] =
∫
L

(
y, f(x;θ)

)
p(x, y) dxdy . (9)

In this case the function f that minimises (8) is the conditional ex-
pectation of y given x1, x2, . . . , xr :

f(x;θ) = E[y|x;θ]
.. as the regression of y on x.
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3.4. Linear Parametric Regression

In linear parametric regression, y is fit to a linear combination of x :

f(x;θ) = θ1x1 + θ2x2 + · · ·+ θrxr (10)

with vector θ = [θ1, θ2, . . . , θr]
T ; written in vector notation,

f(x;θ) = xT θ .

Since only a finite set of sampled data M = {mj} is available with

mj = [xT
j , yj ]

T
(11)

.= [m1j , . . . ,m(r+1)j ]
T ∈ R

r+1 ,

and [m1j , . . . ,mrj ]
T .= xj ∈ R

r. The variance in (8) is replaced by
the sample variance

1
d

d∑
j=1

(
yj − f(xj)

)2
.
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X1

X2

Y

m = [xT , y]T
Ξ = X × Y
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Section 3: The Least Squares Criterion 19

In the linear case (10), we therefore minimise the variance of the
residuals :

σ̂2
e =

1
d

d∑
j=1

(
yj − xT

j θ
)2

(12)

instead of (8). In (12),

y − ŷ .= e (13)

is called the prediction error which we aim to minimise.

A suitable θ to choose is the minimising argument of (12) :

θ̂ = argmin
1
d

d∑
j=1

(
yj − xT

j θ
)2
, (14)

called the least squares estimate.
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3.5. Derivation of the Solution

Since the loss (12) is a quadratic function of θ, it can be minimised
analytically. The necessary condition for the minimum of (14) is, that
all derivatives with respect to the parameters θ vanish :

∂σ̂2
e

∂θ1
= 2

d∑
j=1

x1 ·
(
θ1x1 + · · ·+ θrxr − yj

)
=0

∂σ̂2
e

∂θ2
= 2

d∑
j=1

x2 ·
(
θ1x1 + · · ·+ θrxr − yj

)
=0

...

∂σ̂2
e

∂θr
= 2

d∑
j=1

xr ·
(
θ1x1 + · · ·+ θrxr − yj

)
=0
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Section 3: The Least Squares Criterion 21

These conditions can be rewritten in the form of so-called normal
equations :

θ1
∑

x1 · x1 + · · · θd
∑

x1 · xd =
∑

yj · x1

θ1
∑

x2 · x1 + · · · θd
∑

x2 · xd =
∑

yj · x1

...

θ1
∑

xd · x1 + · · · θd
∑

xd · xd =
∑

yj · x1
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Section 3: The Least Squares Criterion 22

That is, we find that all θ̂ that satisfy
1
d

d∑
j=1

xjxT
j


θ̂ =

1
d

d∑
j=1

xjyj (15)

yield a global minimum of (14). If the matrix on the left is invertible,
we have

θ̂ =


1
d

d∑
j=1

xjxT
j



−1

· 1
d

d∑
j=1

xjyj . (16)
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Rewritten in matrix notation, we define the following d× 1 vector
and d× r matrix

Y =



y1
y2
...
yd


 X=



xT

1

xT
2
...
xT

d


 . (17)

The normal equations take the form[
XTX

]
θ̂ = XTY (18)

and the estimate

θ̂ =
[
XTX

]−1
XTY (19)

where
[
XTX

]−1
XT is known as the Moore-Penrose pseudoinverse and

(19) thus gives the solution to the overdetermined (d > r) system of
linear equations

Y = Xθ . (20)
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To ensure thatXTX is invertible, one needs to choose inputs to the
system so that it is “sufficiently excited”. If data are to be weighted,
we introduce the weighting matrix

W =



w1 0

. . .
0 wd


 (21)

and write for (16) and (19),

θ̂ =
[
XTWX

]−1
XTWY (22)

=


 d∑

j=1

wjxjxT
j



−1

·
d∑

j=1

wjxjyj .

Note that the least-square fitting makes sense without a proba-
bilistic formulation.
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3.6. Probabilistic Noise Model

In a stochastic framework, the sequence of regressors 〈x(k)〉 is as-
sumed deterministic, and the output of the system is a random vari-
able that takes on real values. The output may therefore be inter-
preted as the sum of a deterministic function and a random error
with zero mean, leading to the time-series model

y(k + 1) = f
(
x(k);θ

)
+ ε(k)

where ε(k) is assumed to be a sequence of independent, identically
distributed random variables with zero mean such that there exists a
population random variable y for which

E[yj ] = f(xj)

and for the residuals ej , E[ej ] = 0. Hence the deterministic function
is the mean of the output conditional probability

f(x) =
∫
y p(y|x) dy . (23)
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4. The Geometrical Approach

The unknown nonlinear function y = f(x) represents a (non)linear hyper-

surface in the product space X × Y ⊂ R
r+1, called regression surface. Let

us consider three data points m1 = (−4, 0), m2 = (1, 3), m3 = (3, 6) with

a regression line fitted through the data.

-6 -5 -4 -3 -2 -1 0 1 2 3 4
-1

0

1

2

3

4

5

6

7

b

b

b

m1 = (−4, 0)

m2 = (1, 3)

m3 = (3, 6)

e1 = 0.2

ŷ � 0.8x + 3

e2 = −0.8

e3 = 0.6
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The model in vector-matrix notation, Y = Xθ̂ + E, where E =
Y − Ŷ denotes the residuals, is defined by

Y =


1 −4
1 1
1 3


 ·

[
θ1
θ2

]
+


e1e2
e3


 .

The fitted regression line is a vector denoted y. The columns of X
are sequences of sampled values from x1 and x2 and are therefore also
vectors, denoted by x1 and x2,

y = θ̂1 · x1 + θ̂2 · x2

or 
y1y2
y3


 = θ̂1 ·


11
1


+ θ̂2 ·


−41
3


 . (24)
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observation 2

observation 3

observation 1

ê

〈.2,−.8, .6〉

x2

(−4, 1, 3)

x1
(1, 1, 1)

y
(0, 3, 6)

y∗

residual ê = y − ŷ
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Orthogonal projection y′ of y onto x :

a · x

x

y′

any other projection of y onto x.
0

y − y′

y
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If the regressors are orthogonal, as in figure 1, and we denote by
y′

1, y
′
2 the perpendicular projections of y onto x1 and x2, we have

y∗ = y1
′ + y′

2.

Comparing this with (24), we can find simple formulas for θ1 and
θ2.

For only two vectors y and x, the perpendicular (orthogonal) pro-
jection of y onto x is a scalar multiple of x :

y′ = a · x (25)

with the problem to determine a such that the inner product (y− a ·
x) ·x = 0 is zero, i.e the angle between the two vectors is 90◦. Hence,

a =
y · x
x · x . (26)
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Substituting (26) into (25), the projection y′ of y onto x is

y′ =
(y · x
x · x

)
· x . (27)

From (27), inserted into y∗ = y′
1 + y′

2, the optimal fit is given as

y′ =
(
y · x1

x1 · x1

)
· x1 +

(
y · x2

x2 · x2

)
· x2 . (28)

Comparing (28) with (24), we obtain the parameter estimates as

θ̂i =
y · xi

xi · xi
. (29)

�� �� � � Back View



Section 4: The Geometrical Approach 32

4.1. Example: Regression Line (Straight Line Fit)

Consider the linear parametric model (10) simplified to

y = θ1x1 + θ2x2
.= θ1 + θ2x . (30)

With x1 = 1, we write x for x2 and use the subscripts for indices of
measured values of x. We have the following matrices :

XT =
[
1 1 · · · 1
x1 x2 · · · xd

]
, XTX =

[
d

∑
x∑

x
∑
x2

]

and for the normal equations (18) and the parameter estimate (19) :[
d

∑
x∑

x
∑
x2

]
·
[
θ1
θ2

]
=

[ ∑
y∑
xy

]

θ̂ =
1

d
∑
x2 − (

∑
x)2

·
[∑

x2
∑
y − ∑

x
∑
xy

d
∑
xy − ∑

x
∑
y

]
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Considering the two variables y and x, (30) defines a straight line
fit through the scatter plot of data for y and x. The slope of the line
is determined by parameter θ2 :

θ̂2 =
d

∑
xy − ∑

x
∑
y

d
∑
x2 − (

∑
x)2

. (31)

The result suggests that the regression line, (30) describes also in
some way the correlation between the two variables x and y. Then
there should be a relationship to the correlation coefficient (5) defined
earlier.

In a scatter diagram, (see figure 2), the ‘cloud’ of data is char-
acterised by the estimates of mean values and standard deviation of
both variables. More specifically we can draw the σ-line through the
point of averages (η̂x, η̂y) with a slope defined by σ̂y/σ̂x.
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In figure 2 the σ-line and least square fit of the regression line,
together with 95% confidence intervals1, are shown for the following
set of data [2] :

x 300 351 355 421 422 434 448 471 490 528
y 2 2.7 2.72 2.69 2.98 3.09 2.71 3.2 2.94 3.73

The point of averages is found at (η̂x, η̂y) = (422, 2.876), σ̂2
x = 65.95,

σ̂2
y = 0.42, and θ1 = 0.56, θ2 = 0.0055.

1A 95% confidence interval means that we are confident of finding the values
in the interval ±2σ around the regression line. That is, a 95% confidence level
means we expect the values to be in the interval 95% of the time.
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Replacing the covariance and standard deviations of x and y by
their estimators

σ̂x =

√√√√1
d

d∑
j=1

(xj − η̂x)
2 where η̂x =

1
d

d∑
j=1

xj

we obtain the following estimate for the correlation coefficient :

ρ̂x,y =
1
d

∑
(x− η̂x)(y − η̂y)

1
d

√∑
(x− η̂x)

2
√∑

(y − η̂y)
2
=

∑
xy − dη̂xη̂y√∑

(x− η̂x)
2
√∑

(y − η̂y)
2

=
∑
xy − d [

1
d

∑
x · 1

d

∑
y
]

√∑
(x− η̂x)

2
√∑

(y − η̂y)
2
=

d
∑
xy − ∑

x
∑
y

d

√∑
(x− η̂x)

2
√∑

(y − η̂y)
2
.

The numerator already matches the one in (31) and we find that if
we multiply ρ̂x,y by σ̂y/σ̂x, the slope of the σ-line,...
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..we find the slope of the regression line coinciding with θ2 :

ρ̂x,y · σ̂y

σ̂x
=

d
∑
xy − ∑

x
∑
y

d

√∑
(x− η̂x)

2
√∑

(y − η̂y)
2
·

1√
d
·
√∑

(y − η̂y)
2

1√
d
·
√∑

(x− η̂x)
2

=
d

∑
xy − ∑

x
∑
y

d
∑

(x− η̂x)
2 =

d
∑
xy − ∑

x
∑
y

d
∑
x2 − 2d2η̂2

x + d
∑
η̂2

x

=
d

∑
xy − ∑

x
∑
y

d
∑
x2 − d2η̂2

x

=
d

∑
xy − ∑

x
∑
y

d
∑
x2 − (

∑
x)2

= θ2 .

If ρx,y is exactly +1 or −1 we obtain, as a special case, the linear
relation y = θ2x+ θ1.

Note, however, variables that are functionally related among each
other are correlated but not conversely: if the correlation coefficient
is near +1 or −1 we may suspect the existence of a law but this is all.
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Section 5: Maximum Likelihood Estimation 37

5. Maximum Likelihood Estimation

Let M = {(xj , yj)}, denoted {mj}, be a set of d sampled data pairs;
the mj modelled as outcomes of independent random variables. In
the maximum likelihood framework due to R.A Fisher, it is assumed
that the data observed a drawn from a distribution with distribution
or density

p(M|θ)
parametrised by

θ = [θ1, . . . , θr]
T
.

The key idea in ML estimation is to determine the parameter(s) θ
for which the probability of observing the outcome M is as high as
possible.
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Section 5: Maximum Likelihood Estimation 38

The function

$ (θ;m1,m2, . . . ,md) = p(M|θ) (32)

is called likelihood function. The ML estimate of the parameter(s) is
that value of parameters which maximises the likelihood function :

θML = argmax
θ

$(θ;M) . (33)

Since we maximise $, not the actual value of the function at that
point, it is common to ignore constants in the likelihood function that
do not depend upon the parameter(s).

�� �� � � Back View



Section 5: Maximum Likelihood Estimation 39

In many applications it is more convenient to consider the loga-
rithm of the likelihood function, called the log-likelihood function :

L (θ;M) .= ln $(θ;M) . (34)

Since the logarithm is monotonically increasing, maximising the log-
likelihood is equivalent to maximising the likelihood.

If the function L is continuous differentiable, a necessary (but not
sufficient) condition to maximise the (log) likelihood is for the gradient
to vanish at the value θ that is the ML value :

∇θ$(θ = θML | M) = ∇θ lnL(θ = θML | M) = 0 (35)

where

∇θ =
[
∂

∂θ1
,
∂

∂θ2
, · · · , ∂

∂θr

]T

.
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5.1. Example: ML-Estimates for the Normal Distribution

The training data M = {mj = xj} are assumed to derive from the
normal distribution

p(x; η, σ) =
1

σ
√
2π

e−
(x−η)2

2σ2 .

The likelihood function takes the form

$(θ;M) = p(x1) · p(x2) · · · p(xd)

=
1(√

2πσ2
)d

exp


− 1

2σ2

d∑
j=1

(xj − η)2

 .

Hence, the log-likelihood function is

L(θ;M) = Pr(M|η, σ2)

= −d
2

ln(2π)− d

2
ln(σ)− 1

2σ2

d∑
j=1

(xj − η)2 .
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We maximise the log-likelihood function by taking the partial
derivatives, and equating them with zero

∂L
∂η

=
1
σ2

d∑
j=1

(xj − η) = 0 (36)

∂L
∂σ2

= − d

2σ2
+

1
2σ4

d∑
j=1

(xj − η)2 = 0 . (37)

From (36) and (37) we obtain the ML-estimates as

η̂ =
1
d

d∑
j=1

xj (6)

σ̂2 =
1
d

d∑
j=1

(xj − η̂)2 . (7)
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5.2. The EM-Algorithm

• For more complicated likelihood functions numerical methods
are required for an iterative optimisation.

• A well established example is the Expectation Maximisation
(EM) algorithm, introduced by A. Dempster.

• The EM algorithm consists of two major steps:

� an expectation step, followed by a

� maximisation step.

• The expectation is with respect to the unknown underlying vari-
ables, using the current estimate of the parameters and condi-
tioned upon the observations.

• The maximisation step then provides a new estimate of the pa-
rameters. These two step are iterated until convergence.
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Set loop counter l = 0; choose the termination tolerance δ > 0 and initialise
parameter(s) θ(0).

Repeat for l = 1, 2, . . . :

Step 1: E-Step: Estimate unobserved information using θ(l−1). The unobserved
pdf is

p(x;θ) ,

where θ ∈ Θ is the set of parameters of the density. Because we do not
have the information of x to maximise ln p(m;θ), we instead maximise the
expectation of ln p(x;θ) given the data M and our current estimate of θ :

E[ln p(x;θ)|m, θ(l)]
.
= Q(θ|θ(l)) .

Step 2: M-Step: Compute the ML-estimate of parameter(s) θ(l+1) using informa-
tion estimated from the E-step :

θ(l+1) = argmax
θ

Q(θ|θ(l)) .

Analytically, the ML-estimate is obtained by taking the derivative of ln p(x;θ)
with respect to θ, equating it to zero, and solving for θ.

Until
∥∥∥θ(l) − θ(l−1)

∥∥∥ < δ.
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6. Summary

✘ The expectation operator is a generic tool not restricted to prob-
ability theory.

✘ (Descriptive) Statistics �= Probability Theory.

✘ The least squares criterion makes sense without a probabilistic
framework.

✘ For a linear parametric regression model, we obtain a simple
solution from the least squares criterion.

✘ In the geometric approach, the optimal least squares estimate
corresponds to orthogonal vectors.
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✘ The Fourier series is an important example for orthogonal func-
tions and the least squares criterion.

✘ The EM-algorithm is an important tool for maximum likelihood
estimation if the distribution of the data is a mixture of density
functions.

✘ A stochastic process is a sequence of random variables.

✘ The Kalman-Bucy filter is a good example how a probabilistic
framework, orthogonality and the expectation operator can be
used to develop a new concept to model data.
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Figure 1: Vector representation of least-squares regression.
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Figure 2: Regression line (solid), σ-line (dotted), 95% confidence interval
(dashed).
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